張曉倩,劉少壯,綜述 胡三元,審校
(山東大學(xué)齊魯醫(yī)院,山東 濟(jì)南,250012)
目前,減重手術(shù)緩解糖尿病及改善重度肥胖的機(jī)制尚不明確,本文現(xiàn)對(duì)減重手術(shù)后腸道發(fā)生的適應(yīng)性變化作一綜述。
腸道是最活躍的內(nèi)分泌器官,分泌許多激素參與食物的消化與吸收。已經(jīng)被接受、承認(rèn)的兩個(gè)腸道激素是生長(zhǎng)激素釋放肽(peptide YY,PYY)、胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)。GLP-1 由末端回腸、結(jié)腸L 細(xì)胞分泌釋放到血液中,影響食物營(yíng)養(yǎng)成分的攝入,調(diào)節(jié)食物介導(dǎo)的胰島素及胰高血糖素分泌,并通過胰島beta 細(xì)胞上的G 蛋白偶聯(lián)受體發(fā)揮抑制beta 細(xì)胞凋亡,促進(jìn)beta 細(xì)胞增殖,改善beta細(xì)胞功能的作用[1],即腸-胰島軸。腸胰島軸的提出使我們重新認(rèn)識(shí)了腸道與胰島間的關(guān)系。Salehi 等[2]在嚙齒類動(dòng)物Roux-en-Y 胃旁路術(shù)(Roux-en-Y gastric bypass,RYGB)術(shù)后予以GLP-1 拮抗劑,發(fā)現(xiàn)胰島素的分泌作用減弱。目前,GLP-1 的類似物及激活劑的口服制劑已用于臨床治療糖尿病。PYY 可延遲胃排空、腸轉(zhuǎn)運(yùn),生理性調(diào)節(jié)食欲,抑制食物的攝取,從而降低體重。低劑量鏈脲佐菌素(streptozocin,STZ)誘導(dǎo)的2 型糖尿病大鼠行減重手術(shù)后,GLP-1 與PYY 顯著升高,并且先于體重的下降。有研究指出,用藥物誘導(dǎo)體重降低后,血清GLP-1 濃度無升高,有的甚至下降[3],血清PYY 濃度也未升高[4]。這表明減重手術(shù)后GLP-1、PYY 的升高不依賴于體重的下降。為什么術(shù)后GLP-1、PYY 升高?1999年,Mason 提出了遠(yuǎn)端回腸假說,認(rèn)為減重手術(shù)改變了腸道原有的解剖關(guān)系,未消化的或消化不完全的食物提早與回結(jié)腸接觸,刺激回結(jié)腸L 細(xì)胞分泌GLP-1 增加,即后腸假說。有學(xué)者將GLP-1、PYY 與膽汁酸聯(lián)系起來,對(duì)肥胖患者[5]、肥胖嚙齒類動(dòng)物[6]予以膽汁酸螯合劑,發(fā)現(xiàn)血清中GLP-1 水平上升,PYY 濃度有下降[7]、無變化[8]及上升(在大鼠)[9]三種情況,膽汁酸螯合劑降低腸道膽固醇的吸收,利于膽汁酸從腸道排出,而吸收不良型減重手術(shù)升高膽汁酸,兩者都可升高GLP-1,可能的解釋是,腸道中膽汁酸流量的增加升高了GLP-1。減重手術(shù)后PYY 升高,而予以膽汁酸螯合劑后,PYY 濃度變化不定,腸道膽汁酸流量也許與PYY 濃度的變化有關(guān)。已經(jīng)證明在體外膽汁酸可刺激GLP-1 的釋放[10]。也有學(xué)者認(rèn)為GLP-1 可通過血腦屏障,減重手術(shù)后,大腦中高水平的GLP-1 激活迷走神經(jīng)傳導(dǎo)信號(hào),并刺激胃腸-腦驅(qū)動(dòng)系統(tǒng),降低糖尿病與肥胖癥患者的血糖水平[11]。
腸道中的膽汁酸具有促進(jìn)脂肪消化吸收、防止膽道結(jié)石生成的作用,還具有抗微生物的作用,防止腸道細(xì)菌過度生長(zhǎng)及菌群移位。與正常人相比,病態(tài)肥胖患者餐后膽汁排出減少[12],但血清膽汁酸濃度較正常人高[13]。減重手術(shù)后,血清膽汁酸水平有升高[14]、降低[15]、不變[16]三種情況。腸道內(nèi)的膽汁酸通過TGR-5 途徑及法尼酯X 受體(farnesoid X receptor,F(xiàn)XR)途徑發(fā)揮生理作用[17]。在體外無FXR 的條件下實(shí)驗(yàn),證明了膽汁酸可激活細(xì)胞膜G 蛋白偶聯(lián)受體—TGR-5,刺激腸道GLP-1 的分泌[18]。因此,回腸中游離膽汁酸的增加,激活了TGR-5,從而提高了GLP-1 的水平,改善胰島beta 細(xì)胞功能。FXR 在胃腸道細(xì)胞的配體是成纖維細(xì)胞成長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)(人類是FGF-19,嚙齒類動(dòng)物是FGF-15)。在腸道游離膽汁酸結(jié)合FXR,激活FGF-19,然后FGF-19 激活肝臟細(xì)胞膽汁酸合成的限速酶膽固醇7α 羥化酶(cholesterol 7α-hydroxylase,CYP7A1),產(chǎn)生膽汁酸,這是一條膽汁酸合成增加的正反饋途徑。FGF-19 也許能增強(qiáng)線粒體活性,改善胰島素抵抗[19]。最近已證明FGF-19 以一種不依賴于胰島素的方式改善糖代謝[20]。糖尿病患者FGF-19 降低,RYGB 后FGF-19 的表達(dá)及膽汁酸的產(chǎn)生增加[21]。另一方面,一些數(shù)據(jù)表明RYGB 后FGF-19 不增加[22]。有趣的是,F(xiàn)GF-19 在服用膽酸螯合劑后減少,而在口服膽汁酸溶劑后增加[23]。
近年,對(duì)減重手術(shù)后腸道菌群改變的研究主要集中在擬桿菌、厚壁菌門及變形菌。對(duì)肥胖受試者進(jìn)行的研究已經(jīng)證實(shí),腸道菌群的組成成分發(fā)生了變化,擬桿菌減少,厚壁菌成比例的增加。厚壁菌門與擬桿菌比例在肥胖個(gè)體增加[24],藥物減輕體重后比例下降[25]。在RYGB 術(shù)后,厚壁菌門與擬桿菌比例下降[26],此外,有研究顯示RYGB 后變形菌增加[27]。RYGB 可降低厚壁菌菌群在總種群中的比例,并增加γ-變形菌的比例[28],有證據(jù)表明,宿主與腸道細(xì)菌之間的相互作用可通過細(xì)菌代謝物來實(shí)現(xiàn),如短鏈脂肪酸或微生物外膜的脂多糖[29]。在胃腸結(jié)構(gòu)重構(gòu)引起的代謝改善中,微生物群的變化起關(guān)鍵作用。將RYGB 術(shù)后的小鼠腸道菌群轉(zhuǎn)移到非手術(shù)操作處理的無菌小鼠體內(nèi),無菌小鼠體重下降,肥胖減輕[30]。將假手術(shù)操作的小鼠腸道細(xì)菌移植給無菌肥胖小鼠,體重未發(fā)生變化。術(shù)后腸道菌群的改變,與減重手術(shù)對(duì)膽汁酸水平及FXR 信號(hào)的影響有關(guān)。FXR 信號(hào)在廣泛的腸道功能中起重要作用,腸道菌群是其中一個(gè)靶點(diǎn)[29]。在FXR 基因敲除小鼠袖狀胃切除術(shù)后,腸道菌群的改變被抑制[31]。FXR 能通過改變血清膽汁酸的水平,間接影響腸道細(xì)菌的組成比例。但腸道細(xì)菌不是膽汁酸的被動(dòng)接受者,也可通過干預(yù)多種膽汁酸降解途徑影響膽汁酸水平[32]。很重要的一點(diǎn)是,我們不知道減重手術(shù)后,腸道菌群的改變引起了膽汁酸的改變,還是膽汁酸的改變引起了腸道菌群的變化。
近年的研究對(duì)腸道有一個(gè)新的功能描述,即門靜脈葡萄糖傳感調(diào)節(jié)饑餓感。門靜脈有血糖感受器,可將信號(hào)通過腸道神經(jīng)通路傳導(dǎo)至下丘腦,下丘腦發(fā)出信號(hào)調(diào)節(jié)食欲及胰島素敏感性[33]。Rajas 等[34]研究發(fā)現(xiàn),以前認(rèn)為的只在肝臟、腎臟表達(dá)的糖異生關(guān)鍵酶葡萄糖-6-磷酸酶(glucose-6-phosphatase,G-6-P)基因在小腸也有表達(dá)。表明小腸也可進(jìn)行糖異生。小腸能通過適當(dāng)?shù)奶钱惿饔么龠M(jìn)內(nèi)源性葡萄糖生成。GK 大鼠十二指腸空腸旁路術(shù)(duodenal-jejunal bypass,DJB)后,腸道糖異生關(guān)鍵酶G-6-P 和磷酸烯醇式丙酮酸羧激酶上調(diào),在肝臟這兩個(gè)酶的表達(dá)下調(diào)[35]。有學(xué)者指出,胃旁路術(shù)后,食物迅速進(jìn)入遠(yuǎn)端小腸,此舉可激活腸道糖異生的酶,增加腸道血糖濃度,門靜脈的迷走神經(jīng)將血糖濃度信號(hào)傳遞給大腦,從而抑制肝糖輸出,提高葡萄糖穩(wěn)態(tài)[36],此現(xiàn)象在空腹、胰島素缺乏的情況下表現(xiàn)更甚[37]。胃腸吻合術(shù)后的小鼠,腸道糖異生較胃束帶術(shù)后的小鼠活躍[38]。表明腸道有營(yíng)養(yǎng)感受機(jī)制,可隨腸腔里的營(yíng)養(yǎng)物質(zhì)來調(diào)節(jié)腸糖異生。予以門靜脈感受血糖濃度的受體葡萄糖轉(zhuǎn)運(yùn)體(glucose transporter 2,GLUT-2)[39]基因敲除的小鼠[38]及門靜脈去神經(jīng)的小鼠行胃腸吻合術(shù)后,腸糖異生的增強(qiáng)作用被消除,這表明腸異生可被視為大腦控制調(diào)節(jié)葡萄糖和能量穩(wěn)態(tài)的一個(gè)關(guān)鍵信號(hào)[36]。Hayes 等[40]通過檢測(cè)空腹?fàn)顟B(tài)下的28 位患者(8 位糖尿病患者,20 位非糖尿病患者)RYGB 術(shù)前及術(shù)后6 h 門靜脈與中心靜脈血血糖,發(fā)現(xiàn)術(shù)前術(shù)后糖尿病患者血糖無顯著差異,說明小腸糖異生不能解釋RYGB 緩解的糖尿病。
小腸不但由豐富的自主神經(jīng)系統(tǒng)(autonomic nerves system,ANS)的神經(jīng)支配,也有自己的腸神經(jīng)系統(tǒng)(enteric nervous system,ENS),這種獨(dú)立運(yùn)作的神經(jīng)系統(tǒng)是由神經(jīng)回路控制腸道的運(yùn)動(dòng)功能、血流量、黏膜運(yùn)輸與調(diào)節(jié)免疫、內(nèi)分泌功能。此ENS 跨越胃腸道的肌間及黏膜下神經(jīng)叢[41]。已證實(shí)了腦到腸道傳入、傳出神經(jīng)是迷走神經(jīng),肥胖患者迷走神經(jīng)活性異常[42]。Gautron 等[43]試圖了解手術(shù)對(duì)迷走神經(jīng)的影響,他們用一種記憶蛋白標(biāo)記小鼠的胃腸道迷走神經(jīng),RYGB術(shù)后,用免疫組化觀察此小鼠的腸道迷走神經(jīng)的變化,結(jié)果表明術(shù)后胃腸吻合部位的迷走神經(jīng)丟失,纖維形態(tài)變化,而肝臟、其他部位腸道的迷走神經(jīng)支配正常。迷走神經(jīng)纖維形態(tài)顯示異常主要在胃肌間神經(jīng)叢,包括軸突腫脹與神經(jīng)節(jié)前纖維終端形態(tài)異常。這種重構(gòu)的生理意義是未知的。在大鼠RYGB 中,保留迷走神經(jīng)較切除迷走神經(jīng)獲得更少的食物攝入量、更成功的減肥[44]。臨床研究表明,迷走神經(jīng)感覺張力的閾值與RYGB 術(shù)后食物量的攝取呈負(fù)相關(guān)關(guān)系[45]。在內(nèi)分泌調(diào)節(jié)方面,腸道將當(dāng)前的營(yíng)養(yǎng)狀況告知大腦,一方面調(diào)節(jié)腸道分泌細(xì)胞分泌腸肽、膽囊收縮素(cholecystokinin,CCK)和GLP-1,抑制肝糖異生;另一方面調(diào)節(jié)腸道FGF-19,繼而調(diào)節(jié)膽汁酸與GLP-1。反過來,這些激素中的某些激素通過腸道的迷走神經(jīng)反饋給中樞神經(jīng)系統(tǒng)(central nervous system,CNS)負(fù)反饋調(diào)節(jié)它們的分泌;也可以直接通過血腦屏障,反饋調(diào)節(jié)大腦的活動(dòng)[46]。Hao 等[47]指出,迷走神經(jīng)的腹腔分支特異性地支配腸道的具體手術(shù)部位,完整的腹腔支可減少RYGB 術(shù)后早期的體重下降。這些數(shù)據(jù)表明,手術(shù)療效的成功需要完整的神經(jīng)支配。
減重手術(shù)有效且持續(xù)的降低體重及改善糖代謝作用的機(jī)制仍不完全清楚。目前對(duì)其機(jī)制的解釋只能圍繞過去的框架去理解,即機(jī)械的限制食物攝取與營(yíng)養(yǎng)吸收不良的基本原理。新的機(jī)制框架須著眼于將手術(shù)進(jìn)程中的生理系統(tǒng)及對(duì)體重、新陳代謝起作用的分子信號(hào)通路聯(lián)系起來理解。肥胖、2 型糖尿病仍較為流行,現(xiàn)代減重手術(shù)是安全、可靠的,可有效減輕體重、緩解胰島素抵抗。但是,仍需要更多的機(jī)制研究工作。減重手術(shù)不僅是一種有效的治療手段,而且可通過對(duì)其機(jī)制的研究更深入的了解代謝性疾病的病理生理,從而提供一種非侵入性的方式治療疾病。
[1]Baggio LL,Drucker DJ.Biology of incretins:GLP-1 and GIP[J].Gastroenterology,2007,132(6):2131-2157.
[2]Salehi M,Prigeon RL,D'Alessio DA.Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans[J].Diabetes,2011,60(9):2308-2314.
[3]Yip S,Signal M,Smith G,et al.Lower glycemic fluctuations early after bariatric surgery partially explained by caloric restriction[J].Obes Surg,2014,24(1):62-70.
[4]Hill BR,De Souza MJ,Wagstaff DA,et al.The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women[J].Peptides,2013,49:81-90.
[5]Smushkin G,Sathananthan M,Piccinini F,et al.The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes[J].Diabetes,2013,62(4):1094-1101.
[6]Potthoff MJ,Potts A,He T,et al.Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice[J].Am J Physiol Gastrointest Liver Physiol,2013,304(4):G371-380.
[7]Rigamonti AE,Resnik M,Compri E,et al.The cholestyramine-induced decrease of PYY postprandial response is negatively correlated with fat mass in obese women[J].Horm Metab Res,2011,43(8):569-573.
[8]Chen L,McNulty J,Anderson D,et al. Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats[J].J Pharmacol Exp Ther,2010,334(1):164-170.
[9]Marina AL,Utzschneider KM,Wright LA,et al.Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and β-cell function[J].Diabetes Care,2012,35(5):1119-1125.
[10]Katsuma S,Hirasawa A,Tsujimoto G.Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1[J].Biochem Biophys Res Commun,2005,329(1):386-390.
[11]Breen DM,Rasmussen BA,C?té CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.
[12]Glicksman C,Pournaras DJ,Wright M,et al.Postprandial plasma bile acid responses in normal weight and obese subjects[J].Ann Clin Biochem,2010,47(Pt 5):482-484.
[13]Halmy L,F(xiàn)ehér T,Steczek K,et al.High serum bile acid level in obesity:its decrease during and after total fasting[J].Acta Med Hung,1986,43(1):55-58.
[14]Nakatani H,Kasama K,Oshiro T,et al.Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery[J].Metabolism,2009,58(10):1400-1407.
[15]Kohli R,Bradley D,Setchell KD,et al.Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids[J].J Clin Endocrinol Metab,2013,98(4):E708-712.
[16]Scholtz S,Miras AD,Chhina N,et al.Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding[J].Gut,2014,63(6):891-902.
[17]Lefebvre P,Cariou B,Lien F,et al.Role of bile acids and bile acid receptors in metabolic regulation[J].Physiol Rev,2009,89(1):147-191.
[18]Kreymann B,Williams G,Ghatei MA,et al.Glucagon-like peptide-1 7-36:a physiological incretin in man[J].Lancet,1987,2(8571):1300-1304.
[19]Schaap FG,Trauner M,Jansen PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol,2014,11(1):55-67.
[20]Tomlinson E,F(xiàn)u L,John L,et al.Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity[J].Endocrinology,2002,143(5):1741-1747.
[21]Kir S,Beddow SA,Samuel VT,et al.FGF19 as a postprandial,insulin-independent activator of hepatic protein and glycogen synthesis[J].Science,2011,331(6024):1621-1624.
[22]Pournaras DJ,Glicksman C,Vincent RP,et al.The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control[J].Endocrinology,2012,153(8):3613-3619.
[23]Patti ME,Houten SM,Bianco AC,et al.Serum bile acids are higher in humans with prior gastric bypass:potential contribution to improved glucose and lipid metabolism[J].Obesity (Silver Spring),2009,17(9):1671-1677.
[24]Balamurugan R,George G,Kabeerdoss J,et al.Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children[J].Br J Nutr,2010,103(3):335-338.
[25]Furet JP,Kong LC,Tap J,et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss:links with metabolic and low-grade inflammation markers[J].Diabetes,2010,59(12):3049-3057.
[26]Zhang H,DiBaise JK,Zuccolo A,et al.Human gut microbiota in obesity and after gastric bypass[J].Proc Natl Acad Sci U S A,2009,106(7):2365-2370.
[27]Graessler J,Qin Y,Zhong H,et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes:correlation with inflammatory and metabolic parameters[J].Pharmacogenomics J,2013,13(6):514-522.
[28]Osto M,Abegg K,Bueter M,et al.Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine[J].Physiol Behav,2013,119:92-96.
[29]Liou AP,Paziuk M,Luevano JM Jr,et al.Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J].Sci Transl Med,2013,5(178):178ra41.
[30]Cani PD,Geurts L,Matamoros S,et al. Glucose metabolism:focus on gut microbiota,the endocannabinoid system and beyond[J].Diabetes Metab,2014,40(4):246-257.
[31]Sayin SI,Wahlstr?m A,F(xiàn)elin J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.
[32]Ryan KK,Tremaroli V,Clemmensen C,et al.FXR is a molecular target for the effects of vertical sleeve gastrectomy[J].Nature,2014,509(7499):183-188.
[33]Mithieux G.Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production[J].Nutr Hosp,2013,28 Suppl 2:109-114.
[34]Rajas F,Bruni N,Montano S,et al.The glucose-6 phosphatase gene is expressed in human and rat small intestine:regulation of expression in fasted and diabetic rats[J].Gastroenterology,1999,117(1):132-139.
[35]Sun D,Wang K,Yan Z,et al.Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats[J].Obes Surg,2013,23(11):1734-1742.
[36]Mithieux G.A novel function of intestinal gluconeogenesis:central signaling in glucose and energy homeostasis[J].Nutrition,2009,25(9):881-884.
[37]Croset M,Rajas F,Zitoun C,et al.Rat small intestine is an insulin-sensitive gluconeogenic organ[J].Diabetes,2001,50(4):740-746.
[38]Troy S,Soty M,Ribeiro L,et al.Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice[J].Cell Metab,2008,8(3):201-211.
[39]Burcelin R,Dolci W,Thorens B.Glucose sensing by the hepatoportal sensor is GLUT2-dependent:in vivo analysis in GLUT2-null mice[J].Diabetes,2000,49(10):1643-1648.
[40]Hayes MT,F(xiàn)oo J,Besic V,et al.Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?[J].Obes Surg,2011,21(6):759-762.
[41]Bitar KN,Raghavan S,Zakhem E.Tissue engineering in the gut:developments in neuromusculature[J].Gastroenterology,2014,146(7):1614-1624.
[42]de Lartigue G,Barbier de la Serre C,Espero E,et al.Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons[J].Am J Physiol Endocrinol Metab,2011,301(1):E187-195.
[43]Gautron L,Zechner JF,Aguirre V.Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse[J].Int J Obes(Lond),2013,37(12):1603-1607.
[44]Bueter M,L?wenstein C,Ashrafian H,et al.Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass[J].Obes Surg,2010,20(5):616-622.
[45]Bj?rklund P,Laurenius A,Een E,et al. Is the Roux limb a determinant for meal size after gastric bypass surgery?[J]. Obes Surg,2010,20(10):1408-1414.
[46]Breen DM,Rasmussen BA,C?té CD,et al.Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes[J].Diabetes,2013,62(9):3005-3013.
[47]Hao Z,Townsend RL,Mumphrey MB,et al.Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats[J].Obes Surg,2014,24(12):2145-2151.