国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

三角輪系式移動機構(gòu)動力學建模及仿真

2015-04-26 08:24:02岳龍旺朱敬花吳利濤武可艷
機床與液壓 2015年3期
關(guān)鍵詞:輪系爬樓拉格朗

岳龍旺,朱敬花,吳利濤,武可艷

(1.河南工業(yè)大學機電工程學院,河南鄭州 450007;2.天津世紀天源安全衛(wèi)生監(jiān)測有限公司,天津 300191)

0 前言

輪椅是下肢傷殘者和年老體弱者出門時必不可少的代步工具,但是傳統(tǒng)的輪椅不具備爬樓和越障功能。隨著機器人技術(shù)的發(fā)展,各種新型移動式機器人輪椅不斷涌現(xiàn)。對于新型輪椅來說,爬樓和越障能力是衡量其性能的重要指標。具備爬樓和越障功能的移動機器人多采用輪式、腿式、履帶式、復合式移動機構(gòu)。履帶式移動機構(gòu)體積大,比較笨重,能量效率低。在平地行駛過程中劣勢比較明顯,不能滿足快速移動的要求;腿足式移動機構(gòu)結(jié)構(gòu)復雜、控制難度大,目前仍處于實驗室研究階段;復合式移動機構(gòu)結(jié)構(gòu)復雜、控制難度大,有效載荷小;輪式移動機構(gòu)機動性好、結(jié)構(gòu)簡單、易于控制、能量消耗低,但其越野性能較差,通常只能越過高度小于車輪半徑的障礙物。為提高輪式移動機構(gòu)的越障能力,國內(nèi)外專家學者開發(fā)了多種輪式移動機構(gòu)[2-5]。在輪式移動式機構(gòu)中,三角輪系式移動機構(gòu)因其既有輪式機構(gòu)的輕便、靈活、高效,又能實現(xiàn)爬樓和越障功能而受到重視。三角輪系式移動機構(gòu)的運動學、動力學特性對于保證移動式機器人的爬樓和越障性能、提高乘坐舒適性有重要影響[6-7]。

基于對三角輪系式機構(gòu)分析與綜合,利用拉格朗日法建立了三角輪系的動力學模型,利用MATLAB的Simulation工具箱對其工作特性進行了仿真分析,得到三角輪系控制參數(shù)與爬樓機器人工作性能的映射關(guān)系,為三角輪系式爬樓越障機器人控制系統(tǒng)設(shè)計奠定了基礎(chǔ)。

1 三角輪系式移動機構(gòu)

移動機構(gòu)的三角輪系結(jié)構(gòu)示意圖如圖1所示,其單側(cè)三維結(jié)構(gòu)示意圖如圖2所示。在平整的路面上行駛時,三角輪系中的任意兩輪先著地,在運動的過程中約束系桿7不能轉(zhuǎn)動只能隨車輪做平移運動,此時的驅(qū)動輪系轉(zhuǎn)變?yōu)槎ㄝS輪系,此時小車在平整路面可以快速行駛,由于此時的兩個車輪都為驅(qū)動輪,有效利用了三角輪系的質(zhì)量,也增加了車輪和地面的接觸面積,提高了爬樓越障機器人在松軟地面的通過能力。根據(jù)差動輪系的傳動比關(guān)系,當爬樓越障機器人遇到障礙物時,系桿7將帶動整個三角輪系繞中心軸6轉(zhuǎn)動,通過三角輪系的翻轉(zhuǎn)實現(xiàn)爬樓越障功能。

圖1 三角輪系結(jié)構(gòu)示意圖

圖2 三角輪系單側(cè)三維結(jié)構(gòu)示意圖

2 三角輪系拉格朗日動力學模型

為簡化計算,假定三角輪系與臺階間不會發(fā)生打滑現(xiàn)象。由于運動速度不高,所以可忽略運動系統(tǒng)因慣性力引起的動載荷。采用拉格朗日法對三角輪系進行動力學建模[8-9]。

2.1 三角輪系平移運動動力學模型

當三角輪系作平移運動時,只有各個輪子的自轉(zhuǎn),沒有輪系的公轉(zhuǎn)。當爬樓越障機器人在斜面上做平動運動時,只有一個沿x軸的自由度,取χ為廣義坐標,其中θ為爬樓機器人的爬坡角度。以三角輪系的中心為研究對象來研究整個機器人的運動情況,如圖3所示。

圖3 三角輪系平移運動示意圖

系統(tǒng)勢能Ep即三角輪系中心的高度變化所引起的勢能:

系統(tǒng)廣義力Qχ為:

其中M力矩為電機作用在三角輪系中兩個行走輪的力矩轉(zhuǎn)變成的摩擦力對三角輪系的驅(qū)動力,只有當f=時爬樓機器人才向前運轉(zhuǎn)。

應用拉格朗日方程:

得爬樓機器人的動力學模型:

2.2 三角輪系翻轉(zhuǎn)運動動力學模型

當爬樓機器人在攀爬樓梯時兩個驅(qū)動電機停止工作,只有翻轉(zhuǎn)電機工作,即爬樓機器人在此過程中只發(fā)生翻轉(zhuǎn)運動,因此它只有一個翻轉(zhuǎn)自由度,假定其翻轉(zhuǎn)角度為θ,取θ為廣義坐標向量,如圖4所示。

圖4 三角輪系爬樓時狀態(tài)示意圖

則系統(tǒng)動能Ek為:。系統(tǒng)勢能Ep為:

其中J為爬樓機器人的轉(zhuǎn)動慣量,

其中α=30。

則拉格朗日算子L為:

系統(tǒng)廣義力Qχ為:

Qθ=M翻轉(zhuǎn)力矩

應用拉格朗日方程:

代入上式可得:

經(jīng)拉普拉斯變換可得:

代入爬樓機器人的具體參數(shù)可得其實際模型的傳遞函數(shù):

取重力加速g=9.8 m/s2。

3 仿真分析

利用MATALAB里面的Simulink(Dynamic System Simulation)工具箱進行仿真。MATLAB中的PID函數(shù)可以對爬樓機器人進行控制分析,利用Z-N法則來調(diào)整PID參數(shù)可以使其達到近似穩(wěn)定,以實現(xiàn)三角輪系式移動機器人的穩(wěn)定運行[8-10]。

3.1 PID控制分析

前面已經(jīng)得到了爬樓機器人小車的開環(huán)傳遞函數(shù),輸入為電機輸送給機器人小車的翻轉(zhuǎn)力矩Mfanzhuan,輸出為小車圍繞輪組中心旋轉(zhuǎn)的翻轉(zhuǎn)角度θ,被控對象實際模型的傳遞函數(shù)為:

給系統(tǒng)施加一個脈沖擾動,輸出量為爬樓機器人的翻轉(zhuǎn)角度時,系統(tǒng)框圖如圖5所示。其中KD(s)是PID控制器的傳遞函數(shù),G(s)是被控對象爬樓機器人小車的傳遞函數(shù)。

當輸入r(s)=0,爬樓機器人的結(jié)構(gòu)框圖變成圖6所示的傳遞函數(shù),該系統(tǒng)的輸出為:

式中:num、den為爬樓機器人傳遞函數(shù)的分子項和分母項,numPⅠD、denPⅠD為控制器傳遞函數(shù)的分子項和分母項,K為PID控制器的增益。

3.2 PID控制器的參數(shù)整定

在MATLAB的Simulink工具箱中建立爬樓機器人攀爬樓梯時的模型如圖7所示,其中PID controller是封裝之后的PID控制器。

利用齊格勒-尼克爾斯第二法則簡稱Z-N法則進行PID控制器的參數(shù)整定,假設(shè)Ti=∞,Td=0,即只有比例控制kp,將比例系數(shù)kp由零逐漸增大到系統(tǒng)的輸出首次呈現(xiàn)持續(xù)的等幅振蕩,如圖8所示,此時對應的臨界增益kc=600,振蕩周期Tc=0.3 s,根據(jù)Z-N法則可知:kp=0.6kc,Ti=0.5 Tc,Td=0.125·Tc,則PID控制器參數(shù)為:kp=0.6kc=360,ki=kp/Ti=1 200,kd=kp·Td=108[11]。

圖8 P控制仿真結(jié)果圖(kc=600)

3.3 仿真分析

將PID參數(shù)值kp=0.6kc=360,ki=kp/Ti=1 200,kd=kp·Td=108[11],代入仿真模型,得控制系統(tǒng)仿真結(jié)果如圖9所示。由仿真結(jié)果圖可以看出,系統(tǒng)在1.2 s左右的時間內(nèi)可以達到穩(wěn)定,超調(diào)量為20%,因此此系統(tǒng)有較好的穩(wěn)定性。

4 結(jié)束語

三角輪系式移動機構(gòu)的動力學特性是影響爬樓越障機器人性能的重要因素。利用拉格朗日法對三角輪系進行動力學模型,利用MATLAB對控制系統(tǒng)進行仿真,分析結(jié)果對于爬樓越障機器人控制系統(tǒng)設(shè)計有重要參考價值。

[1]武明,馬希金.一種新型爬樓梯輪椅的動力學建模及穩(wěn)定性分析[J].中國生物醫(yī)學工程學報,2000,19(3):47-50.

[2]NANDY G C,XU Y.Dynamic Model of a Gyroscopic Wheel[C].Robotics and Automation,1998.Proceedings.1998 IEEE International Conference on.IEEE,1998.

[3]HAYATI S,VOLPE R,et al.The Rocky 7 Rover:a Mars Science craft Prototype[C].Proceedings of IEEE International Conference on Robotics and Automation,1997.

[4]吉炎.懸臂式六輪移動機器人越障性能研究[D].長沙:中南大學,2006.

[5]BOT@4000 Mobility System,Independence Technology.L.L.C.http://www.ibotnow.com[OL].

[6]YUE Longwang,WU Keyan,LIU C B.Study of a New Stair-climbing and Obstacle-traversing Robot[J].Advanced Materials Research,2011,211:686-690.

[7]YUE Longwang,WU Keyan,TU W Q.Design and Analysis of Stair-Climbing and Obstacle-Traversing Robot[J].2011,224(2):224-225.

[8]固高科技有限公司.倒立擺實驗系統(tǒng)[M].2005.

[9]魯墨武,石磊.基于MATLAB的機器人建模與動力學仿真[J].制造業(yè)信息化2010,47(10):40-43.

[10]NALECZAndrze G.Influence of Vehicle and Roadway Factor on the Dynamics of Tripped Rollover[J].International Journal of Vehicle Ddsign,1989,10(3):321-346.

[11]鄒伯敏.自動控制理論[M].北京:機械工業(yè)出版社,2007.

猜你喜歡
輪系爬樓拉格朗
爬樓難、起床僵、關(guān)節(jié)痛,這究竟是什么病
祝您健康(2024年3期)2024-03-03 13:27:39
某四缸增壓汽油機前端輪系的設(shè)計與布置
Nearly Kaehler流形S3×S3上的切觸拉格朗日子流形
履帶變構(gòu)式輪履復合爬樓輪椅爬樓平穩(wěn)性分析
步步驚心——“爬樓族”
青島畫報(2018年1期)2018-02-23 12:07:50
基于SolidWorks周轉(zhuǎn)輪系裝配與運動仿真
高空挑戰(zhàn)造成傷亡,誰擔責
方圓(2017年24期)2018-01-17 20:55:33
拉格朗日代數(shù)方程求解中的置換思想
基于拉格朗日的IGS精密星歷和鐘差插值分析
多自由度行星輪系機構(gòu)拓撲表示與同構(gòu)判別
陶瓷學報(2015年4期)2015-12-17 12:45:04
大冶市| 鱼台县| 黔西| 禹城市| 西华县| 阿拉善左旗| 郑州市| 深水埗区| 孟州市| 新晃| 泉州市| 白玉县| 共和县| 滁州市| 罗山县| 吴川市| 临清市| 临邑县| 乳山市| 宣恩县| 奉新县| 孝义市| 化德县| 聂拉木县| 仪陇县| 江口县| 深圳市| 河间市| 夹江县| 宁晋县| 巴中市| 襄汾县| 丹寨县| 庆安县| 台南市| 日照市| 南部县| 盐津县| 望谟县| 乐至县| 平南县|