振幅整合腦電圖多中心研究協(xié)作組:程國(guó)強(qiáng) 胡勇 莊德義潘新年 汪吉梅邵肖梅
?
·論著·
振幅整合腦電圖監(jiān)測(cè)不同胎齡早產(chǎn)兒宮外環(huán)境下腦發(fā)育的多中心觀察性研究
振幅整合腦電圖多中心研究協(xié)作組:程國(guó)強(qiáng)1,5胡勇2,5莊德義3,5潘新年4,5汪吉梅2,5邵肖梅1
目的 了解宮外生活對(duì)28~36周早產(chǎn)兒振幅整合腦電圖(aEEG)的影響。方法 以出生時(shí)無(wú)窒息搶救史早產(chǎn)兒為早產(chǎn)兒組,以胎齡37周出生后正常的新生兒為對(duì)照組;早產(chǎn)兒組采用振幅整合腦電圖儀分別于生后3 d內(nèi),然后每周監(jiān)測(cè)1次直至出院(或最長(zhǎng)監(jiān)測(cè)至糾正胎齡37周),對(duì)照組于生后第3 d 行aEEG監(jiān)測(cè)。每次連續(xù)監(jiān)測(cè)4 h。分析胎齡和糾正胎齡對(duì)aEEG成熟過(guò)程影響,包括aEEG背景連續(xù)性、睡眠-覺(jué)醒周期、下邊界振幅和帶寬。5家參研醫(yī)院均采用相同品牌和型號(hào)的aEEG,研究開(kāi)始前統(tǒng)一進(jìn)行操作技術(shù)培訓(xùn),樣本的臨床和圖像數(shù)據(jù)發(fā)送至復(fù)旦大學(xué)附屬兒科醫(yī)院整理。結(jié)果 2008年5月1日至2009年8 月31日5家參研醫(yī)院符合本文納入和排除標(biāo)準(zhǔn)的早產(chǎn)兒組135例,對(duì)照組20例。早產(chǎn)兒aEEG的成熟度受胎齡和糾正胎齡的影響,隨胎齡和糾正胎齡增加,aEEG背景連續(xù)性和睡眠-覺(jué)醒周期出現(xiàn)的百分比均增加,逐步出現(xiàn)連續(xù)性電壓(χ2=26.865,P<0.01),≥34周出生的早產(chǎn)兒成熟的睡眠-覺(jué)醒周期的出現(xiàn)的百分比均為100%(χ2=192.4,P<0.01);下邊界振幅升高(F=11.4,P<0.01),帶寬變窄(F=8.731,P<0.01)。糾正胎齡和同出生胎齡的新生兒比較,連續(xù)性電壓百分比、睡眠-覺(jué)醒周期的出現(xiàn)率均顯著增加,胎齡>34周的早產(chǎn)兒出生時(shí)aEEG均可見(jiàn)明顯的睡眠-覺(jué)醒周期,而糾正胎齡32周時(shí),睡眠-覺(jué)醒周期出現(xiàn)的百分比已達(dá)到100%;窄帶下界也顯著增高;窄帶帶寬變窄,至34周齡后,糾正胎齡和同出生胎齡新生兒均變化不明顯。結(jié)論 早產(chǎn)兒aEEG的成熟度與出生胎齡和糾正胎齡相關(guān),宮外生活加速了早產(chǎn)兒腦發(fā)育成熟。
早產(chǎn)兒; 振幅整合腦電圖; 腦損傷; 腦發(fā)育
隨著產(chǎn)科和新生兒重癥監(jiān)護(hù)技術(shù)的提高,早產(chǎn)兒存活率顯著增加,但遠(yuǎn)期神經(jīng)發(fā)育預(yù)后不良的發(fā)生率并沒(méi)有相應(yīng)降低,特別是極低和超低出生體重兒[1]。如何減少這些早產(chǎn)兒神經(jīng)發(fā)育傷殘的發(fā)生率仍然是新生兒醫(yī)生面對(duì)的主要問(wèn)題之一。連續(xù)監(jiān)測(cè)早產(chǎn)兒腦功能有助于識(shí)別發(fā)生腦損傷的高危兒和高危因素;早期識(shí)別和避免高危因素可防止繼發(fā)性腦損傷。
振幅整合腦電圖(aEEG)可以連續(xù)監(jiān)測(cè)腦功能,已經(jīng)廣泛應(yīng)用于NICU[2]。aEEG背景電活動(dòng)與神經(jīng)系統(tǒng)評(píng)估結(jié)果和常規(guī)腦電圖具有較好的一致性[3~5]。 有研究報(bào)道不同胎齡早產(chǎn)兒aEEG的成熟度與神經(jīng)發(fā)育變化相一致[6~12]。僅少數(shù)研究報(bào)道了宮外生活對(duì)aEEG某一參數(shù)成熟度的影響[13~16]。目前認(rèn)為對(duì)aEEG多參數(shù)的分析可以提高判斷預(yù)后的價(jià)值[17]。本文以正常足月兒為對(duì)照,通過(guò)aEEG的4個(gè)主要參數(shù)探討臨床情況穩(wěn)定、神經(jīng)系統(tǒng)發(fā)育正常的不同胎齡早產(chǎn)兒aEEG成熟度變化及宮外生活時(shí)間對(duì)其影響。
1.1 早產(chǎn)兒組納入標(biāo)準(zhǔn) ①胎齡28~36周;②出生時(shí)無(wú)窒息搶救史;③生后第3 d,第1、2、3、4周和糾正胎齡36周行頭顱B超檢查,出院前行頭顱MRI檢查;④aEEG檢查前無(wú)應(yīng)用鎮(zhèn)靜劑或鎮(zhèn)痛藥物史。
1.2 早產(chǎn)兒組排除標(biāo)準(zhǔn) ①行頭顱B超和MRI檢查確定存在缺氧缺血性腦病(HIE)、腦室內(nèi)出血(IVH)和腦室周白質(zhì)軟化(PVL);②存在驚厥或代謝性疾??;③血培養(yǎng)陽(yáng)性的敗血癥和中樞神經(jīng)系統(tǒng)感染;④染色體疾病或先天性畸形。
1.3 對(duì)照組納入標(biāo)準(zhǔn) ①母嬰同室或新生兒室的胎齡37周新生兒;②出生時(shí)無(wú)窒息搶救史;③出生后正常的新生兒;④家長(zhǎng)愿意配合完成aEEG監(jiān)測(cè)的新生兒。
1.4 參研醫(yī)院 本研究為復(fù)旦大學(xué)附屬兒科醫(yī)院(我院)牽頭組織的多中心研究,其他參研究醫(yī)院如下:復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院、廣西壯族自治區(qū)婦幼保健院、福建省廈門(mén)市第一醫(yī)院和上海市第一婦幼保健院。
1.5 胎齡的確定 評(píng)定胎齡以末次月經(jīng)周期和(或)通過(guò)圍生期胎兒B超或(和)采用Ballard評(píng)分。糾正胎齡=出生胎齡+生后日齡。
1.6 質(zhì)量控制 5家參研醫(yī)院均使用由上海交通大學(xué)生物醫(yī)學(xué)工程系、上海健爾醫(yī)療器械公司和我院共同研制的CFM3000樣機(jī),研究實(shí)施過(guò)程儀器的穩(wěn)定性由上海健爾醫(yī)療器械公司維護(hù)調(diào)試。由復(fù)旦大學(xué)附屬兒科醫(yī)院對(duì)其他參研單位的有關(guān)人員集中進(jìn)行操作技術(shù)培訓(xùn)。每一個(gè)分中心有專(zhuān)人收集和管理資料。收集的臨床和圖像數(shù)據(jù)發(fā)送至我院整理。
1.7 aEEG監(jiān)測(cè)方法 采用一次性電極,描記前清潔頭皮;接通電源,校正儀器;電極放置于雙頂骨(相當(dāng)于10-20國(guó)際電極安放法電極位置的P3和P4)處,兩電極點(diǎn)距離為75 mm,參考電極放置距頭頂中央25 mm額中線上)[18]。于生后3 d內(nèi)進(jìn)行第1次監(jiān)測(cè),然后每周監(jiān)測(cè)1次直至出院(或最長(zhǎng)監(jiān)測(cè)至糾正胎齡37周),每次連續(xù)監(jiān)測(cè)4 h。描記期間對(duì)各種可能導(dǎo)致aEEG變化的事件進(jìn)行記錄:如喂奶、更換尿布、靜脈穿刺或注射藥物等。
1.8 aEEG圖形分析 按照文獻(xiàn)[9~11]描述的方法對(duì)aEEG圖形按背景連續(xù)性、睡眠-覺(jué)醒周期(周期性)、下邊界振幅和帶寬4個(gè)方面行成熟性評(píng)估。
2.2 各胎齡早產(chǎn)兒出生時(shí)aEEG特征及與同糾正胎齡時(shí)aEEG的比較
2.2.1 各胎齡早產(chǎn)兒出生時(shí)aEEG特征 表2顯示,隨著出生胎齡的增大,早產(chǎn)兒的aEEG背景逐漸成熟。表現(xiàn)為:
表1 各胎齡新生兒的一般資料
GA/weeksWeight/gM/F(n/n)Vaginal/CS(n/n)Apgarscore28(n=10)1299±1328/24/67.9±0.829(n=11)1375±2225/66/58.6±1.430(n=14)1550±4029/57/78.2±1.331(n=16)1543±2648/88/89.0±1.232(n=18)1625±34112/610/88.7±1.433(n=16)1776±25513/310/69.2±1.134(n=20)1899±2729/119/119.1±1.135(n=16)2096±2799/77/99.1±1.236(n=14)2464±45510/46/89.6±0.637(n=20)3005±35812/811/99.5±0.4
Notes GA: gestational age; M/F: male/female; CS: cesarean section
①aEEG圖形不連續(xù)電壓逐漸減少,逐步出現(xiàn)了連續(xù)性電壓(χ2=26.865,P<0.01);②周期性出現(xiàn)的百分比增加,≥34周出生的早產(chǎn)兒,均出現(xiàn)成熟的周期性(χ2=192.4,P<0.01);③下邊界振幅隨胎齡增大而呈逐漸上升趨勢(shì)(F=11.4,P<0.01)和帶寬逐漸變窄(F=8.731,P<0.01)。
2.2.2 糾正胎齡時(shí)aEEG與同胎齡早產(chǎn)兒出生時(shí)aEEG的比較 表2顯示,①隨著出生后糾正胎齡的增加,aEEG的背景活動(dòng)也逐漸成熟,各糾正胎齡早產(chǎn)兒均比同胎齡早產(chǎn)兒出生時(shí)aEEG連續(xù)性電壓的百分比明顯增加;②周期性明顯的aEEG圖形的百分比顯著增加,胎齡>34周的早產(chǎn)兒出生時(shí)aEEG均可見(jiàn)周期性出現(xiàn)的百分比為100%,糾正胎齡32周周期性出現(xiàn)的百分比達(dá)100%;③下半界振幅糾正胎齡早產(chǎn)兒明顯高于同胎齡早產(chǎn)兒出生時(shí);④早產(chǎn)兒出生后aEEG圖形帶寬逐漸變窄,糾正胎齡與同胎齡早產(chǎn)兒出生時(shí)aEEG帶寬在胎齡32周前差異有統(tǒng)計(jì)學(xué)意義。
2.3 出生后宮外生活對(duì)早產(chǎn)兒aEEG成熟過(guò)程的影響(表3)
2.3.1 連續(xù)性 出生胎齡越小,出現(xiàn)連續(xù)性電壓的糾正胎齡越早。如同樣達(dá)到糾正胎齡31周時(shí),出生胎齡28、29、30和31周的早產(chǎn)兒出現(xiàn)連續(xù)性電壓的百分比分別為100%、87.5%、69.2%和31.3%。
2.3.2 周期性 出生胎齡越小,出現(xiàn)明顯周期性的糾正胎齡越早,如同樣達(dá)到糾正胎齡31周時(shí),出生胎齡28、29、30和31周的早產(chǎn)兒出現(xiàn)周期性的百分比分別為100%、81.8%、71.4%和81.3%。
2.3.3 下邊界振幅 不同胎齡出生的早產(chǎn)兒隨著糾正胎齡的增加,下邊界振幅均呈升高趨勢(shì)。達(dá)到同一糾正胎齡時(shí),出生胎齡越小的早產(chǎn)兒,aEEG下邊界振幅升高越明顯。如達(dá)到糾正胎齡32周時(shí),出生胎齡28、29、30、31和32周早產(chǎn)兒,下邊界振幅分別為11.3、11.1、10.5、8.1和8.9 μV。糾正胎齡越接近足月,不同出生胎齡的下邊界振幅相近。
2.3.4 帶寬 不同胎齡早產(chǎn)兒出生后隨著PMA的增加,帶寬逐漸變窄。達(dá)到同一糾正胎齡時(shí),出生胎齡越小的早產(chǎn)兒,帶寬越窄,如達(dá)到糾正胎齡32周時(shí),出生胎齡28、29、30、31和32周早產(chǎn)兒,窄帶帶寬分別為:0.75、0.73、0.81、1.01和1.06 cm。糾正胎齡越接近足月兒,不同出生胎齡的帶寬相近。
既往研究分別評(píng)價(jià)了出生胎齡和糾正胎齡對(duì)aEEG連續(xù)性、周期性、下邊界振幅或帶寬的影響[6~15],但有關(guān)宮外生活對(duì)早產(chǎn)兒aEEG的4個(gè)參數(shù)影響的研究很少[16]。為最大程度的發(fā)揮aEEG在早產(chǎn)兒腦損傷及其評(píng)價(jià)預(yù)后方面的價(jià)值,應(yīng)該對(duì)aEEG更多的參數(shù)進(jìn)行研究,特別是宮外生活對(duì)不同胎齡早產(chǎn)兒腦發(fā)育的影響。本研究結(jié)果表明,相對(duì)正常早產(chǎn)兒aEEG連續(xù)性、周期性、下邊界電壓和帶寬成熟均與胎齡和糾正胎齡有關(guān);宮外生活對(duì)不同胎齡的早產(chǎn)兒影響不同,出生胎齡越小,受宮外生活的影響越大,表現(xiàn)為腦發(fā)育加速越明顯。這一結(jié)果與文獻(xiàn)報(bào)道的有關(guān)宮外生活對(duì)早產(chǎn)兒aEEG不同參數(shù)的影響結(jié)果相一致[13~16]。
連續(xù)性是判斷腦發(fā)育成熟度的重要參數(shù)之一。多篇文獻(xiàn)[9,14,19]研究結(jié)果表明早產(chǎn)兒隨胎齡增加aEEG連續(xù)性的百分比逐漸增加。本研究結(jié)果表明,出生胎齡越小,宮外生活對(duì)腦發(fā)育的影響越大,表現(xiàn)為aEEG成熟加速,與Soubasi等[16]研究結(jié)果一致。
aEEG圖形的周期性變化,類(lèi)似于早期的睡眠-覺(jué)醒周期變化。本研究表明隨胎齡和糾正胎齡的增加,周期性的發(fā)育逐漸成熟,與Sisman等[13]有關(guān)周期性的研究結(jié)果一致。對(duì)胎齡24~27周早產(chǎn)兒行常規(guī)EEG的研究也表明存在睡眠/活動(dòng)睡眠和清醒間斷性變化[20,21]。對(duì)胎齡<30周早產(chǎn)兒aEEG的研究也表明存在周期性變化[8],甚至胎齡24周的早產(chǎn)兒也可看到周期性變化[6]。周期性的存在和睡眠期間最小振幅的增加提示早產(chǎn)兒預(yù)后良好[11]。
常規(guī)EEG電活動(dòng)的振幅隨成熟度增加逐漸降低[22]。Hellstr?m-Westas等[11]發(fā)表了不同胎齡和糾正胎齡aEEG振幅的參考值,隨胎齡和糾正胎齡增加,下邊界逐漸增加,上邊界逐漸減少。本文對(duì)下邊界和帶寬的研究與上述參考值相似,特別是隨胎齡和糾正胎齡的增加,帶寬逐漸變窄。
有關(guān)出生后aEEG成熟加速的機(jī)制仍不清楚,Soubasi等[16]和Klebermass等[14]推測(cè)可能與發(fā)育支持護(hù)理有關(guān),該2項(xiàng)研究中大多數(shù)早產(chǎn)兒都給予發(fā)育支持護(hù)理。給予早產(chǎn)兒按摩,常規(guī)腦電圖連續(xù)性百分比顯著增加[23],其他的研究提示多種環(huán)境因素可影響早產(chǎn)兒和足月兒睡眠,如母乳喂養(yǎng)、噪音、光線、喂養(yǎng)方式、袋鼠護(hù)理和環(huán)境溫度等[24~29]。多數(shù)研究均證實(shí)減少這些干擾因素,安靜睡眠和活動(dòng)睡眠增加。給予嘌呤類(lèi)藥物如氨茶堿等由于其中樞興奮效應(yīng)也可以加速腦的成熟過(guò)程[30]。本研究納入的多數(shù)早產(chǎn)兒均沒(méi)有給予發(fā)育支持護(hù)理,同樣也觀察到腦發(fā)育成熟加速現(xiàn)象。可以認(rèn)為出生后腦發(fā)育成熟加速僅代表未成熟腦對(duì)宮外環(huán)境的一種適應(yīng)性變化,這種成熟加速并不總是有益的。Scherjon等[31]推測(cè)在特定的環(huán)境狀態(tài)下存在腦個(gè)體發(fā)育,加速或延遲這一過(guò)程都可能對(duì)將來(lái)的認(rèn)知功能產(chǎn)生影響。
本研究的不足和局限性,①本研究為前瞻性多中心觀察性研究,研究期間納入的早產(chǎn)兒分析病例為非連續(xù)樣本,造成非連續(xù)樣本的原因主要來(lái)自于各參研醫(yī)院沒(méi)有指定專(zhuān)門(mén)醫(yī)生負(fù)責(zé)符合納入標(biāo)準(zhǔn)病例的aEEG檢測(cè)。②未納入<28周的早產(chǎn)兒。在中國(guó)由于考慮到遠(yuǎn)期預(yù)后的情況,多數(shù)父母親對(duì)胎齡<28周的早產(chǎn)兒救治不積極,相關(guān)研究中包含胎齡<28周的早產(chǎn)兒,呈現(xiàn)隨胎齡和糾正胎齡的增加,腦發(fā)育成熟度增加。③缺乏遠(yuǎn)期隨訪數(shù)據(jù),新生兒早期進(jìn)行頭顱B超和MRI檢查僅能代表穩(wěn)定的、相對(duì)正常的早產(chǎn)兒[32]。
[1]Allen MC. Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol, 2008,21(2):123-128
[2]Tao JD, Mathur AM. Using amplitude-integrated EEG in neonatal intensive care. J Perinatol, 2010,30:S73-81
[3]Hellstr?m-Westas L. Comparison between tape-recorded and amplitude-integrated EEG monitoring in sick newborn infants. Acta Paediatr,1992,81(10):812-819
[4]Shellhaas RA, Gallagher PR, Clancy RR. Assessment of neonatal electroencephalography (EEG) background by conventional and two amplitude-integrated EEG classification systems. J Pediatr, 2008,153(3):369-374
[5]Clancy RR, Dicker L, Cho S, et al. Agreement between long-term neonatal background classification by conventional and amplitude-integrated EEG. J Clin Neurophysiol, 2011 ,28(1):1-9
[6]Hellstr?m-Westas L, Rosén I, Svenningsen NW. Cerebral function monitoring during the first week of life in extremely small low birthweight (ESLBW) infants. Neuropediatrics, 1991,22(1):27-32
[7]Thornberg E, Thiringer K. Normal pattern of the cerebral function monitor trace in term and preterm neonates. Acta Paediatr Scand,1990,79(1):20-25
[8]Kuhle S, Klebermass K, Olischar M, et al. Sleep-wake cycles in preterm infants below 30 weeks of gestational age. Preliminary results of a prospective amplitudeintegrated EEG study. Wien Klin Wochenschr, 2001,113(7-8):219-223
[9]Olischar M, Klebermass K, Kuhle S, et al. Reference values for amplitude-integrated electroencephalographic activity in preterminfants younger than 30 weeks′ gestational age. Pediatrics, 2004,113(1 Pt 1):e61-66
[10]Burdjalov VF, Baumgart S, Spitzer AR. Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatrics, 2003,112(4):855-861
[11]Hellstr?m-Westas L, Rosén I, De Vries LS, et al. Amplitude- integrated EEG:classification and interpretation in preterm and term infants. Neoreviews, 2006;,7:e76-87
[12]Zhang D, Liu Y, Hou X, et al. Reference values for amplitude-integrated EEGs in infants from preterm to 3.5 months of age. Pediatrics,2011,127(5):e1280-1287
[13]Sisman J, Campbell DE, Brion LP. Amplitude-integrated EEG in preterm infants: maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. J Perinatol, 2005,25(6):391-396
[14]Klebermass K, Kuhle S, Olischar M, et al. Intra- and extrauterine maturation of amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks of gestation. Biol Neonate, 2006,89(2):120-125
[15]Herbertz S, Pulzer F, Gebauer C, et al. The effect of maturation and sedation on amplitude-integrated electroencephalogram of the preterm neonate: results of a prospective study. Acta Paediatr, 2006,95(11):1394-1399
[16]Soubasi V, Mitsakis K, Nakas CT, et al. The influence of extrauterine life on the aEEG maturation in normal preterm infants. Early Hum Dev, 2009,85(12):761-765
[17]van Sweden B, Koenderink M, Windau C, et al. Long-term EEG monitoring in the early premature: developmental and chronobiological aspects. Electroencephalogr Clin Neurophysiol, 1991,79(2):94-100
[18]Hellstr?m-Westas L, Rosén I. Continuous brain-function monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med, 2006,11(6):503-511
[19]Connell JA, Oozeer R, Dubowitz V. Continuous 4-channel EEG monitoring: a guide to interpretation, with normal values, in preterm infants. Neuropediatrics, 1987,18(3):138-145
[20]Scher MS, Johnson MW, Holditch-Davis D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks′ postconceptional age. Pediatr Res, 2005,57(6):879-882
[21]Vecchierini MF, d′Allest AM, Verpillat P. EEG patterns in 10 extreme premature neonates with normal neurological outcome: qualitative and quantitative data. Brain Dev, 2003,25(5):330-337
[22]Vecchierini MF, Andre M, d′Allest AM. Normal EEG of premature infants born between 24 and 30 weeks gestational age: terminology, definitions and maturation aspects. Neurophysiol Clin, 2007,37(5):311-323
[23]Guzzetta A, D′Acunto MG, Carotenuto M, et al. The effects of preterm infant massage on brain electrical activity. Dev Med Child Neurol, 2011,53(S4):46-51
[24]Zahr LK, de Traversay J. Premature infant responses to noise reduction by earmuffs:effects on behavioral and physiologic measures. J Perinatol, 1995,15(6):448-455
[25]Feldman R, Eidelman AI. Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev Med Child Neurol, 2003,45(4):274-281
[26]Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development:a meta-analysis. Am J Clin Nutr, 1999,70(4):525-535
[27]Rao MR, Hediger ML, Levine RJ, et al. Effect of breastfeeding on cognitive development of infants bornsmall for gestational age. Acta Paediatr, 2002,91(3):267-274
[28]Myers MM, Fifer WP, Schaeffer L, et al. Effects of sleep positioning and time after feeding on the organization of sleep/wake states in prematurely born infants. Sleep, 1998,21(4):343-349
[29]Eggermont JJ, Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res, 2000,142(1-2):89-101
[30]Lee HJ, Kim HS, Kim SY, et al. Effects of postnatal age and aminophylline on the maturation of amplitude-integrated electroencephalography activity in preterm infants. Neonatology, 2010,98(3):245-253
[31]Scherjon S, Briet J, Oosting H, et al. The discrepancy between maturation of visualevoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics, 2000,105(2):385-391
[32]Santos RS, Araújo AP, Porto MA. Early diagnosis of abnormal development of preterm newborns: assessment instruments. J Pediatr (Rio J),2008,84(4):289-299
(本文編輯:張崇凡)
Effect of amplitude integrated electroencephalogram on monitoring extrauterine life in preterm infants
Multi-centreCooperativeGroupofAmplitudeIntegratedElectroencephalogram:CHENGGuo-qiang1,5,HUYong2,5,ZHUANGDe-yi3,5,PANXin-nian4,5,WANGJi-mei2,5,SHAOXiao-mei1
(1DepartmentofNeonatology,Children′sHospital,FudanUniversity,theKeyLaboratory,MinistryofHealth,Shanghai201102; 2ShanghaiFirstMaternityandInfantHospital,TongjiUniversity,Shanghai200040; 3theFirstHospital,Xiamen,Fujian361003; 4MaternalandChildHealthHospital,Nanning530003,China; 5Co-firstauthor)
SHAO Xiao-mei,E-mail:xiaomei_shao@163.com
ObjectiveTo investigate the effect of amplitude integrated electroencephalogram (aEEG) on monitoring extrauterine life in healthy preterm infants with 28 to 36 weeks gestational age (GA).Methods The trail group was the preterm neonates without asphyxia, and the control group was the normal term neonates with GA over 37 weeks. Weekly aEEG recordings were performed on the trail group starting within 3 days after birth until discharged or up to 37 weeks postmenstrual age (PMA). In the control group, aEEG recording was performed on the third day after birth. All the aEEG recordings were continuously monitored for at least 4 hours. Analysis the influence of GA and PMA on the maturation process of aEEG patterns, including the continuity of background potential, the sleep-wake cycling (SWC), the lower border voltage a the bandwidth. The 5 hospitals in research used the same aEEG monitor brand, and received the unified operation training before the study. The data of clinical characteristics and aEEG images were analyzed by Children′s Hospital of Fudan University.ResultsFrom May 1, 2008 to August 31, 2009, 135 preterm infants and 20 term infants from 5 hospitals met the inclusion and exclusion criteria. With the increasing GA and PMA, the proportions of aEEG continuity and cycling increased, and appeared the continuous voltage gradually(χ2=26.865,P<0.01), almost all the preterm with GA≥34 weeks had the mature SWC (χ2=192.4,P<0.01), the lower border of narrow bandwidth was increased (F=11.4,P<0.01) and the bandwidth narrowing down(F=8.731,P<0.01). Compared with the infants with the same GA, the aEEG tracing showed significant increase in the proportions of continuity, the occurrence rate of SWC, the lower border and narrowing bandwidth. The preterm infants with GA≥34 weeks had significant SWC at birth, while the percentage of cycling had reached 100% in the infants with the PMA of 32 weeks. After a PMA of 34 weeks, there was no significant difference between the two groups.ConclusionThe maturity of aEEG patterns for preterm infants is related to GA and PMA. The extrauterine life accelerates brain maturation in preterm infants.
Preterm infants; Amplitude integrated electroencephalogram; Brain injury; Brain development
1 復(fù)旦大學(xué)附屬兒科醫(yī)院新生兒科,衛(wèi)生部重點(diǎn)實(shí)驗(yàn)室 上海, 201102;2 同濟(jì)大學(xué)附屬上海市第一婦嬰保健院(現(xiàn)工作于上海市兒童醫(yī)院) 上海,200040;3 福建省廈門(mén)市第一醫(yī)院 廈門(mén), 361003;4 廣西壯族自治區(qū)婦幼保健院 南寧,530003;5 共同第一作者
邵肖梅,E-mail:xiaomei_shao@163.com
10.3969/j.issn.1673-5501.2015.02.006
2014-12-22
2015-04-03)