郭曉川,石 燕,陳 麗,施偉偉,韓雅琳,秦 銳,戴廣海
解放軍總醫(yī)院 腫瘤內(nèi)二科,北京 100853
綜 述
缺氧誘導(dǎo)因子對(duì)腫瘤細(xì)胞上皮-間質(zhì)轉(zhuǎn)化的誘導(dǎo)機(jī)制
郭曉川,石 燕,陳 麗,施偉偉,韓雅琳,秦 銳,戴廣海
解放軍總醫(yī)院 腫瘤內(nèi)二科,北京 100853
實(shí)體瘤組織內(nèi)普遍存在低氧現(xiàn)象,缺氧誘導(dǎo)因子(hypoxia inducible factor,HIF)是缺氧條件下傳遞缺氧信號(hào)、介導(dǎo)缺氧效應(yīng)的關(guān)鍵轉(zhuǎn)錄因子;上皮-間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transitions,EMT)是一個(gè)多步驟有序可高度調(diào)節(jié)的過(guò)程,EMT的發(fā)生與多種蛋白分子、微環(huán)境及MicroRNA等有關(guān),涉及多個(gè)信號(hào)轉(zhuǎn)導(dǎo)通路和復(fù)雜的分子機(jī)制,在腫瘤細(xì)胞的侵襲和轉(zhuǎn)移過(guò)程中扮演重要的角色。研究證實(shí),低氧可通過(guò)轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)信號(hào)通路、Notch信號(hào)通路、Wnt信號(hào)通路、刺猬信號(hào)通路(hedgehog signaling pathway,Hedgehog)、肝細(xì)胞生長(zhǎng)因子/肝細(xì)胞生長(zhǎng)因子(HGF/Met)信號(hào)通路及多種轉(zhuǎn)錄因子等途徑參與腫瘤EMT調(diào)控,目前通過(guò)抑制HIF來(lái)達(dá)到阻斷EMT過(guò)程的研究日益增多且初見(jiàn)成效,揭示低氧誘導(dǎo)的EMT途徑可能成為日后腫瘤治療的新靶點(diǎn),對(duì)于預(yù)防和治療癌癥具有重要意義。
腫瘤;缺氧誘導(dǎo)因子;上皮-間質(zhì)轉(zhuǎn)化
低氧是許多實(shí)體瘤組織內(nèi)普遍存在的現(xiàn)象。研究證實(shí),缺氧誘導(dǎo)因子1(hypoxia inducible factor 1,HIF1)是缺氧條件下傳遞缺氧信號(hào)、介導(dǎo)缺氧效應(yīng)的關(guān)鍵轉(zhuǎn)錄因子,通過(guò)結(jié)合缺氧反應(yīng)元件激活下游眾多靶基因從而參與腫瘤侵襲、轉(zhuǎn)移、血管生成、能量代謝以及放化療抵抗等多個(gè)環(huán)節(jié)[1]。許多研究證明,腫瘤內(nèi)部低氧環(huán)境誘發(fā)的HIF-1/2是導(dǎo)致腫瘤浸潤(rùn)、轉(zhuǎn)移及患者死亡的一個(gè)重要機(jī)制[2]。HIF1α是HIF-1的功能亞單位,通過(guò)參與多種靶基因的轉(zhuǎn)錄調(diào)控影響腫瘤細(xì)胞的能量代謝、增殖和凋亡,使細(xì)胞及組織產(chǎn)生一系列反應(yīng)以適應(yīng)缺氧環(huán)境,同時(shí)促進(jìn)腫瘤血管形成,也增加腫瘤自身的侵襲性及對(duì)放化療的抵抗性,已成為腫瘤發(fā)生、發(fā)展及治療研究的熱點(diǎn)。上皮-間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transitions,EMT)在腫瘤細(xì)胞的侵襲和轉(zhuǎn)移過(guò)程中起到了關(guān)鍵作用,是具有極性的上皮細(xì)胞轉(zhuǎn)換成具有活動(dòng)能力、能夠在細(xì)胞基質(zhì)間自由移動(dòng)的細(xì)胞的過(guò)程。在EMT過(guò)程中,上皮細(xì)胞特征性的蛋白表達(dá)減少,間質(zhì)細(xì)胞特征性的蛋白表達(dá)水平提高[3]。目前,越來(lái)越多的證據(jù)表明,微環(huán)境中氧分水平的變化及HIF介導(dǎo)的低氧信號(hào)傳導(dǎo)途徑是誘發(fā)、調(diào)節(jié)EMT的重要機(jī)制,而EMT在低氧環(huán)境誘導(dǎo)的腫瘤發(fā)生、發(fā)展、侵襲、轉(zhuǎn)移過(guò)程中起到了關(guān)鍵性作用。本文對(duì)腫瘤中HIF依賴的EMT發(fā)生的多個(gè)信號(hào)傳導(dǎo)通路及分子機(jī)制進(jìn)行綜述。
1.1 轉(zhuǎn)化生長(zhǎng)因子β信號(hào)通路(transforming growth factor-β,TGF-β) 轉(zhuǎn)化生長(zhǎng)因子β在細(xì)胞生長(zhǎng)、分化、凋亡、侵襲和各種癌癥細(xì)胞的EMT過(guò)程中起關(guān)鍵作用。TGF-β誘導(dǎo)的EMT是癌細(xì)胞侵襲的重要一步,且TGF-β是第一個(gè)被證明在正常乳腺細(xì)胞中可誘發(fā)EMT的因子[4]。TGFβ可通過(guò)絲/蘇氨酸激酶受體(Sma and Mad homologue,SMAD)蛋白和非SMAD蛋白信號(hào)通路來(lái)誘發(fā)EMT[5]。SMAD信號(hào)通路:TGF-β與受體結(jié)合后,受體發(fā)生自體磷酸化,使絲氨酸/蘇氨酸激酶活性激活,特異性識(shí)別并磷酸化SMAD2和SMAD3,從而與SMAD4形成異聚體進(jìn)入細(xì)胞核;在核內(nèi),SMAD3和SMAD4可結(jié)合于特定的SMAD結(jié)合元件,協(xié)同被激活的SNAIL,鋅指E-盒結(jié)合同源異形盒(zinc-finger E-box binding homeobox 1,ZEB1)及SMAD相互作用蛋白1(Smad interactingprotein 1,SIP1)等轉(zhuǎn)錄因子,如SMAD3和SMAD4與SNAIL形成復(fù)合物,靶向作用于嵌合抗原受體啟動(dòng)子,調(diào)節(jié)TGFβ作用的靶基因,從而控制細(xì)胞的增殖、分化、凋亡、轉(zhuǎn)移及EMT過(guò)程。非SMAD信號(hào)通路:TGF-β通過(guò)參與MAPK信號(hào)通路,調(diào)節(jié)GTP酶介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)途徑發(fā)揮作用,TGFβ作用靶點(diǎn)包括轉(zhuǎn)錄因子SNAI1、SNAI2、SIP1及同型半胱氨酸等[6]。另外,Wnt蛋白及β-鏈蛋白信號(hào)通路同時(shí)也參與了TGFβ-EMT過(guò)程,TGFβ-1還可通過(guò)激活血小板衍生因子、環(huán)氧化物酶2、PI3K/Akt信號(hào)通路來(lái)誘發(fā)EMT[7-8]。
TGF-β信號(hào)通路是EMT發(fā)生的經(jīng)典通路之一,有研究表明,在低氧狀態(tài)下,腫瘤細(xì)胞中TGFβ的表達(dá)量明顯增高,低氧可通過(guò)直接提高SMAD3 mRNA水平影響轉(zhuǎn)化生長(zhǎng)因子-β信號(hào)通路;相反,TGF-β通過(guò)SMAD信號(hào)通路特異性減少脯氨酰羥化酶的mRNA及蛋白表達(dá)水平,從而間接增強(qiáng)HIF-1α蛋白的穩(wěn)定性[6,9]。可見(jiàn),HIF與TGF-β信號(hào)通路在不同的調(diào)節(jié)水平上相互影響。HIF和TGF-β還可共同調(diào)節(jié)某些基因產(chǎn)物如人結(jié)締組織生長(zhǎng)因子的表達(dá)來(lái)誘發(fā)EMT。人結(jié)締組織生長(zhǎng)因子,CCN蛋白家族之一,也是轉(zhuǎn)化生長(zhǎng)因子-β家族纖維化形成的調(diào)節(jié)因子,能夠調(diào)節(jié)一系列的生物學(xué)行為,如:細(xì)胞粘連及轉(zhuǎn)移、細(xì)胞外基質(zhì)產(chǎn)生、血管生成、腫瘤生長(zhǎng)及傷口痊愈等[10]。在腎小管上皮細(xì)胞中,轉(zhuǎn)化生長(zhǎng)因子-β可通過(guò)SMAD途徑迅速誘導(dǎo)結(jié)締組織生長(zhǎng)因子的表達(dá)[11]。而有研究表明,將結(jié)締組織生長(zhǎng)因子加入人表皮細(xì)胞中或過(guò)表達(dá)時(shí)可誘發(fā)EMT[12]。
1.2 Notch信號(hào)通路 Notch信號(hào)通路由Notch受體、Notch配體(DSL蛋白)及細(xì)胞內(nèi)效應(yīng)器分子(CSL-DNA結(jié)合蛋白) 3部分組成。此信號(hào)通路是相鄰細(xì)胞之間通訊進(jìn)而調(diào)控細(xì)胞發(fā)育的重要通路,控制著細(xì)胞的增殖、分化及存活。通過(guò)相鄰細(xì)胞的Notch配體與受體相互作用,Notch蛋白經(jīng)過(guò)3次剪切,由胞內(nèi)段釋放入胞質(zhì),并進(jìn)入細(xì)胞核與轉(zhuǎn)錄因子結(jié)合,形成轉(zhuǎn)錄激活復(fù)合體,從而激活堿性-螺旋-環(huán)-螺旋(basichelix-loop-helix,bHLH)轉(zhuǎn)錄抑制因子家族的靶基因,發(fā)揮作用。在腫瘤的發(fā)生、發(fā)展過(guò)程中,Notch家族成員被激活后不足以誘發(fā)EMT過(guò)程,必須與其他信號(hào)通路協(xié)同才能發(fā)揮作用。1)可通過(guò)誘發(fā)轉(zhuǎn)錄因子Snail1促進(jìn)EMT形成:①Notch可通過(guò)募集胞質(zhì)區(qū)ICN到轉(zhuǎn)錄因子Snail1啟動(dòng)子,直接上調(diào)轉(zhuǎn)錄因子Snail1的表達(dá);②通過(guò)募集HIF-1α到胺氧化酶LOX啟動(dòng)子上,促進(jìn)LOX的過(guò)表達(dá),從而穩(wěn)定Snail蛋白,誘發(fā)EMT;2)參與TGF-β1/SMAD誘發(fā)的EMT過(guò)程;3)TGF-β可通過(guò)SMAD3上調(diào)Notch受體的配體、HCY1的表達(dá),抑制E-鈣黏附素的表達(dá);4)Wnt1轉(zhuǎn)化細(xì)胞可提高Notch配體的表達(dá)[13-16]。另外Notch還可通過(guò)成纖維細(xì)胞生長(zhǎng)因子、血小板衍生因子等信號(hào)通路參與EMT過(guò)程[17]。
HIF可從不同的水平參與調(diào)控Notch信號(hào)通路依賴的EMT過(guò)程。腫瘤低氧微環(huán)境中,HIF-1α與Notch信號(hào)通路細(xì)胞內(nèi)結(jié)構(gòu)域功能性結(jié)合,增強(qiáng)轉(zhuǎn)錄活性,提高轉(zhuǎn)錄因子Snai1表達(dá)水平,從而引發(fā)EMT[18]。有研究表明,在黑色素瘤細(xì)胞中,HIF-1可通過(guò)提高Notch1mRNA的水平來(lái)增強(qiáng)Notch信號(hào)通路的信號(hào)傳遞[19]。
1.3 Wnt信號(hào)通路 Wnt/β-鏈蛋白是經(jīng)典的Wnt信號(hào)傳導(dǎo)途徑[20]。當(dāng)Wnt配體與受體卷曲蛋白(Frizzleds,F(xiàn)rz)結(jié)合時(shí),F(xiàn)rz可作用于蓬亂蛋白(dishevelled,Dsh),Dsh能阻斷β-鏈蛋白的降解,從而β-鏈蛋白在細(xì)胞質(zhì)中積累并進(jìn)入細(xì)胞核,與T細(xì)胞因子(TCF/LEF)相互作用,調(diào)節(jié)靶基因的表達(dá)。β-鏈蛋白與E-鈣黏附素胞內(nèi)區(qū)域相互作用來(lái)維持細(xì)胞間的黏附作用,并進(jìn)入細(xì)胞核啟動(dòng)經(jīng)典的Wnt信號(hào)通路促進(jìn)腫瘤細(xì)胞的生存及增殖[21]。研究發(fā)現(xiàn),細(xì)胞內(nèi)軸蛋白抑制蛋白2表達(dá)增加及糖原合成激酶3β、功能阻斷可誘發(fā)EMT過(guò)程[22]。有研究報(bào)道,在人原發(fā)性肝癌組織中發(fā)現(xiàn)異常激活的β-鏈蛋白及其過(guò)度表達(dá)的靶基因;大量證據(jù)表明,Wnt/β-鏈蛋白信號(hào)通路可通過(guò)參與EMT過(guò)程促進(jìn)肝癌的發(fā)生及發(fā)展[23-24]。另外,Wnt蛋白可參與RTK-PI3KAkt信號(hào)通路,Wnt配體激活表皮生長(zhǎng)因子受體1信號(hào),繼而激活β-鈣黏附素,從而誘發(fā)EMT,在腫瘤細(xì)胞的增殖發(fā)生過(guò)程中起重要作用[25]。
腫瘤低氧環(huán)境中,HIF-1α通過(guò)N端區(qū)域?qū)ⅵ?鏈蛋白從T細(xì)胞因子4移除,結(jié)合N-乙酰基轉(zhuǎn)移酶基因hARD1使β-鏈蛋白失活;雖然HIF-1α可抑制β-鏈蛋白的轉(zhuǎn)錄活性,但低氧環(huán)境對(duì)β-鏈蛋白誘發(fā)的EMT是必要的[26],HIF-1α在低氧誘導(dǎo)的伴隨Wnt3a升高的EMT過(guò)程中起關(guān)鍵作用,而β-鏈蛋白可增強(qiáng)HIF-1α依賴的EMT誘導(dǎo)過(guò)程[26-28]。
1.4 肝細(xì)胞生長(zhǎng)因子/肝細(xì)胞生長(zhǎng)因子受體信號(hào)通路(HGF/ Met) 肝細(xì)胞生長(zhǎng)因子(hepatocyte growthfactor,HGF)是肝細(xì)胞生長(zhǎng)因子受體(Met)原癌基因跨膜酪氨酸激酶受體的配體,可通過(guò)多種方式促進(jìn)細(xì)胞增殖、存活、轉(zhuǎn)移[29]。在過(guò)度表達(dá)Met的卵巢癌細(xì)胞中,HGF可增加細(xì)胞的遷移力、趨化力及有絲分裂的發(fā)生,加速EMT過(guò)程。將卵巢癌腹水中HGF加入到卵巢癌細(xì)胞的培養(yǎng)系中,可刺激細(xì)胞發(fā)生EMT,而HGF的中和抗體可以消除促轉(zhuǎn)移作用[30]。在肝癌細(xì)胞中,HGF可通過(guò)細(xì)胞間黏附拆卸、基底膜降解及改變整合蛋白與基質(zhì)成分之間的相互作用來(lái)增強(qiáng)細(xì)胞能動(dòng)性,可能對(duì)EMT起到了直接誘導(dǎo)作用[31]。研究發(fā)現(xiàn),腫瘤細(xì)胞低氧區(qū)域中,HIF通過(guò)直接提高M(jìn)et mRNA水平及激活Met啟動(dòng)子等途徑提高M(jìn)et酪氨酸激酶受體的表達(dá),從而增強(qiáng)HGF信號(hào)通路,而此信號(hào)通路可通過(guò)誘發(fā)EMT促進(jìn)腫瘤進(jìn)展[32]。
1.5 刺猬信號(hào)通路(hedgehog signaling pathway,Hedgehog)
Hedgehog信號(hào)傳遞受靶細(xì)胞膜上兩種受體Patched (Ptc)和Smoothened(Smo)的控制,Smo是Hh信號(hào)傳遞所必需的受體,正常情況下,Ptc抑制Smo蛋白活性,但當(dāng)Ptc和Hh結(jié)合以后,解除對(duì)Smo的抑制作用,促使鋅指蛋白Gli形成大分子復(fù)合物,進(jìn)入核內(nèi)激活下游靶基因轉(zhuǎn)錄[33]。Hedgehog信號(hào)通路可通過(guò)誘導(dǎo)E-鈣黏附素抑制物-Snail1的表達(dá)調(diào)節(jié)EMT過(guò)程。有報(bào)道稱SHH-Gli1信號(hào)通路通過(guò)介導(dǎo)包括TGFβ、RAS蛋白、Wnt蛋白、生長(zhǎng)因子、PI3K/AKT信號(hào)通路、整合素、四跨膜蛋白超家族(TM4SF)和鈣結(jié)合蛋白A4(S100A4)的一個(gè)復(fù)雜信號(hào)網(wǎng)絡(luò)促進(jìn)了胰腺腫瘤細(xì)胞的上皮間質(zhì)轉(zhuǎn)化,且Smo拮抗劑可阻斷EMT及遠(yuǎn)處轉(zhuǎn)移[34-35]。2013年的一項(xiàng)研究發(fā)現(xiàn),胰腺癌細(xì)胞系中,低氧可通過(guò)低氧誘導(dǎo)因子-1促進(jìn)SHH的表達(dá),從而激活Hedgehog信號(hào)通路,誘導(dǎo)EMT發(fā)生,而HIF-1α抑制劑可阻斷該信號(hào)通路中Gli蛋白的激活,更加說(shuō)明HIF-1α抑制劑對(duì)某些依賴低氧、Hedgehog配體的腫瘤,如胰腺、前列腺癌患者可能獲益,為日后腫瘤轉(zhuǎn)移治療提供了新思路[36]。
EMT發(fā)生過(guò)程中,除了上述所列舉的重要的信號(hào)通路外,同時(shí)多種轉(zhuǎn)錄因子可誘發(fā)并在不同分子水平調(diào)節(jié)EMT,包括轉(zhuǎn)錄因子Snail家族(Snail1、Snail2、Snail3),調(diào)控因子Twist1、Twist2,ZEB家族(ZEB1、ZEB2)及胺氧化酶LOX等[37-38]。這些因子能夠識(shí)別E-鈣黏附素E-box啟動(dòng)子的DNA序列,吸引各種輔因子及組蛋白脫乙酰酶,從而抑制E-鈣黏附素的表達(dá)[39]。而在轉(zhuǎn)錄因子發(fā)揮作用的同時(shí),HIF也起到了一定的調(diào)節(jié)作用。文獻(xiàn)報(bào)道HIF-1α是這些因子的上游調(diào)控因子。另外,研究發(fā)現(xiàn),在鼠乳腺癌模型中,HIF-1α通過(guò)促進(jìn)LOX過(guò)表達(dá)增強(qiáng)癌細(xì)胞浸潤(rùn)、轉(zhuǎn)移,且與雌激素受體陰性患者的不良預(yù)后密切相關(guān)[40]。
眾多研究已證實(shí)轉(zhuǎn)錄因子Snail是EMT的最主要誘導(dǎo)因子之一,在肝癌細(xì)胞中誘發(fā)EMT起到了重要作用[41]。Snaill是一種含有鋅指結(jié)構(gòu)的DNA結(jié)合蛋白,可通過(guò)同SIP1競(jìng)爭(zhēng)性結(jié)合E-鈣黏附素啟動(dòng)子部位的E-box連接基序,抑制E-鈣黏附素基因的表達(dá)以及波形蛋白表達(dá)水平的上升,引起上皮細(xì)胞向間質(zhì)細(xì)胞表型的轉(zhuǎn)變,同時(shí)伴有E-鈣黏附素的下調(diào),從而引發(fā)EMT,而此過(guò)程與腫瘤低氧環(huán)境密切相關(guān)。已有研究證明,HIF-1α通過(guò)上調(diào)Snail減少E-鈣黏附素表達(dá)[42]。之前的研究發(fā)現(xiàn)在EMT過(guò)程中,缺氧能誘發(fā)Snail表達(dá)[43]。Luo等[44]的研究發(fā)現(xiàn),在鼠模型中,HIF可直接調(diào)節(jié)Snail的表達(dá)。在原發(fā)腫瘤低氧微環(huán)境中,脯氨酸羥化酶所需的氧分缺失,HIF-1α從而逃脫了蛋白水解作用,進(jìn)入細(xì)胞核,與HIF-1β聚和形成轉(zhuǎn)錄激活復(fù)合物,結(jié)合Snail1啟動(dòng)子的配合體從而促進(jìn)Snail1表達(dá)。當(dāng)腫瘤細(xì)胞重新獲得氧分,突破細(xì)胞外基質(zhì),進(jìn)入靶器官或組織實(shí)質(zhì)后,脯氨酸羥化酶迅速將脯氨酸殘基的HIF-1α氧化,這個(gè)羥基化過(guò)程促使腫瘤抑制蛋白與HIF-1α結(jié)合,HIF-1α多泛素化,隨即在蛋白酶體中降解,然后間質(zhì)腫瘤細(xì)胞開(kāi)始發(fā)生MET。在缺氧誘導(dǎo)的EMT過(guò)程中,HIF-1α起到了最主要的作用,而HIF-1α-Snail-EMT可能是關(guān)鍵的信號(hào)通路之一[45]。
Snail、Twist轉(zhuǎn)錄因子能夠誘導(dǎo)ZEB1因子的表達(dá),TGFβ/Smad信號(hào)通路、Wnt信號(hào)通路、Notch信號(hào)通路及HIF-1α也可直接促進(jìn)ZEB因子的表達(dá)。ZEB家族廣泛參與調(diào)控腫瘤細(xì)胞的細(xì)胞周期、細(xì)胞凋亡、侵襲轉(zhuǎn)移以及新生血管生成等多個(gè)過(guò)程,并且也是誘導(dǎo)EMT過(guò)程的重要轉(zhuǎn)錄因子。ZEB1能夠與上皮標(biāo)記物E-鈣黏附素編碼基因的啟動(dòng)子上E2盒結(jié)合,抑制E-鈣黏附素的轉(zhuǎn)錄,誘導(dǎo)腫瘤細(xì)胞發(fā)生EMT,增強(qiáng)細(xì)胞的侵襲、轉(zhuǎn)移能力[46]。調(diào)控因子Twist家族是胚胎發(fā)育中一類高度保守的堿性螺旋-環(huán)-螺旋(bHLH)轉(zhuǎn)錄因子,研究發(fā)現(xiàn),Twist1-E12二聚體可募集核小體重塑和去乙酰化酶蛋白復(fù)合物到上皮-鈣黏連素的啟動(dòng)子上,共同抑制E-鈣黏附素的表達(dá)[47]。
EMT是胚胎發(fā)育過(guò)程中必需的生理機(jī)制,同時(shí)在上皮性腫瘤的演進(jìn)中發(fā)揮了關(guān)鍵的作用。對(duì)于EMT的發(fā)生機(jī)制及其調(diào)節(jié)因素,在腫瘤生長(zhǎng)、逃逸、轉(zhuǎn)移中的作用,我們需要進(jìn)一步的探討。本文對(duì)HIF參與的EMT多種誘導(dǎo)途徑進(jìn)行了闡述分析,揭示了HIF在EMT發(fā)生、發(fā)展過(guò)程中扮演了重要的角色,但HIF-EMT的機(jī)制研究尚未完善。目前,關(guān)于HIF抑制劑的研究逐漸興起且初顯成效。如2014年的一項(xiàng)研究顯示,在卵巢癌及前列腺癌細(xì)胞系中,PI3K/ mTOR抑制劑NVP-BEZ235可干擾HIF-1α的轉(zhuǎn)錄及表達(dá)過(guò)程,抑制Smad2/3、Akt/糖原合成酶激酶-3磷酸化,減少轉(zhuǎn)錄因子SNAIL表達(dá),解除E-鈣黏附素的抑制作用或直接提高E-鈣黏附素mRNA水平,從而抑制甚至逆轉(zhuǎn)EMT過(guò)程;顯然,通過(guò)抑制HIF阻斷EMT分子生物學(xué)機(jī)制的發(fā)生,從而抑制腫瘤細(xì)胞的惡性進(jìn)展,為尋找治療腫瘤轉(zhuǎn)移的方法提供了新的思路[48]。但目前關(guān)于HIF-EMT抑制劑的研究尚處于臨床試驗(yàn)階段,期待日后能廣泛應(yīng)用于臨床實(shí)踐。
1 Cao S, Yang S, Wu C, et al. Protein expression of hypoxia-inducible factor-1 alpha and hepatocellular carcinoma: A systematic review with meta-analysis[J/OL]. http://www.sciencedirect.com/science/ article/pii/S2210740114000977
2 Sendoel A, Kohler I, Fellmann C, et al. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase[J]. Nature, 2010, 465(7298): U69-U577.
3 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?[J]. Nat Rev Cancer, 2007, 7(6): 415-428.
4 Miettinen PJ, Ebner R, Lopez AR, et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors[J]. J Cell Biol, 1994, 127(6 Pt 2):2021-2036.
5 Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease[J]. J Clin Invest, 2009, 119(6): 1438-1449.
6 Zavadil J, B?ttinger EP. TGF-beta and epithelial-to-mesenchymal transitions[J]. Oncogene, 2005, 24(37):5764-5774.
7 Kim K, Lu ZF, Hay ED. Direct evidence for a. role of beta-catenin/ LEF-1 signaling pathway in induction of EMT[J]. Cell Biol Int,2002, 26(5): 463-476.
8 Van Zijl F, Mair M, Csiszar A, et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge[J]. Oncogene, 2009, 28(45): 4022-4033.
9 McMahon S, Charbonneau M, Grandmont S, et al. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression[J]. J Biol Chem,2006, 281(34):24171-24181.
10 Shi-Wen X, Leask A, Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis[J]. Cytokine Growth Factor Rev, 2008, 19(2):133-144.
11 Higgins DF, Biju MP, Akai Y, et al. Hypoxic induction of Ctgf is directly mediated by Hif-1[J]. Am J Physiol Renal Physiol, 2004,287(6): F1223-F1232.
12 Zhang C, Meng X, Zhu Z, et al. Connective tissue growth factor regulates the key events in tubular epithelial to myofibroblast transition in vitro[J]. Cell Biol Int, 2004, 28(12):863-873.
13 Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J]. Genes Dev, 2004, 18(1): 99-115.
14 Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis[J]. Chin J Cancer, 2011, 30(9):603-611.
15 Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-beta/ Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition[J]. EMBO J, 2004, 23(5):1155-1165.
16 Garg M. Epithelial-mesenchymal transition-activating transcription factors - multifunctional regulators in cancer[J]. World J Stem Cells, 2013, 5(4):188-195.
17 Wang Z, Li Y, Kong D, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness[J]. Curr Drug Targets, 2010, 11(6):745-751.
18 Sahlgren C, Gustafsson MV, Jin S, et al. Notch signaling mediates hypoxia-induced tumor cell migration and invasion[J]. Proc Natl Acad Sci U S A, 2008, 105(17):6392-6397.
19 Bedogni B, Warneke JA, Nickoloff BJ, et al. Notch1 is an effector of Akt and hypoxia in melanoma development[J]. J Clin Invest,2008, 118(11):3660-3670.
20 申玉超,于曉玲,張秀梅.阿托伐他汀對(duì)氯化鋰誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞Wnt信號(hào)通路相關(guān)因子表達(dá)的影響[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013(3):276-278.
21 Macdonald BT, Tamai K, He X. Wnt/beta-catenin signaling:components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1):9-26.
22 Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors[J]. J Biol Chem,2006, 281(32): 22429-22433.
23 Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/β-catenin signalling in liver cancer[J]. World J Clin Oncol, 2011, 2(8):311-325.
24 Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer[J]. Mol Cancer, 2010, 9:236.
25 Trevisani F, Cantarini MC, Wands JR, et al. Recent advances in the natural history of hepatocellular carcinoma[J]. Carcinogenesis,2008, 29(7): 1299-1305.
26 Kaidi A, Williams AC, Paraskeva C. Interaction between betacatenin and HIF-1 promotes cellular adaptation to hypoxia[J]. Nat Cell Biol, 2007, 9(2):210-217.
27 Lim JH, Chun YS, Park JW. Hypoxia-inducible factor-1 alpha obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of beta-catenin[J]. Cancer Res, 2008, 68(13):5177-5184.
28 Zhang Q, Bai X, Chen W, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling[J]. Carcinogenesis,2013, 34(5):962-973.
29 Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma[J]. Oncogene, 2010, 29(36): 4989-5005.
30 Ueoka Y, Kato K, Kuriaki Y, et al. Hepatocyte growth factor modulates motility and invasiveness of ovarian carcinomas via Rasmediated pathway[J]. Br J Cancer, 2000, 82(4): 891-899.
31 Ding W, You HN, Dang H, et al. Epithelial-to-Mesenchymal transition of murine liver tumor cells promotes invasion[J]. Hepatology, 2010, 52(3): 945-953.
32 Samulitis BK, Landowski TH, Dorr RT. Inhibition of protein synthesis by imexon reduces HIF-1 alpha expression in normoxic and hypoxic pancreatic cancer cells[J]. Invest New Drugs, 2009, 27(1):89-98.
33 楊鐸,臧東鈺,李曉明.Shh蛋白及其下游轉(zhuǎn)錄因子Gli-1在非小細(xì)胞肺癌中的表達(dá)及意義[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2013,34(11):1182-1184.
34 Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res,2007, 67(5): 2187-2196.
35 Varnat F, Duquet A, Malerba M, et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion[J]. EMBO Mol Med, 2009, 1(6/7):338-351.
36 Spivak-Kroizman TR, Hostetter G, Posner RA, et al. Hypoxia triggers Hedgehog-Mediated Tumor-Stromal interactions in pancreatic cancer[J]. Cancer Res, 2013, 73(11): 3235-3247.
37 Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer[J]. Biochim Biophys Acta, 2007, 1775(1):21-62.
38 Muqbil I, Wu J, Aboukameel A, et al. Snail nuclear transport:The gateways regulating epithelial-to-mesenchymal transition?[J]. Semin Cancer Biol, 2014, 27C(期缺失): 39-45.
39 Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7): 927-939.
40 Wu Y, Mao F, Zuo X, et al. 15-LOX-1 suppression of hypoxiainduced metastatic phenotype and HIF-1α expression in human colon cancer cells[J]. Cancer Med, 2014, 3(3):472-484.
41 Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the Independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma[J]. Hepatology, 2009, 50(5): 1464-1474.
42 Evans AJ, Russell RC, Roche O, et al. VHL promotes E2 boxdependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail[J]. Mol Cell Biol, 2007, 27(1):157-169.
43 Copple BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factorbeta-dependent mechanisms[J]. Liver Int, 2010, 30(5):669-682.
44 Luo D, Wang J, Li J, et al. Mouse snail is a target gene for HIF[J]. Mol Cancer Res, 2011, 9(2):234-245.
45 Zhang L, Huang G, Li X, et al. Hypoxia induces epithelialmesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma[J]. BMC Cancer, 2013,13:108.
46 Fu JJ, Qin L, He T, et al. The TWIST/mi2/NuRD protein complex and its essential role in cancer metastasis[J]. Cell Res, 2011, 21(2):275-289.
47 Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease[J]. Cell Mol Life Sci, 2009, 66(5):773-787.
48 Lin G, Gai R, Chen Z, et al. The dual PI3K/mTOR inhibitor NVPBEZ235 prevents epithelial-mesenchymal transition induced by hypoxia and TGF-β1[J]. Eur J Pharmacol, 2014, 729:45-53.
Mechanism of HIF induced epithelial mesenchymal transition
GUO Xiaochuan, SHI Yan, CHEN Li, SHI Weiwei, HAN Yalin, QIN Rui, DAI Guanghai
No.2 Department of Oncology, Chinese PLA General Hospital, Beijing 100853, China
DAI Guanghai. Email: daigh60@sohu.com
Hypoxia is a common phenomenon in solid tumor, and hypoxia inducible factor (HIF) is a key transcription factor in the process of transmitting and mediating anoxic singals. Epithelial mesenchymal transitions (EMT) is a multi-step, ordered and highadjusted process, which palys an important role in tumor invasion and involves in various proteins, microenvironment, MicroRNA, signal pathway and molecular mechanism. Studies prove that hypoxia can regulate EMT through signal pathway of TGF-β, Notch, Wnt, Hedgehog and HGF/Met. Studies about blocking EMT through inhibition of HIF are effective, which indicates that HIF-induced EMT may be a new target of tumor therapy, and this means a lot to the prevention and therapy of cancer.
neoplasms; hypoxia-inducible factor; epithelial-mesenchymal transition
R 730
A
2095-5227(2015)01-0090-04
10.3969/j.issn.2095-5227.2015.01.028
時(shí)間:2014-09-05 10:29
http://www.cnki.net/kcms/detail/11.3275.R.20140905.1029.005.html
2014-06-03
國(guó)家自然科學(xué)基金項(xiàng)目(81372286)
Supported by the National Natural Science Foundation of China(81372286)
郭曉川,女,在讀博士,醫(yī)師。研究方向:消化道腫瘤的綜合治療。Email: chuanchuan216@126.com
戴廣海,男,博士,主任醫(yī)師,教授,博士生導(dǎo)師。Email: daigh60@sohu.com