楊超,孫航,吳傳新
·綜 述·
HMGB1在肝臟炎癥微環(huán)境及肝細(xì)胞癌發(fā)生發(fā)展中的作用
楊超,孫航,吳傳新
高遷移率族蛋白B1(HMGB1)是一種具有多種功能的核相關(guān)蛋白,在肝臟腫瘤的發(fā)生發(fā)展中作用巨大,尤其是在其中的一個(gè)重要環(huán)節(jié)即炎癥微環(huán)境中發(fā)揮著重要作用。在肝細(xì)胞癌中,HMGB1作為一種重要的炎癥介質(zhì)通過一系列信號(hào)通路促進(jìn)腫瘤進(jìn)展,同時(shí)在腫瘤自身的炎癥微環(huán)境中,HMGB1也通過相關(guān)信號(hào)分子促進(jìn)炎癥微環(huán)境本身的發(fā)生,并進(jìn)一步引起肝細(xì)胞癌的發(fā)生發(fā)展。HMGB1在炎癥微環(huán)境中促進(jìn)腫瘤發(fā)生發(fā)展的機(jī)制是腫瘤診斷、治療研究中的熱點(diǎn)。本文就目前HMGB1在肝臟炎癥微環(huán)境中的作用及其在肝細(xì)胞癌發(fā)生、發(fā)展及治療中的作用作一綜述。
HMGB蛋白質(zhì)類;炎癥;腫瘤;癌,肝細(xì)胞
高遷移率族蛋白B1(high mobility group protein B1,HMGB1)是1973年從小牛胸腺中提取的一種能在聚丙烯酰胺凝膠中快速電泳移動(dòng)的蛋白,也因此而得名。HMGB1作為細(xì)胞內(nèi)因子,是一種高度保守的染色體相關(guān)蛋白,在細(xì)胞外參與多種病理過程[1]。經(jīng)過多年研究,目前已證實(shí)HMGB1在多種炎癥及腫瘤病理過程中起關(guān)鍵的調(diào)控作用[2-3],但其在肝臟炎癥和肝臟腫瘤相關(guān)研究中的作用有待進(jìn)一步揭示。
肝細(xì)胞癌(hepatocellular carcinoma,HCC)作為世界范圍內(nèi)第三致死率的惡性腫瘤[4],其主要致死原因?yàn)槟[瘤進(jìn)展后出現(xiàn)浸潤、轉(zhuǎn)移等。過去諸多研究除針對(duì)HCC的發(fā)生原因采取病因治療外,還針對(duì)腫瘤進(jìn)展限制其浸潤與轉(zhuǎn)移[5]。在腫瘤的進(jìn)展中,國外學(xué)者總結(jié)了腫瘤的十大顯著特性[6],目前有證據(jù)顯示HMGB1失調(diào)參與了腫瘤發(fā)生發(fā)展中的各項(xiàng)特征性病理改變。
腫瘤微環(huán)境暫無確切定義,目前公認(rèn)的定義系指腫瘤形成之前和形成之后腫瘤細(xì)胞及其周邊的系統(tǒng)環(huán)境。在大部分腫瘤的炎癥微環(huán)境中均有免疫細(xì)胞及其調(diào)控因子的廣泛表達(dá)[7]。研究證實(shí),纖維母細(xì)胞、肌成纖維細(xì)胞、血管內(nèi)皮細(xì)胞等作為細(xì)胞外基質(zhì)與血管產(chǎn)生協(xié)同作用,共同維持腫瘤的炎癥微環(huán)境[8]。新近研究也顯示,除上述作用外,腫瘤細(xì)胞與其周邊的炎癥微環(huán)境形成一個(gè)密切的交互網(wǎng)絡(luò)從而為腫瘤細(xì)胞的轉(zhuǎn)化、生長、增殖、擴(kuò)散和遷徙浸潤等多種腫瘤病理進(jìn)展提供可能[9]。HCC患者的主要發(fā)病原因?yàn)殚L期慢性肝臟炎性病變引起相關(guān)致癌基因和抑癌基因的平衡失控從而導(dǎo)致腫瘤發(fā)生,同時(shí)炎癥也進(jìn)一步導(dǎo)致HCC的進(jìn)展及擴(kuò)散。因此,研究和闡明腫瘤炎癥微環(huán)境在腫瘤形成及浸潤轉(zhuǎn)移中的作用非常重要。
HMGB1作為一種重要的促炎因子及趨化因子,在炎癥反應(yīng)中的主要作用是通過與Toll樣受體(toll-like receptors,TLRs)及晚期糖基化終末產(chǎn)物受體(receptor for advanced glycation end-products,RAGE)特異性結(jié)合進(jìn)而引起下游相關(guān)產(chǎn)物的表達(dá)。HMGB1觸發(fā)炎癥反應(yīng)主要通過直接與TLR4結(jié)合以及形成內(nèi)源性或外源性復(fù)合物而啟動(dòng)炎癥瀑布效應(yīng)[10-11]。HMGB1所在位置及其具體存在形式?jīng)Q定其生理功能。正常情況下,HMGB1在細(xì)胞內(nèi)的主要作用是維持染色體結(jié)構(gòu)的穩(wěn)定性;而在免疫細(xì)胞激活時(shí),HMGB1則通過囊泡途徑且依賴caspase-1途徑的發(fā)生激活而呈現(xiàn)外源性分泌[12]。在其他細(xì)胞中HMGB1則作為一種細(xì)胞自身損傷的重要標(biāo)志因子產(chǎn)生或釋放。
在感染性或無菌性炎癥中,免疫系統(tǒng)的應(yīng)答激活主要是通過病原體相關(guān)分子模式(pathogenassociated molecular pattern,PAMP)或損傷相關(guān)分子模式(damage-associated molecular patter,DAMP)進(jìn)行的,且依賴于PAMP、DAMP相關(guān)受體的表達(dá)及激活而達(dá)到啟動(dòng)炎癥相關(guān)應(yīng)答的目的。PAMP及DAMP產(chǎn)物主要包括促炎因子諸如腫瘤壞死因子α(tumor necrosis factor-alpha,TNF-α)、干擾素γ(interferon-gamma,IFN-γ)、白細(xì)胞介素1β (interleukin-1β,IL-1β),白細(xì)胞介素6(IL-6)等[13]。依賴TNF的HMGB1誘導(dǎo)是通過單向內(nèi)毒素?fù)p傷而觸發(fā)的,而釋放則是通過HMGB1與TNF的雙相調(diào)節(jié)實(shí)現(xiàn)。HMGB1在炎癥反應(yīng)中最主要的細(xì)胞外受體是TLR4[14],而后通過調(diào)節(jié)核轉(zhuǎn)錄因子κB(translocation of nuclear factor kappa B,NF-κB)入核進(jìn)而激活干擾素調(diào)節(jié)因子3(interferon regulatory factor 3,IRF3)和活化蛋白1(activator protein 1,AP-1)來促進(jìn)炎癥發(fā)生。
雖然HMGB1是作為一種晚期炎癥介質(zhì)而被認(rèn)知,但它也同時(shí)存在于炎癥反應(yīng)早期的無菌性損傷中,從免疫細(xì)胞的活化到HMGB1的產(chǎn)生和釋放,一般需經(jīng)過8~12h,其主要作用方式是免疫細(xì)胞在HMGB1的正反饋?zhàn)饔孟掳l(fā)生自身調(diào)節(jié)而產(chǎn)生基質(zhì)細(xì)胞衍生因子[15-16]。HMGB1特異性結(jié)合的Toll樣受體TLR2和TLR9在HMGB1介導(dǎo)的炎癥反應(yīng)中的作用尚缺乏完整清晰的認(rèn)識(shí);而HMGB1的另一重要受體RAGE在炎癥反應(yīng)中的作用主要是調(diào)節(jié)趨化因子的生成和激活,調(diào)節(jié)細(xì)胞生長分化及促進(jìn)自身表達(dá)的上調(diào)[17]。雖然HMGB1具有強(qiáng)大的促炎作用,但也有研究顯示,在某些情況下HMGB1可與植物凝集素通過唾液酸免疫球蛋白樣結(jié)合而抑制NF-κB的核轉(zhuǎn)錄,該作用與其在促炎信號(hào)通路中的作用完全相反[18]。
在肝臟中,HMGB1通過TLR4和鈣調(diào)節(jié)通道調(diào)節(jié)炎癥反應(yīng)。在肝臟的缺血及非缺血損傷中,由HMGB1誘導(dǎo)的TNF-α及IL-6的上調(diào)可促使炎癥反應(yīng)的級(jí)聯(lián)擴(kuò)大化,而細(xì)胞損傷引起的凋亡、壞死及巨噬細(xì)胞系統(tǒng)激活而產(chǎn)生的HMGB1則會(huì)進(jìn)一步擴(kuò)大下游的炎癥反應(yīng)[19]。
超過90%的HCC病例與肝臟慢性炎癥相關(guān),引起肝臟慢性炎癥的疾病主要有乙型病毒性肝炎(hepatitis B virus,HBV),丙型病毒性肝炎(hepatitis C virus,HCV),血色素沉著病,酒精性或非酒精性肝脂肪變性等[20]。最近在大鼠模型中進(jìn)行的相關(guān)實(shí)驗(yàn)證實(shí),在肝臟慢性炎癥與HCC之間的關(guān)系中,多信號(hào)通路參與的炎癥通路發(fā)揮了巨大作用,參與這些炎癥通路的因子主要包括NF-κB、絲裂原活化蛋白激酶(stress-responsive mitogen-activated protein kinase,MAPK)、轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)等。重要的是,這些關(guān)鍵的炎癥因子并不是單獨(dú)發(fā)揮作用的,他們之間還存在高度復(fù)雜的調(diào)控通路并彼此影響從而達(dá)到對(duì)炎癥及相關(guān)肝臟細(xì)胞生理作用的關(guān)鍵性調(diào)控。
NF-κB家族的5種轉(zhuǎn)錄因子共享一個(gè)氮端,在胞質(zhì)內(nèi)與IκB蛋白通過共價(jià)鍵結(jié)合達(dá)到穩(wěn)態(tài),IκB激酶復(fù)合物的激活使其與IκB蛋白分離而順利進(jìn)入細(xì)胞核內(nèi),激發(fā)核內(nèi)相關(guān)細(xì)胞因子的編碼,激活的細(xì)胞因子進(jìn)而產(chǎn)生細(xì)胞趨化、抗凋亡等一系列作用[21-22]。NF-κB同時(shí)也是一種caspase-8的強(qiáng)烈誘導(dǎo)因子,后者能有效抑制細(xì)胞凋亡相關(guān)受體的活化進(jìn)而抑制細(xì)胞凋亡。NF-κB的活化可依賴脂多糖(LPS)及抗炎因子TNF-α、IL-1等多種物質(zhì)完成,其受體通路涉及TLR、IL及TNF相關(guān)受體。肝臟受到病毒或其他感染發(fā)生炎癥時(shí),上述炎癥相關(guān)因子表達(dá)且釋放入周圍肝細(xì)胞或組織中,與各自相關(guān)受體結(jié)合后再激活受體相關(guān)因子2(TNF receptor-associated factor,TRAF2)和TRAF6激活蛋白激酶1(TAK1),TAK1使IKK和MKK4/7磷酸化進(jìn)而分別使NF-κB和JNK進(jìn)一步激活,形成正反饋循環(huán)通路[23]。TRAF2還負(fù)責(zé)調(diào)節(jié)K63相關(guān)物質(zhì)的泛素化水平,其產(chǎn)物主要負(fù)責(zé)調(diào)解信號(hào)通路中蛋白與蛋白間的連接,而作為降解上述泛素化反應(yīng)的關(guān)鍵酶,腫瘤抑制因子(cylindromatosis,CYLD)對(duì)上述蛋白間的去泛素化可抑制NF-κB信號(hào)通路,但CYLD在核內(nèi)的轉(zhuǎn)錄產(chǎn)生卻又受NF-κB的調(diào)控,所以兩者形成負(fù)反饋循環(huán),維持NF-κB的動(dòng)態(tài)平衡。
NF-κB能對(duì)細(xì)胞的增殖、抗凋亡產(chǎn)生作用,JNK信號(hào)通路與增殖凋亡等也有相關(guān)。大多數(shù)情況下,NF-κB與JNK信號(hào)通路的作用相反,但二者誘發(fā)通路的關(guān)鍵作用因子均為TAK1。二者間的反向調(diào)節(jié)作用主要通過NF-κB依賴的編碼基因Gadd45b活化后抑制MKK4/7對(duì)JNK的磷酸化,從而抑制JNK信號(hào)通路[24]。另一方面,在炎癥微環(huán)境中,慢性炎癥的發(fā)生使組織內(nèi)積聚大量氧自由基(reactive oxygen species,ROS),而氧自由基的積聚可使NF-κB誘導(dǎo)過氧化物歧化酶2(superoxide dismutase,SOD2)的產(chǎn)生,SOD2抑制ROS積聚的同時(shí)也誘發(fā)慢性JNK信號(hào)通路活化,進(jìn)而抑制JNK磷酸化[25-26]。
近年來通過對(duì)基因敲除小鼠的實(shí)驗(yàn)發(fā)現(xiàn),在自發(fā)性慢性肝炎小鼠模型中,NF-κB具有促進(jìn)腫瘤形成的作用,而通過不可降解的IκB突變體能夠抑制NF-κB相關(guān)通路,從而可抑制腫瘤的形成并可促進(jìn)具有癌前病變特征的肝細(xì)胞的凋亡[27]。在同樣的動(dòng)物模型中也可通過抗炎藥物及抗TNF藥物實(shí)現(xiàn)腫瘤的抑制。具有強(qiáng)烈反差的是,在由肝細(xì)胞損傷引發(fā)的肝臟炎癥中,NF-κB表現(xiàn)為炎癥反應(yīng)抑制,肝細(xì)胞損傷時(shí)大量ROS釋放,引起肝臟自身Kupffer細(xì)胞活化,而Kupffer細(xì)胞的過表達(dá)則是HCC發(fā)生的重要因素[28]。
在炎癥及其相關(guān)的HCC中,存在多種相互關(guān)聯(lián)的信號(hào)通路,而NF-κB作為重要的炎癥及腫瘤相關(guān)因子在其中占有重要地位。該因子不僅形成了炎癥微環(huán)境與腫瘤的正反饋、負(fù)反饋、自體循環(huán)等各種信號(hào)通路的橋梁[29],甚至在炎癥細(xì)胞與肝細(xì)胞的相互影響中也發(fā)揮著關(guān)鍵作用。而前文已述,作為炎癥反應(yīng)中重要的調(diào)控因子,HMGB1與NF-κB的互相作用也與HCC存在極大關(guān)聯(lián)。
HMGB1具有促進(jìn)腫瘤生長、浸潤及抗凋亡等一系列病理作用。有研究表明,HMGB1在HCC的發(fā)生發(fā)展中除了通過TLR4受體通路激活NF-κB進(jìn)而促進(jìn)腫瘤的增殖外,還與腫瘤的能量產(chǎn)生相關(guān),主要表現(xiàn)在通過與RAGE受體通路軸發(fā)生作用影響細(xì)胞內(nèi)ATP的產(chǎn)生[30]。用外源性抗體或基因敲除技術(shù)去除腫瘤細(xì)胞表面RAGE表達(dá)后,無論HMGB1存在與否,腫瘤細(xì)胞內(nèi)ATP的生成均明顯降低,而與ATP產(chǎn)生密切相關(guān)的線粒體的活性及呼吸作用也不同程度出現(xiàn)抑制[31]。在不同HCC細(xì)胞系中,HMGB1的表達(dá)要明顯高于正常肝臟細(xì)胞系,應(yīng)用EP阻斷HMGB1及其受體通路后發(fā)現(xiàn)HCC的增殖能力及細(xì)胞周期明顯受到抑制,相關(guān)細(xì)胞周期蛋白及信號(hào)通路關(guān)鍵因子的表達(dá)也出現(xiàn)明顯抑制[32-33]。有學(xué)者進(jìn)一步研究發(fā)現(xiàn),HMGB1-RAGE信號(hào)軸在HCC的發(fā)展中可明顯上調(diào)NF-κB中p50、p65的表達(dá);應(yīng)用干擾RNA技術(shù)干擾HMGB1及RAGE的表達(dá)可明顯下調(diào)NF-κB中p50、p65的表達(dá)[34],證明在HCC的發(fā)生發(fā)展中,HMGB1與炎癥相關(guān)重要標(biāo)志NF-κB的聯(lián)系頗為密切,且參與了HCC的諸多環(huán)節(jié)。同時(shí),也有部分研究開展了針對(duì)HMGB1的腫瘤相關(guān)治療,發(fā)現(xiàn)HMGB1可以作為HCC治療預(yù)后評(píng)估的一項(xiàng)重要指標(biāo)[35]。目前針對(duì)HMGB1對(duì)HCC浸潤轉(zhuǎn)移及生血管等方面作用的研究還處于初步階段,其具體信號(hào)通路及相關(guān)通路間的相互影響尚未完全明確,有待進(jìn)一步研究。
綜上所述,HMGB1作為近年來腫瘤及炎癥相關(guān)研究的熱點(diǎn),已取得了許多有意義的成果,在HCC甚至腫瘤的研究中發(fā)揮了越來越重要的作用,從HCC中炎癥微環(huán)境的形成到癌前病變,再到最后形成腫瘤,HMGB1始終穿插其中發(fā)揮了重要的作用。針對(duì)HMGB1在HCC及相關(guān)炎癥微環(huán)境中的作用的研究不僅能進(jìn)一步揭示炎癥與腫瘤的關(guān)系,為HCC的研究提供可靠的理論研究支持,甚至可能為今后診斷、治療HCC及相關(guān)疾病提供可能。
[1] Wen HQ, Luo Y, Chen RF,et al. Protective effect of HMGBl gene silence on astrocyte injury caused by oxygen-glucose deprivation/reoxygenation[J]. Med J Chin PLA, 2014, 39(4): 302-306. [汶海琪, 羅勇, 陳瑞芳, 等. HMGB1基因沉默對(duì)氧糖剝奪/復(fù)氧所致星形膠質(zhì)細(xì)胞損傷的保護(hù)作用[J]. 解放軍醫(yī)學(xué)雜志, 2014, 39(4): 302-306.]
[2] Xu RJ, Wang FG, Dang W,et al. Influences of laser treatment on the expressions of the plasma vascular endothelial growth factor and basic fibroblast growth factor in children cutaneous hemangioma[J]. J Shandong Univ (Health Sci), 2013, 51(4): 96-99. [徐榮建, 王法剛, 黨偉, 等. 激光治療對(duì)嬰幼兒皮膚血管瘤患者血漿VEGF及bFGF表達(dá)的影響[J]. 山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2013, 51(4): 96-99.]
[3] Xiao JH, Wang YP, Zhu HY,et al. Expression of serum HMGB1 and MMP-9 in early gastric cancer patients and its clinical significance[J]. J Shandong Univ (Health Sci), 2013, 51(10):70-73. [肖錦華, 王亞萍, 朱華燕, 等. HMGB1與MMP-9在早期胃癌患者血清中的表達(dá)及其臨床意義[J]. 山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2013, 51(10): 70-73.]
[4] Leonardi GC, Candido S, Cer vello M,et al. The tumormicroenvironment inhepatocellular carcinoma (review) [J]. Int J Oncol, 2012, 40(6): 1733-1747.
[5] Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2003, 362(9399): 1907-1917.
[6] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[7] Liu JP, Zhu J, Tian J,et al. Effects of over expression of IL-6 on malignant transformation of rat mesenchymal stem cells in tumor microenvironment[J]. Med J Chin PLA, 2012, 37(10): 930-934. [劉建平, 朱靜, 田杰, 等. 腫瘤微環(huán)境中過表達(dá)的IL-6對(duì)大鼠間充質(zhì)干細(xì)胞惡性轉(zhuǎn)化的影響[J]. 解放軍醫(yī)學(xué)雜志, 2012, 37(10): 930-934.]
[8] Wang H, Chen L. Tumor microenviroment and hepatocellular carcinoma metastasis[J]. J Gastroenterol Hepatol, 2013, 28(S1): 43-48.
[9] Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets[J]. Semin Cancer Biol, 2011, 21(1): 35-43.
[10] Miyake Y, Yamasaki S. Sensing necrotic cells[M]//Self and nonself. US: Springer, 2012. 144-152.
[11] Walle LV, Kanneganti TD, Lamkanfi M. HMGB1 release by inflammasomes[J]. Virulence, 2011, 2(2): 162-165.
[12] Chakraborty R, Bhatt KH, Sodhi A. Ultraviolet B induces high mobility group box 1 release from mouse peritoneal macrophagesin vitro viacaspase-1 mediated secretion pathway[J]. Immunobiology, 2013, 218(2): 135-144.
[13] Shiozawa S, Tsumiyama K. Pathogenesis of rheumatoid arthritis and c-Fos/AP-1[J]. Cell Cycle, 2009, 8(10): 1539-1543.
[14] Hayakawa K, Qiu J, Lo EH. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke[J]. Annals New York Acad Sci, 2010, 1207(1): 50-57.
[15] Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annu Rev Immunol, 2011, 29: 139-162.
[16] Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease[J]. Nat Rev Rheumatol, 2012, 8(4): 195-202.
[17] van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathwaysviahigh mobility group B1 (HMGB1)[J]. Angiogenesis, 2008, 11(1): 91-99.
[18] Chen GY, Tang J, Zheng P,et al. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses[J]. Science, 2009, 323(5922): 1722-1725.
[19] Tang D, Kang R, Zeh Ⅲ HJ,et al. High-mobility group box 1, oxidative stress, and disease[J]. Antioxid Redox Signal, 2011, 14(7): 1315-1335.
[20] El Serag HB, Rudolph KL. Hepatocellular carcinoma: Epidemiolog y and molecular carcinogenesis[J]. Gastroenterology, 2007, 132(7): 2557-2576.
[21] Shen HM, Tergaonkar V. NFκB signaling in carcinogenesis and as a potential molecular target for cancer therapy[J]. Apoptosis, 2009, 14(4): 348-363.
[22] Ben-Neriah Y, Karin M. Inflammation meets cancer,with NF-κB as the matchmaker[J]. Nature Immunol, 2011, 12(8): 715-723.
[23] Hayden MS, Ghosh S. Shared principles in NF-κB signaling[J]. Cell, 2008,132(3): 344-362.
[24] Papa S, Zazzeroni F, Bubici C,et al. Gadd45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/ JNKK2[J]. Nat Cell Biol, 2004, 6(2): 146-153.
[25] Jones PL, Ping D, Boss JM. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB[J]. Mol Cell Biol, 1997, 17(12): 6970-6981.
[26] Kamata H, Honda S, Maeda S,et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J]. Cell, 2005, 120(5): 649-661.
[27] Pikarsky E, Porat RM, Stein I,et al. NF-κB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007): 461-466.
[28] He G, Yu GY, Temkin V,et al. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stressdriven STAT3 activation[J]. Cancer Cell, 2010, 17(3): 286-297.
[29] Nikolaou K, Sarris M, Talianidis I. Molecular pathways: The complex roles of inflammation pathways in the development and treatment of liver cancer[J]. Clin Cancer Res, 2013, 19(11): 2810-2816.
[30] Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annu Rev Immunol, 2011, 29: 139-162.
[31] Kang R, Tang D, Schapiro NE,et al. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics[J]. Oncogene, 2014, 33(5): 567-577.
[32] Cheng P, Dai W, Wang F,et al. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinomaviaregulation of the HMGB1-RAGE and AKT pathways[J]. Biochem Biophys Res Commun, 2014, 443(4): 1162-1168.
[33] Yaser AM, Huang Y, Zhou RR,et al. The role of receptor for advanced glycation end products (RAGE) in the proliferation of hepatocellular carcinoma[J]. Int J Mol Sci, 2012, 13(5): 5982-5997.
[34] Chen RC, Yi PP, Zhou RR,et al. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines[J]. Mol Cell Biochem, 2014, 390(1-2): 271-280.
[35] Kang R, Zhang Q, Zeh HJ,et al. HMGB1 in cancer: good, bad, or both[J]? Clin Cancer Res, 2013, 19(15): 4046-4057.
Roles of HMGB1 in inflammatory microenvironment of liver and occurrence and development of hepatocellular carcinoma
YANG Chao1, SUN Hang2, WU Chuan-xin1*1Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
2Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Liver Diseases Research and Treatment Center, Chongqing 400010, China
*Corresponding author, E-mail: sunhang-wu@21cn.com
This work was supported by the National Natural Science Foundation of China (81171543)
As a type of nuclear-related protein with various functions, high mobility group protein B1 (HMGB1) plays an important role in the development of liver tumors, particularly in the inflammatory microenvironment. In hepatocellular carcinoma, HMGB1 is an important inflammatory mediator that can promote the development of a series of signaling pathways. Meanwhile, in the inflammatory microenvironment of the tumor itself, HMGB1 can promote inflammation through related signaling molecules, and further cause the development of hepatocellular carcinoma. The mechanism of HMGB1 causing tumor development in the inflammatory microenvironment is a topic of interest for the diagnosis and treatment of tumors. This paper aims to summarize the current roles of HMGB1 in the inflammatory microenvironment of the liver and in the development and treatment of hepatocellular carcinoma.
high mobility group proteins; inflammation; neoplasms; carcinoma, hepatocellular
R735.7
A
0577-7402(2015)02-0159-04
10.11855/j.issn.0577-7402.2015.02.15
2014-10-29;
2014-12-22)
(責(zé)任編輯:熊曉然)
國家自然科學(xué)基金(81171543)
楊超,碩士研究生。主要從事肝膽外科腫瘤相關(guān)研究
400010 重慶 重慶醫(yī)科大學(xué)附屬第二醫(yī)院肝膽外科(楊超、吳傳新);400010 重慶 重慶醫(yī)科大學(xué)附屬第二醫(yī)院重慶醫(yī)科大學(xué)病毒性肝炎研究所(孫航)
吳傳新,E-mail:sunhang-wu@21cn.com