国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

膠北地體早前寒武紀重大巖漿事件、陸殼增生及演化*

2015-04-13 04:23劉建輝劉福來丁正江劉平華王舫
巖石學報 2015年10期
關鍵詞:片麻巖鋯石巖漿

劉建輝 劉福來 丁正江 劉平華 王舫

LIU JianHui1,LIU FuLai1,DING ZhengJiang2,LIU PingHua1 and WANG Fang1

1. 中國地質(zhì)科學院地質(zhì)研究所,北京 100037

2. 山東省第三地質(zhì)礦產(chǎn)勘查院,煙臺 264000

1. Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China

2. Exploration Institute of Geology and Mineral Resources,Yantai 264000,China

2015-02-06 收稿,2015-05-13 改回.

1 引言

大陸地殼的起源及增生機制是早前寒武紀地質(zhì)研究的重要科學課題之一。位于華北克拉通東南緣的膠北地體(圖1a),是華北克拉通早前寒武紀古老地體的典型代表,涉及到太古宙陸殼的增生機制及形成過程,以及古元古代膠-遼-吉帶的構造演化等早前寒武紀重要科學問題,成為華北克拉通早前寒武紀地學研究的熱點地區(qū)?;◢徺|(zhì)巖類作為早前寒武紀地殼最主要的巖石組成,是記錄地殼增生及構造演化最主要的物質(zhì)載體,通過對其形成時代、成因及其可能經(jīng)歷的構造-變質(zhì)熱事件的研究,能為我們正確理解早期陸殼的增生機制及構造演化提供重要的依據(jù)。研究顯示,大陸地殼的增生主要發(fā)生在太古宙(Taylor and McLennan,1995;Hawkesworth and Kemp,2006a,b;Rollinson,2007;Cawood et al.,2013),而富鈉質(zhì)的TTGs(英云閃長巖-奧長花崗巖-花崗閃長巖)組合是現(xiàn)今太古宙陸殼最主要的組成物質(zhì)(Barker,1979;Jahn et al.,1981;Martin et al.,2005),代表著太古宙陸殼的增生,其成因研究是揭示和理解太古宙陸殼增生與演化的關鍵(Taylor and McLennan,1997;Condie,2005)。TTGs形成于含水玄武質(zhì)巖石在石榴角閃巖相或榴輝巖相的部分熔融已被地球化學及實驗巖石學研究所證實(Barker,1979;Condie,1986;Martin,1987,1999;Rapp et al.,1991,2003;Rapp and Watson,1995;Rollinson,1997;Foley et al.,2002;Xiong,2006);然而,有關TTGs 形成的構造背景一直存在板塊和非板塊模式之爭,存在多種不同的構造成因模式(Martin,1999;Smithies,2000;Smithies and Champion,2000;Foley et al.,2002;Martin et al.,2005;Condie,2005;Hawkesworth et al.,2010;Adam et al.,2012)。已有的調(diào)查研究顯示,膠北地體內(nèi)主要存在中太古宙~2.9Ga、新太古宙~2.7Ga 及~2.5Ga 多期TTGs,以及古元古代構造前ca.2.2~2.0Ga 及構造后~1.8Ga 等多期早前寒武紀花崗質(zhì)巖漿事件。最近的研究顯示,古元古代多期花崗質(zhì)巖石主要形成于板塊內(nèi)部太古宙陸殼的重熔(Liu et al.,2014a)。與全球其它主要太古宙陸殼一樣,TTGs 是膠北太古宙陸殼最主要的組成物質(zhì),對于其成因模式,存在俯沖洋殼的部分熔融(Jahn et al.,2008)或加厚下地殼的部分熔融(Wu et al.,2014a;Xie et al.,2014)兩種解釋。因此,如何理解膠北不同期次TTGs 的形成過程,對于正確理解膠北太古宙陸殼的形成機制具有重要的意義。

最近幾年,針對膠北地體內(nèi)早前寒武紀重要巖漿事件的代表性巖石組合開展了大量的同位素年代學、巖石地球化學、Nd 同位素及鋯石Hf 同位素特征的分析研究(Tang et al.,2007;Jahn et al.,2008;Zhou et al.,2008a;劉建輝等,2011,2012,2014;劉平華等,2013;Liu et al.,2013a,b,c,2014a,b;Wang et al.,2014;Wu et al.,2014a,b;Xie et al.,2014;Zhang et al.,2014;Shan et al.,2015),厘定出膠北地體內(nèi)以TTGs 片麻巖為代表的多期早前寒武紀重大巖漿事件,晚太古代(~2.5Ga)及古元古代(~1.86Ga)的兩期變質(zhì)事件,以及太古宙地殼增生及再造過程,并可能存在古老(>3.55Ga)陸殼物質(zhì)的再循環(huán)(Liu et al.,2014a)等重要研究進展。本文擬通過總結前人的這些研究成果,旨在使該區(qū)早前寒武紀重大巖漿事件的性質(zhì),陸殼增生機制及演化獲得更好的理解。

2 地質(zhì)背景

膠北地體是指位于郯廬斷裂以東,五蓮-煙臺斷裂以北的地區(qū),在大地構造上位于華北克拉通的東緣,膠-遼-吉構造帶的西南端,緊鄰蘇魯超高壓帶(圖1a)。該地體主要由太古宙花崗質(zhì)(TTG)片麻巖、變質(zhì)基性-超基性巖及表殼巖,古元古代花崗巖類及變質(zhì)基性巖,古元古代高級變質(zhì)的粉子山群及荊山群,低級變質(zhì)的芝罘群,以及新元古代低級變質(zhì)的蓬萊群等寒武紀變質(zhì)-變形基底,中生代花崗巖類及中-新生代沉積地層組成(圖1b)(山東省地質(zhì)礦產(chǎn)局,1991;盧良兆等,1996;唐俊等,2004;周喜文等,2004;Jahn et al.,2008;Zhou et al.,2008a,b;李旭平等,2001;Liu et al.,2013a,b,c)。

圖1 華北克拉通構造單元劃分(a,據(jù)Zhao et al.,2005 修改)及膠北地區(qū)地質(zhì)簡圖(據(jù)山東省地質(zhì)礦產(chǎn)局,1991;Zhou et al.,2008a,Liu et al.,2013a 修改)與鋯石U-Pb 年齡的樣品分布(b)YB-陰山地塊;KB-孔茲巖帶;WB-西部塊體;TNCO-中部造山帶;EB-東部塊體;JLJB-膠-遼-吉帶. 年齡據(jù)Tang et al. ,2007;Jahn et al. ,2008;Zhou et al. ,2008a;劉建輝等,2011;劉平華等,2013;Liu et al. ,2013a,2014a;Wang et al. ,2014;Wu et al. ,2014b;Xie et al. ,2014;Shan et al. ,2015,以及作者未發(fā)表數(shù)據(jù)Fig.1 Tectonic subdivisions of the North China Craton (a,modified after Zhao et al.,2005),simplified geological map of the Jiaobei Terrane (modified after BGMRS,1991;Zhou et al.,2008a;Liu et al.,2013a)and distribution of the samples with zircon U-Pb ages (b)YB-Yinshan Block;KB-Khondalite Belt;WB-Western Block;TNCO-Trans-North China Orogen;EB-Eastern Block;JLJB-Jiao-Liao-Ji Belt. Ages after Tang et al.,2007;Jahn et al.,2008;Zhou et al.,2008a;Liu et al. ,2011;Liu et al. ,2013;Liu et al. ,2013a,2014a;Wang et al. ,2014;Wu et al. ,2014b;Xie et al. ,2014;Shan et al. ,2015,and unpublished data

太古宙花崗質(zhì)(TTG)片麻巖在棲霞附近呈穹窿狀大面積出露,主要包括~2.9Ga、~2.7Ga 及~2.5Ga 三期巖漿事件,它們主要源自3.4 ~2.7Ga 新生地殼的重熔或再造,并伴有少量老地殼的加入(Liu et al.,2013a;Wang et al.,2014;Wu et al.,2014b;Xie et al.,2014;Shan et al.,2015),并經(jīng)歷了~1.86Ga 和~2.5Ga 兩期變質(zhì)熱事件(Jahn et al.,2008;Zhou et al.,2008a;劉建輝等,2011;Liu et al.,2013a);這些片麻巖普遍遭受強烈剪切變形作用,定向構造發(fā)育,常形成條紋和條帶狀構造,內(nèi)部流柔褶皺發(fā)育(劉建輝等,2011)。在TTG 片麻巖內(nèi)部,斜長角閃片麻巖、黑云母變粒巖、黑云斜長片麻巖及變質(zhì)基性-超基性巖呈大小不等的透鏡體或不規(guī)則脈狀體產(chǎn)出,同樣顯示遭受強烈剪切變形,深熔混合巖化作用強烈(劉建輝等,2011;劉平華等,2011a,b,2012)。古元古代花崗巖類出露面積較小,呈零星分布,根據(jù)其侵位時間及變形作用,可劃分為構造前變形花崗質(zhì)片麻巖類及構造后末變形的花崗巖類,它們可與遼-吉地區(qū)的古元古代花崗巖類對比,源自板內(nèi)陸殼物質(zhì)的重熔(Liu et al.,2014a)。膠北地體內(nèi)古元古代孔茲巖系(包括粉子山群、荊山群)不整合于TTG 片麻巖之上,其具有3.34 ~2.20Ga 的碎屑鋯石U-Pb 年齡(Wan et al.,2006)。這些組成膠北地體早前寒武紀變質(zhì)基底的巖石,經(jīng)歷了高角閃巖相-麻粒巖相變質(zhì)作用,具有順時針P-T 演化路徑(劉文軍等,1998;周喜文等,2004;劉平華等,2010,2013;王舫等,2010;Tam et al.,2011,2012a,b,c;Liu et al.,2013c,2015),并伴隨普遍的深熔作用(Liu et al.,2014b)。變質(zhì)鋯石U-Pb 年代學研究表明,其變質(zhì)作用的時間約為1.95 ~1.85Ga(Zhou et al.,2008b;Tam et al.,2011,2012a,b;劉福來等,2012;Liu et al.,2013c),其中高壓麻粒巖相峰期變質(zhì)時間約在1.90 ~1.85Ga 之間(劉平華等,2011a,b;Liu et al.,2013c)。芝罘群主要分布在芝罘島,碎屑鋯石U-Pb 年代學分析結果顯示其沉積時代應晚于約1.8Ga(Liu et al.,2013b)。新元古代蓬萊群是一套綠片巖相-低角閃巖相的淺變質(zhì)巖系(山東地質(zhì)礦產(chǎn)局,1991;Zhou et al.,2008a),目前,對于其形成的構造背景、沉積時間及屬性仍有爭議(Li et al.,2007;Zhou et al.,2008a;初航等,2011)。

3 太古宙-古元古代重要巖漿事件

3.1 中太古宙巖漿事件

TTGs 片麻巖是膠北地體內(nèi)現(xiàn)今揭露的最主要的中太古宙巖石,代表膠北地體中太古宙重要的巖漿活動及陸殼增生作用。這些TTGs 片麻巖主要呈灰色條帶狀或片麻狀構造產(chǎn)出,變形作用及變質(zhì)深熔作用明顯(圖2a),內(nèi)部常分布有透鏡體狀或不規(guī)則基性殘留體(圖2b)。它們在野外產(chǎn)出特征及礦物成分上與晚太古宙侵入的TTG 片麻巖相似,在野外很難區(qū)分出不同期次形成的TTGs 片麻巖。最近,隨著鋯石SHRIMP 及LA-ICP-MS U-Pb 測年在膠北地體內(nèi)的不斷開展,大量的中太古宙TTGs 片麻巖被揭露(圖1b),它們的巖漿鋯石年齡較為統(tǒng)一,主要集在~2.9Ga(John et al.,2008;Liu et al.,2013a;Wang et al.,2014;Wu et al.,2014b;Xie et al.,2014 及未發(fā)表數(shù)據(jù),表1),指示膠北地體在中太古宙(~2.9Ga)顯著的巖漿活動及陸殼增生作用。而且這些中太古宙TTGs 片麻巖普遍記錄了~2.5Ga 的變質(zhì)作用(表1)。

3.2 新太古宙巖漿事件

膠北地體內(nèi)除了出露有大量中太古宙TTGs 片麻巖外,還分布有大面積的以TTGs 片麻巖為代表的新太古宙花崗質(zhì)片麻巖。這些花崗質(zhì)片麻巖在侵位時代上可以劃分為新太古宙早期及新太古宙末兩期。其中新太古宙早期主要包括花崗閃長質(zhì)片麻巖(圖2c)、英云閃長質(zhì)片麻巖及少量二長(鉀長)花崗質(zhì)片麻巖,這些巖石變質(zhì)變形及深熔作用明顯,局部有后期鉀質(zhì)花崗巖的注入(圖2d)。鋯石U-Pb 測年顯示,它們的巖漿鋯石U-Pb 年齡較為統(tǒng)一,分布在2691 ~2745Ma 之間(Faure et al.,2003;Tang et al.,2007;Jahn et al.,2008;Liu et al.,2013a;Wu et al.,2014b;表1),指示新太古宙早期約~2.7Ga 陸殼形成事件,同時伴有部分早期陸殼的重熔,形成少量的二長花崗質(zhì)片麻巖。

新太古宙末除了TTGs 片麻巖以外(圖2e),還包括花崗巖及條帶狀二長花崗片麻巖(圖2f,g)。這些巖石同樣普遍遭受了強烈的變質(zhì)深熔作用及變形作用,常形成條紋和條帶狀構造,內(nèi)部流柔褶皺發(fā)育(圖2e,g)。這些晚太古宙花崗質(zhì)片麻巖內(nèi)部常產(chǎn)出有與強變形方向平行、斷續(xù)分布的基性麻粒巖透鏡體、脈體或巖墻(圖2e,f)。這些基性麻粒巖的原巖時代約為~2.5Ga(Liu et al.,2013c),與新太古宙末花崗質(zhì)片麻巖的侵位時代大致相當。大量的鋯石U-Pb 測年結果顯示,它們的巖漿鋯石U-Pb 年齡統(tǒng)一分布在2500 ~2569Ma 之間(Faure et al.,2003;Jahn et al.,2008;Zhou et al.,2008a;Liu et al.,2013a;Wang et al.,2014;Wu et al.,2014b;Shan et al.,2015;表1),指示新太古宙末約~2.5Ga的花崗質(zhì)巖漿事件,并伴隨有準同期的變質(zhì)作用。

3.3 古元古代巖漿事件

古元古代花崗質(zhì)巖石在膠北地體內(nèi)零星出露,分布面積不大(圖1b)。結合膠北約19.5 ~18.5Ga 古元古代碰撞構造事件(Tam et al.,2011,2012a,b;Liu et al.,2013c),以及這些花崗質(zhì)巖石野外地質(zhì)產(chǎn)出特征及巖相學特征,被劃分為碰撞構造事件前形成的經(jīng)歷了變質(zhì)變形作用的構造前花崗質(zhì)片麻巖及碰撞構造事件后沒經(jīng)歷變質(zhì)變形的構造后花崗巖(Liu et al.,2014a)。主要巖性包括變形的含角閃石/黑云母二長花崗質(zhì)片麻巖(圖2h,i)及未變形的含黑云母正長(二長)花崗巖(圖2j),在巖性上具有A 型花崗巖的特征。變形的古元古代花崗質(zhì)片麻巖在TTGs 片麻巖中呈侵入巖體產(chǎn)出,內(nèi)部分布有古元古代超基性巖脈,與古元古代變質(zhì)地層粉子山群及荊山群呈不整合接觸(Liu et al.,2014a)。它們侵入的時間在ca.2.2 ~2.0Ga 之間,并記錄了古元古代~1.86Ga 變質(zhì)作用(劉建輝等,2011;Liu et al.,2014a)。代表膠北地體內(nèi)發(fā)生在古元古代ca.1.95 ~1.85Ga 碰撞構造事件之前ca.2.2 ~2.0Ga 的陸內(nèi)花崗質(zhì)巖漿活動(Liu et al.,2014a)。未變形的古元古代黑云母正長花崗巖與古元古代變質(zhì)地層荊山群及粉子山群呈侵入關系(Liu et al.,2014a)。最近的研究顯示,它們發(fā)生巖漿侵位的時間為~1.8Ga,代表膠北地體內(nèi)古元古代碰撞構造事件后~1.8Ga 陸內(nèi)花崗質(zhì)巖漿活動(Liu et al.,2014a)。

4 太古宙花崗質(zhì)巖石地球化學特征

本文總結了膠北具有精確鋯石U-Pb 年齡的太古宙不同期次TTGs 片麻巖及花崗片麻巖的地球化學數(shù)據(jù),旨在查明膠北太古宙不同期次TTGs 片麻巖及花崗片麻巖的巖石地球化學、微量元素地球化學特征。本文討論的地球化學數(shù)據(jù)來自Tang et al.,2007;Jahn et al.,2008;Wu et al.,2014a;Xie et al.,2014;以及作者未發(fā)表數(shù)據(jù)。

4.1 主量元素地球化學特征

圖2 膠北地體太古宙-古元古代花崗質(zhì)巖石野外照片F(xiàn)ig.2 Photographs of Archean-Paleoproterozoic granitoid rocks

膠北不同期次太古宙花崗質(zhì)巖石的主量元素如圖3 所示,SiO2含量在60.67% ~77.49% 之間,Al2O3含量在11.66% ~17.19%之間,F(xiàn)eOT含量在0.70% ~6.74%之間,MgO 在0.13% ~2.5%之間,CaO 在0.54% ~6.29%之間,Na2O 在1.68% ~6.95%之間,K2O 在0.49% ~5.15%之間,以及較低的TiO2和P2O5含量,分別在0.02% ~0.86%和0.01% ~0.19% 之間。除了Na2O 與SiO2無明顯相關性,K2O 與SiO2具有弱的正相關外,而其它主量元素含量與SiO2表現(xiàn)為明顯的負相關(圖3)。在An-Ab-Or 三角分類圖解上(圖4a),大部分樣品落在英云閃長巖、花崗閃長巖及奧長花崗巖區(qū),它們絕大部分具有高的Al2O3含量(>15%),屬高鋁型TTG 巖石(Barker and Arth,1976;Martin et al.,2005),在SiO2-K2O 協(xié)變圖解上(圖3,Rickwood,1989),落在中鉀或低鉀區(qū),Na2O/K2O 比值大于1(圖4b)。少量~2.5Ga樣品落在花崗巖區(qū)(圖4a),具有較低的Al2O3含量(圖3)及

較高的K2O 含量,Na2O/K2O 比值小于1(圖4b),落在高鉀鈣堿性系列區(qū)。此外,這些巖石的Mg#指數(shù)在13 ~52 之間,除了6 個~2.5Ga 花崗巖樣品及2 個~2.9Ga 高硅奧長花崗巖樣品具有極低的Mg#指數(shù)外(圖4c),其它樣品均與全球典型太古宙TTGs 樣品的Mg#指數(shù)一致(Condie,2005;Martin et al.,2005)。并與SiO2含量顯示出弱的負相關性(圖4c)。

表1 膠北早前寒武紀主要巖漿事件代表性巖石樣品的鋯石U-Pb 年齡統(tǒng)計表Table 1 Summary of zircon U-Pb ages of representative samples of the Early precambrian major magmatic events in the Jiaobei terrane

圖3 膠北地體太古宙花崗質(zhì)巖類選擇的主量元素Harker 變量圖解Fig.3 Harker compositional variation diagrams showing selected major elements variations for Archean granitoid gneisses from the Jiaobei terrane

圖4 膠北地體太古宙花崗質(zhì)巖類的An-Ab-Or 三角分類圖解(a,底圖據(jù)Barker,1979)、SiO2-Na2O/K2O 圖(b)和SiO2-Mg#圖(c)Fig.4 Feldspar An-Ab-Or classification diagram (a,after Barker,1979),SiO2-Na2O/K2O diagram (b)and SiO2-Mg# diagram(c)

圖5 膠北太古宙花崗質(zhì)巖石地球化學分類圖(底圖據(jù)Frost et al.,2001)Fig.5 Geochemical classification diagrams of Archean granitoid rocks from the Jiaobei terrane (after Frost et al.,2001)

在SiO2-FeOT/(FeOT+MgO)分類圖上,除幾個~2.5Ga花崗質(zhì)巖石樣品外,均分布在鎂質(zhì)系列區(qū)域(圖5a)。在SiO2-(K2O +Na2O-CaO)分類圖上,所有樣品均落在鈣性到鈣-堿性系列區(qū)域(圖5b)。在A/CNK-A/NK 圖解上,膠北太古宙花崗質(zhì)巖石的鋁飽和指數(shù)A/CNK 主要集中在0.9 ~1.1之間,主要分布在偏鋁質(zhì)至弱過鋁質(zhì)區(qū)域(圖5c)。

4.2 微量元素地球化學特征

膠北地體太古宙不同期次的花崗質(zhì)巖石的稀土及微量元素配分曲線如圖6 所示。在稀土元素球粒隕石標準化配分曲線圖上(圖6a,c,e),所有樣品輕重稀土元素分餾明顯,配分曲線均表現(xiàn)為明顯的右傾型模式,輕稀土富集,重稀土虧損。數(shù)據(jù)統(tǒng)計顯示,(La/Yb)N比值變化大,在3.42 ~108.4 范圍內(nèi)變化。太古宙~2.9Ga、~2.7Ga 及~2.5Ga TTG 片麻巖無明顯銪異常(圖6a);但晚太古宙~2.5Ga 花崗片麻巖顯示出明顯的弱負銪異常(圖6c,e)。

在原始地幔標準化微量元素蛛網(wǎng)圖上(圖6b,d,f),大部分TTG 片麻巖富集Ba、K、Rb 及Sr 等大離子親石元素,虧隕Nb、Ta 及Ti 等高場強元素(圖6b,d,f)。數(shù)據(jù)統(tǒng)計顯示,除了2 個~2.9Ga 高硅奧長花崗巖樣品具有較低的Sr 含量外,其它大部分太古宙TTG 片麻巖具有較高的Sr 含量,在209 ×10-6~604 ×10-6之間(圖7a),此外,~2.5Ga 花崗片麻巖具有較低的Sr 含量(圖7a),在微量元素蛛網(wǎng)圖上顯示明顯的Sr 虧隕(圖6f)。Y 含量在0.56 ×10-6~45.9 ×10-6之間,其中太古宙TTG 片麻巖Y 含量相對較低,~2.5Ga 花崗片麻巖Y 含量相對較高(圖7b),Sr/Y 比值變化范圍大,在2.20 ~511 之間。太古宙TTG 片麻巖及花崗片麻巖均具有較低的Cr 及Ni 含量,分別在1.93×10-6~83.8×10-6及0.72×10-6~45×10-6之間(圖7c,d)。太古宙TTG 片麻巖的Sr、Y、Cr 及Ni 含量與SiO2含量顯示弱的負相關性(圖7)。

圖6 膠北地體太古宙不同期次花崗質(zhì)巖石球粒隕石標準化稀土模式圖(a、c、e)及原始地幔標準化微量元素蛛網(wǎng)圖(b、d、f)(標準化值據(jù)Sun and McDonough,1989)Fig.6 Chondrite-normalized REE patterns (a,c,e)and primitive mantle-normalized trace element spider diagrams (b,d,f)for Archean granitoid rocks from Jiaobei terrane (normalization values after Sun and McDonough,1989)

5 鋯石Hf 同位素特征

鋯石Hf 同位素被證明是一種示蹤巖漿源區(qū)、巖石成因及約束地殼演化極佳的方法(Kinny and Maas,2003;吳福元等,2007)。為了能夠更好的理解膠北早前寒武紀重要巖漿事件的性質(zhì)、地殼增生及演化過程,本文對膠北地體早前寒武紀不同期次的TTG 片麻巖及花崗質(zhì)片麻巖的鋯石Hf 同位素開展了系統(tǒng)的統(tǒng)計,統(tǒng)計數(shù)據(jù)主要來自Liu et al.,2013a,2014a;Wang et al.,2014;Wu et al.,2014b;Xie et al.,2014;Zhang et al.,2014 及作者未發(fā)表數(shù)據(jù)。

圖7 膠北太古宙花崗質(zhì)巖石選擇性微量元素Harker 成分變化圖解Fig.7 Harker compositional variation diagrams showing selected trace elements Sr,Y,Cr and Ni variations for the Archean granitoids from the Jiaobei terrane

膠北太古宙不同期次花崗質(zhì)巖石及古元古代不同期次花崗質(zhì)巖石的鋯石Hf 同位素數(shù)據(jù)統(tǒng)計結果如圖8 所示。來自165 個~2.9GaTTG 片麻巖鋯石Hf 同位素分析數(shù)據(jù)顯示,除了兩個分析鋯石的εHf(t)為負值外,其余所有鋯石具有正的εHf(t)值(圖8a),兩階段Hf 模式年齡主要分布在ca.3.3~2.9Ga 之間(圖8b)。247 個~2.7Ga TTG 片麻巖或花崗片麻巖鋯石Hf 同位素分析數(shù)據(jù)顯示,絕大部分具有正的εHf(t)值(圖8c),兩階段Hf 模式年齡跟~2.9Ga TTG 片麻巖類似,主要分布3.3 ~2.9Ga 之間,少量具有弱的負εHf(t)值和更老的模式年齡(圖8c,d)。326 個~2.5Ga TTG 片麻巖或花崗片麻巖鋯石Hf 同位素分析數(shù)據(jù)顯示,大部分鋯石具有正的εHf(t)值,兩階段Hf 模式年齡主要分布在ca.2.9~2.7Ga 之間,少部分鋯石具有負的εHf(t)值,以及更老的兩階段Hf 模式年齡(圖8e,f)。而相對有限數(shù)量的古元古代花崗質(zhì)巖石的鋯石Hf 同位素分析數(shù)據(jù)顯示,它們大部分具有負的εHf(t)值,少量具有正的εHf(t)值,兩階段Hf 模式年齡分布較廣,主要分布在ca.3.2 ~2.3Ga 之間(圖8g,h)。

6 討論及結論

6.1 巖石成因

6.1.1 太古宙TTG 片麻巖及花崗片麻巖

實驗巖石學及地球化學研究表明,TTGs 形成于含水玄武質(zhì)巖石在石榴角閃巖相或榴輝巖相的部分熔融(Barker,1979;Condie,1986;Martin,1987,1999;Rapp et al.,1991,2003;Rapp and Watson,1995;Rollinson,1997;Foley et al.,2002;Xiong,2006)。但對于TTGs 形成的構造環(huán)境卻存在多種不同的模式,主要存在三種構造模式:(1)加厚下地殼或大洋高原地殼的部分熔融(Smithies,2000;Smithies and Champion,2002;Condie,2005);(2)俯沖洋殼(板片)的部分熔融(Martin,1999;Martin et al.,2005;Foley et al.,2002;Rapp et al.,2003);(3)加厚大洋弧地殼的部分熔融(Hawkesworth et al.,2010;Adam et al.,2012;Polat,2012)。

圖8 膠北地體太古宙及古元古代花崗質(zhì)巖石鋯石Hf 同位素成分(a、c、e、g)鋯石U-Pb 年齡對εHf(t)值及變化;(b、d、f、h)鋯石Hf 模式年齡直方柱狀圖Fig.8 Zircon Hf isotopic composition of the Archean and Paleoproterozoic granitoid rocks from the Jiaobei terrane(a,c,e,g)zircon U-Pb ages-εHf(t)variations;(b,d,f,h)histograms of the zircon Hf model ages

圖9 膠北太古宙花崗質(zhì)巖石球粒隕石標準化YbN-(La/Yb)N 圖解(據(jù)Drummond and Defant,1990)Fig.9 Chondrite-normalized YbN-(La/Yb)N diagram of Archean granitoid rocks from the Jiaobei terrane (after Drummond and Defant,1990)

膠北太古宙不同期次的TTG 片麻巖主要為鎂質(zhì)(圖5a),準鋁質(zhì)至弱過鋁質(zhì)(圖5c),低鉀-中鉀鈣堿性系列(圖3、圖5b),具有高的Na2O 及Al2O3含量(圖3),屬高鋁TTGs。在稀土元素球粒隕石標準化配分曲線上,它們富集輕稀土,虧損重稀土,配分曲線均表現(xiàn)為明顯的右傾型模式,顯示強烈的輕重稀土分異,無明顯的Eu 異常(圖6a,c,e)。在原始地幔標準化蛛網(wǎng)模式圖上表現(xiàn)為富集Ba、K、Rb 及Sr等大離子親石元素,虧損Nb,Ta 及Ti 等高場強元素(圖6b,d,f)。這些地球化學特征指示源區(qū)無斜長石的殘留,石榴石及角閃石是主要的殘留相。膠北TTG 巖石在球粒隕石標準化的YbN-(La/Yb)N部分熔融圖解上,主要分布在石榴石-斜長角閃巖及榴輝巖為殘留相的太古宙高鋁TTGs 區(qū)域內(nèi)(圖9)。結合TTGs 成因的實驗巖石學及地球化學研究,表明膠北地體太古宙TTGs 起源于基性玄武質(zhì)巖石在石榴石和角閃石為主要殘留相的部分熔融。盡管太古宙TTGs 與高硅埃達克質(zhì)巖石在地球化學具有很大的相似性,具有弧型巖漿巖的特征(Martin,1999;Martin et al.,2005),但同時太古宙高硅TTG 巖石具有較低的Mg#指數(shù),相對較低Sr、Cr 及Ni 含量,與埃達質(zhì)巖石在地球化學上并不完全可以對比(Smithies,2000;Kamber et al.,2002;Condie,2005)。而且只要有合適的源區(qū)巖石,在合適的條件下,可以在不同的構造背景下形成具有類似地球化學特征的巖石。膠北TTG 片麻巖具有較低的Mg#指數(shù),相對較低的Sr、Cr 及Ni 含量,這可能難以用俯沖板片交代橄欖質(zhì)地幔的部分熔融的成因模式來理解(Condie,2005)。加上,膠北不同期次TTG 片麻巖相互重疊分布,并沒有呈帶狀分布,因此,加厚地殼的部分熔融應更適合于膠北TTG 片麻巖的成因模式。

巖漿鋯石的U-Pb 年齡代表巖石形成的時間,而鋯石的Hf 模式年齡主要代表地殼物質(zhì)從地幔出來的時間。根據(jù)膠北太古宙不同期次TTG 片麻巖的鋯石Hf 同位素數(shù)據(jù)結果(圖8a-f),~2.9Ga TTG 片麻巖主要源自ca.3.3 ~2.9Ga 新生地殼的重熔(再造);~2.7Ga TTG 片麻巖同~2.9Ga TTG片麻巖具有類似的源區(qū),同樣主要源自3.3 ~2.9Ga 新生地殼的重熔(再造);~2.5Ga TTG 片麻巖則具有更年輕的源區(qū),主要源自ca.2.9 ~2.7Ga 新生地殼的重熔。結合膠北太古宙不同期次TTG 片麻巖的地球化學特征及空間分布,膠北TTG 片麻巖可能形成于加厚新生地殼的部分熔融。

膠北太古宙分布的少量花崗片麻巖,它們相對于TTG 片麻巖,具有高的K2O 含量,K2O/Na2O 大于1,屬高鉀系列。并具有明顯的負Eu 異常,低的Sr 含量,負的εHf(t)值,以及比準同期TTG 片麻巖更老的鋯石Hf 模式年齡,而且它們主要呈小巖體或巖脈產(chǎn)出。這些表明,它們可能是在準同期TTG 巖漿形成侵位過程導致先期存在的老陸殼的重熔而成。

6.1.2 古元古代花崗質(zhì)巖石

膠北古元古代花崗質(zhì)巖石主要包括變形的角閃黑云二長花崗質(zhì)片麻巖和黑云二長花崗質(zhì)片麻巖及未變形的黑云母正長(二長)花崗巖,前者大約形成于2.0 ~2.2Ga,后者大約形成于1.8Ga,它們在礦物成分上主要包括石英、鉀長石及斜長石,以及少量的黑云母或角閃石,顯示出富鉀,具有A型花崗巖的特征(Liu et al.,2014a)。鋯石Hf 同位素分析顯示,它們大部分具有負的εHf(t)值,以及老的Hf 模式年齡,顯示與膠北TTG 巖石具有相同的地殼演化趨勢(Liu et al.,2014a,圖8b,c),暗示它們主要源自太古宙陸殼的重熔。此外,伴隨古元古代2.2 ~2.0Ga 花崗質(zhì)巖漿活動,存在大量的鎂鐵質(zhì)巖體或巖墻的侵位(劉平華等,2013),在遼-吉地區(qū)分布有大量類似的2.2 ~2.0Ga 花崗質(zhì)巖,這些花崗質(zhì)巖石可能代表膠-遼-吉帶在2.2 ~2.0Ga 時期伸展構造背景下陸殼的重熔。而1.8Ga 花崗質(zhì)巖漿活動則可能代表膠-遼-吉帶在1.95 ~1.85Ga 碰撞造山作用后的伸展構造背景下的陸殼重熔。

6.2 陸殼增生及演化

顯生宙大陸地殼主要通過沿俯沖帶構造加積作用及新生巖漿巖的侵位而增生(Sengor et al.,1993)。然而,目前對于太古宙陸殼的增生機制仍沒獲得統(tǒng)一的認識(Foley et al.,2002;Rapp et al.,2003;Hawkesworth et al.,2010)。研究顯示,太古宙是全球陸殼形成的主要時期(Taylor and McLennan, 1995; Hawkesworth and Kemp, 2006a, b;Rollinson,2007;Cawood et al.,2013),而TTGs 是現(xiàn)今保留的太古宙陸殼最主要的組成物質(zhì),因此,TTG 巖石的形成過程代表著陸殼的形成過程。

膠北地體主要存在~2.9Ga、2.7Ga 及2.5Ga 三期TTG片麻巖,代表膠北地體太古宙三期重要的陸殼增生事件,它們的鋯石Hf 模式主要分布在ca.3.4 ~2.7Ga 之間,代表膠北新生基性地殼的主要形成階段。此外,需要注意的是,盡管沒發(fā)現(xiàn)更老的陸殼,但并不代表曾經(jīng)不存在更老的陸殼,而是可能被剝蝕掉而不復存在,并且大量的研究已經(jīng)證實,膠北或華北克拉通存在太古宙早期古老陸殼物質(zhì)及其再循環(huán)(Liu et al.,1992,2008;Song et al.,1996;Wang et al.,1998;靳克等,2003;Zheng et al.,2004;簡平等;2005;Wu et al.,2005,2008;Gao et al.,2006;Wang et al.,2007;Zhou et al.,2007;Diwu et al.,2013;劉建輝等,2014)。膠北古元古代花崗質(zhì)巖漿活動主要代表在伸展環(huán)境陸殼物質(zhì)的重熔作用。因此,通過對膠北地體內(nèi)早前寒武紀重大巖漿事件的性質(zhì)及成因研究,總結出膠北地體早前寒武紀>2.9Ga、~2.9Ga、~2.7Ga,~2.5Ga、ca.2.2 ~2.0Ga、1.95 ~1.85Ga及~1.8Ga 等多個陸殼增生及演化階段(圖10)。

圖10 膠北早前寒武紀陸殼增生及演化示意圖Fig.10 Schematic diagram showing various stages in growth and evolution of the Early Precambrian continental crust in the Jiaobei terrane

(1)>2.9Ga:主要為基性地殼(洋殼)的增生,同時可能存在一些早期的規(guī)模有限的花崗質(zhì)陸殼,由于相對于基性地殼較小的密度,使早期形成的花崗質(zhì)巖漿通過底辟作用快速上升,剝露地表,遭受快速剝蝕,導致太古宙早期的花崗質(zhì)陸殼難以保留下來(圖10a)。

(2)~2.9Ga:在加厚的下地殼,主要為ca.3.3 ~2.9Ga新生的基性地殼,由于地幔(熱)柱上涌,發(fā)生部分熔融,形成~2.9Ga TTGs,代表膠北~2.9Ga 陸殼增生(圖10b)。

(3)~2.7Ga:在加厚的下地殼,主要為ca.3.3 ~2.9Ga新生的基性地殼,由于地幔(熱)柱上涌,發(fā)生部分熔融,形成~2.7Ga TTGs,代表膠北~2.7Ga 陸殼增生,~2.7GaTTGs 巖漿作用過程中,同時伴隨有老陸殼的熔融,形成小規(guī)模的陸殼重熔型(高鉀)花崗巖(圖10c)。

(4)~2.5Ga:在加厚的下地殼,主要為ca.2.9 ~2.7Ga新生的基性地殼,由于地幔(熱)柱上涌,發(fā)生部分熔融,形成~2.5Ga TTGs,代表膠北~2.5Ga 陸殼增生,~2.5Ga TTGs巖漿作用過程中,同時伴隨有老陸殼的熔融,形成小規(guī)模的陸殼重熔型(高鉀)花崗巖(圖10d)。

(5)~2.2 ~2.0Ga:由于地幔物質(zhì)的上涌,使太古宙形成的陸殼發(fā)生伸展減薄,形成裂谷,太古宙陸殼發(fā)生重熔,形成古元古代ca.2.2 ~2.0Ga 花崗質(zhì)巖石,同時存在大量鐵鎂質(zhì)巖墻/脈的侵位,以及雙峰式火山活動(圖10e)。

(6)~1.95 ~1.85Ga:在該時期,膠北經(jīng)歷了強烈的擠壓碰撞構造作用,古元古代早期(ca.2.2 ~2.0Ga)形成的裂谷發(fā)生擠壓閉合,并導致卷入擠壓作用的早前寒武紀物質(zhì)發(fā)生高壓麻粒巖相變質(zhì)(圖10f)。

(7)~1.8Ga:地幔物質(zhì)上涌,陸殼伸展減薄,陸殼物質(zhì)重熔,形成~1.8Ga 花崗巖(圖10f)。

致謝 感謝兩位論文評審人審閱全文,并提出寶貴的修改意見。

Adam J,Rushmer T,O’Neil J and Francis D. 2012. Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth’s early continental crust. Geology,40(4):363 -366

Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology,4(10):596 -600

Barker F. 1979. Trondhjemite:Definition,environment and hypotheses of origin. In:Barker F (ed.). Trondhjemites,Dacites and Related Rocks. Amsterdam:Elsevier,1 -12

Bureau of Geology and Mineral Resources of Shandong Province(BGMRS). 1991. Regional Geology of Shandong Province.Beijing:Geological Publishing House,6 -524 (in Chinese)

Cawood PA,Hawkesworth CJ and Dhuime B. 2013. The continental record and the generation of continental crust. Geol. Soc. Am.Bull.,125(1 -2):14 -32

Condie KC. 1986. Origin and early growth rate of continents.Precambrian Research,32(4):261 -278

Condie KC. 2005. TTGs and adakites:Are they both slab melts?Lithos,80(1 -4):33 -44

Chu H,Lu SN,Wang HC,Xiang ZQ and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation,Penglai Group in Changdao,Shandong Province. Acta Petrologica Sinica,27(4):1017 -1028 (in Chinese with English abstract)

Diwu CR,Sun Y,Wilde SA,Wang HL,Dong ZC,Zhang H and Wang Q. 2013. New evidence for ~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt,China. Gondwan Research,23(4):1484 -1490

Drummond MS and Defant MJ. 1990. A Model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting:Archean to modern comparison. Journal of Geophysical Research,95(B13):21503 -21521

Faure M,Lin W,Monié P,Le Breton N,Poussineau S,Panis D and Deloule E. 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in East China:New petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics,22(3):1018 -1040

Foley SF,Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones.Nature,417(6891):637 -640

Frost BR,Arculus RJ,Barnes CG,Collins WJ,Ellis DJ and Frost CD.2001. A geochemical classification for granitic rocks. Journal of Petrology,42(11):2033 -2048

Gao LZ,Zhao T,Wan YS,Zhao X,Ma YS and Yang SZ. 2006. Report on 3. 4Ga SHRIMP zircon age from the Yuntaishan Geopark in Jiaozuo,Henan Province. Acta Geologica Sinica,80(1):52 -57

Hawkesworth CJ and Kemp AIS. 2006a. Evolution of the continental crust. Nature,443(7113):811 -817

Hawkesworth CJ and Kemp AIS. 2006b. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution.Chemical Geology,226(3 -4):144 -162

Hawkesworth CJ,Dhuime B,Pietranik AB,Cawood PA,Kemp AIS and Storey CD. 2010. The generation and evolution of the continental crust. Journal of the Geological Society,167(2):229 -248

Jahn BM,Gikson AY,Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and grantoids from the Pillbara Block,Western Australia:Implications for the early crustal evolution. Geochimica et Cosmochimica Acta,45(9):1633 -1652

Jahn BM,Liu DY,Wan YS,Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula,China,as revealed by zircon SHRIMP geochronology,elemental and Nd-isotope geochemistry.Am. J. Sci.,308(3):232 -269

Jian P,Zhang Q,Liu DY,Jin WJ,Jia XQ and Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite(sanukite)and hornblende-granite at Guyang of Inner Mongolia.Acta Petrologica Sinica,21 (1):151 - 157 (in Chinese with English abstract)Jin K,Xu WL,Wang QH,Gao S and Liu XC. 2003. Formation time and sources of the Huaiguang“Migmatitic granodiorite”in Bengbu,Anhui Province: Evidence from SHRIMP zircon U-Pb geochronology. Acta Geoscientia Sinica,24(4):331 - 335(in Chinese with English abstract)

Kamber BS,Ewart A,Collerson KD,Bruce MC and McDonald GD.2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models.Contributions to Mineralogy and Petrology,144(1):38 -56

Kinny PD and Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry,53(1):327 -341 Li XH,Chen FK,Guo JH,Li QL,Xie LW and Siebel W. 2007. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt,eastern China:Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal,41(1):29-45

Li XP,Guo JH,Zhao GC,Li HK and Song ZJ. 2011. Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane,eastern Shandong,China. Acta Petrologica Sinica,27(4):961 -968(in Chinese with English abstract)

Liu DY,Nutman AP,Compston W,Wu JS and Shen QH. 1992.Remnants of ~3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology,20(4):339 -342

Liu DY,Wilde SA,Wan YS,Wu JS,Zhou HY,Dong CY and Yin XY.2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am. J. Sci.,308(3):200 -231

Liu FL,Liu PH,Ding ZJ,Liu JH,Yang H and Hu WH. 2012. Genetic mechanism of granitic leucosome within high-pressure granulite from the Early Precambrian metamorphic basement of Shandong Peninsula,SE North China Craton. Acta Petrologica Sinica,28(9):2686 -2696 (in Chinese with English abstract)

Liu FL,Liu PH,Wang F,Liu JF,Meng E,Cai J and Shi JR. 2014b.U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane,southwestern Jiao-Liao-Ji Belt,North China Craton:Constraints on the timing and nature of partial melting. Precambrian Research,245:80 -99

Liu JH,Liu FL,Liu PH,Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area:Evidences from the zircon UPb dating of TTG and granitic gneisses. Acta Petrologica Sinica,27(4):943 -960 (in Chinese with English abstract)

Liu JH,Liu FL,Ding ZJ,Liu PH,Wang F and You JJ. 2012. The zircon Hf isotope characteristics of ~2. 5Ga magmatic event,and implication for the crustal evolution in the Jiaobei terrane,China.Acta Petrologica Sinica,28(9):2697 - 2704 (in Chinese with English abstract)

Liu JH,Liu FL,Ding ZJ,Liu CH,Yang H,Liu PH,Wang F and Meng E. 2013a. The growth,reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane,the North China Craton:Constraints from U-Th-Pb and Lu-Hf isotopic systematics,and REE concentrations of zircon from Archean granitoid gneisses.Precambrian Research,224:287 -303

Liu JH,Liu FL,Ding ZJ,Yang H,Liu CH,Liu PH,Xiao LL,Zhao L and Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group,Jiaobei Terrane,North China Craton:Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research,235:230 -250

Liu JH,Liu FL,Ding ZJ,Liu PH,Guo CL and Wang F. 2014a.Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane,North China Craton. Precambrian Research,255(Part 2):685 -698

Liu JH,Liu FL,Ding ZJ,Liu PH and Wang F. 2014. U-Pb dating and Hf isotope study of Early Archean zircons from the Jiaobei Terrane,North China Craton:Evidence for growth and recycling of ancient continental crust. Acta Petrologica Sinica,30(10):2941 -2950(in Chinese with English abstract)

Liu PH,Liu FL,Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP)granulites from the Shandong Peninsula,China. Acta Petrologica Sinica,26(7):2039 -2056 (in Chinese with English abstract)

Liu PH,Liu FL,Wang F and Liu JH. 2011a. In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula,eastern China and its geological significance. Earth Science Frontiers,18(2):33 -54 (in Chinese with English abstract)

Liu PH,Liu FL,Wang F and Liu JH. 2011b. Genetic characteristcs of the ultramafic rocks from the Early Precambrian high-grade metamorphic basement in Shandong Peninsula, China. Acta Petrologica Sinica,27(4):922 - 942 (in Chinese with English abstract)

Liu PH,Liu FL,Wang F,Liu JH,Yang H and Shi JR. 2012.Geochemical characteristics and genesis of the high-pressure mafic granulite in the Jiaobei high-grade metamorphic basement. Acta Petrologica Sinica,28(9):2705 -2720 (in Chinese with English abstract)

Liu PH,Liu FL,Liu CH,Wang F,Liu JH,Yang H,Cai J and Shi JR.2013c. Petrogenesis,P-T-t path,and tectonic significance of highpressure mafic granulites from the Jiaobei terrane,North China Craton. Precambrian Research,233:237 -258

Liu PH,Liu FL,Wang F,Liu JH and Cai J. 2013. Petrological and geochronological preliminary study of the Xiliu ~2.1Ga meta-gabbro from the Jiaobei terrane,the southern segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica,29(7):2731 -2390 (in Chinese with English abstract)

Liu SJ,Jahn BM,Wan YS,Xie HQ,Wang SJ,Xie SW,Dong CY,Ma MZ and Liu DY. 2015. Neoarchean to Paleoproterozoic highpressure mafic granulite from the Jiaodong Terrain,North China Craton: Petrology, zircon age determination and geological implications. Gondwana Research,28(2):493 -508

Liu WJ,Zhai MG and Li YG. 1998. Metamorphism of the high-pressure basic granulite in Laixi,eastern Shandong,China. Acta Petrologica Sinica,14(4):449 -459 (in Chinese with English abstract)

Lu LZ,Xu XC and Liu FL. 1996. Early Precambrian Khondalites in North China. Changchun:Changchun Press,219 - 230 (in Chinese)

Martin H. 1987. Petrogenesis of Archaean trondhjemites,tonalites,and granodiorites from Eastern Finland: Major and trace element geochemistry. Journal of Petrology,28(5):921 -953

Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos,46(3):411 -429

Martin H,Smithies RH,Rapp R,Moyen JF and Champion D. 2005. An overview of adakite,tonalite-trondhjemite-granodiorite (TTG),and sanukitoid: Relationships and some implications for crustal evolution. Lithos,79(1 -2):1 -24

Polat A. 2012. Growth of Archean continental crust in oceanic island arcs. Geology,40(4):383 -384

Rapp RP,Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research,51(1 -4):1 -25

Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling. J. Petrol.,36(4):891 -931

Rapp RP,Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature,425(6958):605 -608 Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,22(4):247 -263

Rollinson H. 1997. Eclogite xenoliths in West African kimberlites as residues from Archaean granitoid crust formation. Nature,389(6647):173 -176

Rollinson H. 2007. Early Earth Systems:A Geochemical Approach.Oxford:Blackwell Publishing

Sengor AMC,Natal` in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364:299 -307

Shan HX,Zhai MG,Wang F,Zhou YY,Santosh M,Zhu XY,Zhang HF and Wang W. 2015. Zircon U-Pb ages,geochemistry,and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane:Implications for Neoarchean crustal evolution in the North China Craton.Precambrian Research,98:61 -74

Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite. Earth Planet.Sci. Lett.,182(1):115 -125

Smithies RH and Champion DC. 2002. The Archaean high-Mg diorite suite:Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. J. Petrol.,41(12):1653 -1671

Song B,Nutman AP,Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province,northeastern China. Precambrian Research,78(1 -3):79 -94

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345

Tam PY,Zhao GC,Liu FL,Zhou XW,Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt:New SHRIMP U-Pb zircon dating of granulites,gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research,19(1):150 -162

Tam PY,Zhao GC,Zhou XW,Sun M,Guo JH,Li SZ,Yin CQ,Wu ML and He YH. 2012a. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt,North China Craton. Gondwana Research,22(1):104-117

Tam PY,Zhao GC,Sun M,Li SZ,Iizuka YY,Ma GSK,Yin CQ,He YH and Wu ML. 2012b. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt,North China Craton. Precambrian Research,220 -221:177 -191

Tam PY,Zhao GC,Sun M,Li SZ,Wu ML and Yin CQ. 2012c.Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt,North China Craton.Lithos,155:94 -109

Tang J,Zheng YF,Wu YB,Zha XP and Zhou JB. 2004. Zircon U-Pb ages and oxygen isotopes of metamorphic rocks in the western part of the Shandong Peninsula. Acta Petrologica Sinica,20(5):1063 -1086 (in Chinese with English abstract)

Tang J,Zheng YF,Wu YB,Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research,152(1 -2):48 -82

Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics,33(2):241 -265

Taylor SR and McLennan SM. 1997. The origin and evolution of the Earth’s continental crust. Journal of Australian Geology &Geophysics,17(1):55 -62

Wan YS,Song B,Liu DY,Wilde SA,Wu JS,Shi YR,Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event.Precambrian Research,149(3 -4):249 -271

Wang F,Liu FL,Liu PH and Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province.Acta Petrologica Sincia,26(7):2057 - 2072 (in Chinese with English abstract)

Wang HL,Chen L,Sun Y,Liu XM,Xu XY,Chen JL,Zhang H and Diwu CR. 2007. ~4. 1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling orogenic belt.Chinese Science Bulletin,52(21):3002 -3010

Wang LG,Qiu YM,McNaughton NJ,Groves DI,Luo ZK,Huang JZ,Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews,13(1 -5):275 -291

Wang W,Zhai MG,Li TS,Santosh M,Zhao L and Wang HZ. 2014.Archean-Paleoproterozoic crustal evolution in the eastern North China Craton:Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane. Precambrian Research,241:146 -160

Wu FY,Yang JH,Liu XM,Li TS,Xie LW and Yang YH. 2005. Hf isotopes of the 3. 8Ga zircons in eastern Hebei Province,China:Implications for early crustal evolution of the North China Craton.Chinese Science Bulletin,50(21):2473 -2480

Wu FY,Li XH,Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica,23(2):185 -220 (in Chinese with English abstract)

Wu FY,Zhang YB,Yang JH,Xie LW and Yang YH. 2008. Zircon UPb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research,167(3-4):339 -362

Wu ML,Zhao GC,Sun M and Li SZ. 2014a. A synthesis of geochemistry and Sm-Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane:Constraints on petrogenesis andtectonic evolution of the Eastern Block,North China Craton. Precambrian Research,255:885 -899

Wu ML,Zhao GC,Sun M,Li SZ,Bao Z,Tam PY,Eizenh?efer PR and He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes ofmajor lithologies from the Jiaodong Terrane:Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos,190 -191:71 -84

Xie SW,Xie HQ,Wang SJ,Kroner A,Liu SJ,Zhou HY,Ma MZ,Dong CY,Liu DY and Wan YS. 2014. Ca. 2. 9Ga granitoid magmatism in eastern Shandong,North China Craton:Zircon dating,Hf-in-zircon isotopic analysis and whole-rock geochemistry.Precambrian Research,255:538 -562

Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,34(11):945 -948

Zhang SB,Tang J and Zheng YF. 2014. Contrasting Lu-Hf isotopes in zircon from Precambrian metamorphic rocks in the Jiaodong Peninsula:Constraints on the tectonic suture between North China and South China. Precambrian Research,245:29 -50

Zhao GC,Sun M,Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research,136(2):177 -202

Zheng JP,Griffin WL,O’Reilly SY,Lu FX,Wang CY,Zhang M,Wang FZ and Li HM. 2004. 3.6Ga lower crust in central China:New evidence on the assembly of the North China Craton. Geology,32(3):229 -232

Zhou HY,Liu DY,Wan YS,Wilde SA and Wu JS. 2007. 3. 3Ga magmatic events in the Anshan area:New SHRIMP age and geochemical constraints. Acta Petrologica et Mineralogica,26(2):123 -129

Zhou JB,Wilde SA,Zhao GC,Zheng CQ,Jin W,Zhang XZ and Cheng H. 2008a. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane,North China,and their tectonic implications. Precambrian Research,160(3 -4):323 -340

Zhou XW,Wei CJ,Geng YS and Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei massif. Chinese Science Bulletin,49(18):1942 -1948

Zhou XW,Zhao GC,Wei CJ,Geng YS and Sun M. 2008b. EPMA UTh-Pb monazite and SHRIMP U-Pb zircon geochronology of highpressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science,308(3):328 -350

附中文參考文獻

初航,陸松年,王惠初,相振群,劉歡. 2011. 山東長島地區(qū)蓬萊群輔子夼組碎屑鋯石年年齡譜研究. 巖石學報,27(4):1017-1028

簡平,張旗,劉敦一,金維浚,賈秀勤,錢青. 2005. 內(nèi)蒙古固陽晚太古代贊岐巖(sanukite)-角閃花崗巖的SHRIMP 定年及其意義.巖石學報,21(1):151 -157

靳克,許文良,王清海,高山,劉曉春. 2003. 蚌埠淮光“混合花崗閃長巖的形成時代及源區(qū):鋯石SHRIMP U-Pb 地質(zhì)年代學證據(jù).地球學報,24(4):331 -335

李旭平,郭敬輝,趙國春,李洪奎,宋召軍. 2011. 膠北地塊早元古代鈣硅酸鹽巖與高壓基性麻粒巖成因及地質(zhì)意義. 巖石學報,27(4):961 -968

劉福來,劉平華,丁正江,劉建輝,楊紅,胡偉華. 2012. 山東半島高壓麻粒巖中花崗質(zhì)淺色脈體的成因. 巖石學報,28(9):2686-2696

劉建輝,劉福來,劉平華,王舫,丁正江. 2011. 膠北早前寒武紀變質(zhì)基底多期巖漿-變質(zhì)熱事件:來自TTG 片麻巖和花崗質(zhì)片麻巖中鋯石U-Pb 定年的證據(jù). 巖石學報,27(4):943 -960

劉建輝,劉福來,丁正江,劉平華,王舫,游君君. 2012. 膠北~2.5Ga巖漿熱事件的鋯石Hf 同位素特征及其對地殼演化的指示意義. 巖石學報,28(9):2697 -2704

劉建輝,劉福來,丁正江,劉平華,王舫. 2014. 膠北太古宙早期鋯石U-Pb 定年及Hf 同位素研究:華北克拉通古老陸殼增生及再循環(huán)的證據(jù). 巖石學報,30(10):2941 -2950

劉平華,劉福來,王舫,劉建輝. 2010. 山東半島基性高壓麻粒巖的成因礦物學及變質(zhì)演化. 巖石學報,26(7):2039 -2056

劉平華,劉福來,王舫,劉建輝. 2011a. 山東半島高壓麻粒巖中鋯石的U-Pb 定年及其地質(zhì)意義. 地學前緣,18(2):33 -54

劉平華,劉福來,王舫,劉建輝. 2011b. 山東半島早前寒武紀高級變質(zhì)基底中超鎂鐵質(zhì)巖的成因. 巖石學報,27(4):922 -942

劉平華,劉福來,王舫,劉建輝,楊紅,施建榮. 2012. 膠北高級變質(zhì)基底中高壓基性麻粒巖的地球化學特征及其成因. 巖石學報,28(9):2705 -2720

劉平華,劉福來,王舫,劉建輝,蔡佳. 2013. 膠北西留古元古代~2.1Ga變輝長巖巖石學與年代學初步研究. 巖石學報,29(7):2371 -2390

劉文軍,翟明國,李永剛. 1998. 膠東萊西地區(qū)基性高壓麻粒巖的變質(zhì)作用. 巖石學報,14(4):449 -459

盧良兆,徐學純,劉福來. 1996. 中國北方早前寒武紀孔茲巖系. 長春:長春出版社,219 -230

山東省地質(zhì)礦產(chǎn)局. 1991. 山東省區(qū)域地質(zhì)志. 北京:地質(zhì)出版社,6 -524

唐俊,鄭永飛,吳元保,查向平,周建波. 2004. 膠東地塊西部變質(zhì)巖鋯石U-Pb 定年和氧同位素研究. 巖石學報,20(5):1063-1086

王舫,劉福來,劉平華,劉建輝. 2010. 膠北地區(qū)早前寒武紀孔茲巖系的變質(zhì)演化. 巖石學報,26(7):2057 -2072

吳福元,李獻華,鄭永飛,高山. 2007. Lu-Hf 同位素體系及其巖石學應用. 巖石學報,23(2):185 -220

周喜文,魏春景,耿元生,張立飛. 2004. 膠北棲霞地區(qū)泥質(zhì)高壓麻粒巖的發(fā)現(xiàn)及其地質(zhì)意義. 科學通報,49(14):1424 -1430

猜你喜歡
片麻巖鋯石巖漿
遼寧紅透山銅鋅礦床含礦巖系地球化學特征及找礦指示
鋯石的成因類型及其地質(zhì)應用
俄成功試射“鋯石”高超音速巡航導彈
巖漿里可以開采出礦物質(zhì)嗎?
火山冬天——巖漿帶來的寒冷
鋯石 誰說我是假寶石
密懷隆起
土石混合介質(zhì)碎石性質(zhì)對土壤入滲和產(chǎn)流過程影響
猙獰的地球
不同種植條件下片麻巖新成土壤硝態(tài)氮分布特征