劉啟國(guó), 劉振平,2, 王宏玉,2, 陳 星, 蔡儒帥, 秦 柯
(1.油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室(西南石油大學(xué)),四川成都610500;2.中國(guó)石油新疆油田分公司,新疆克拉瑪依 834000)
利用生產(chǎn)數(shù)據(jù)計(jì)算氣井控制儲(chǔ)量和水侵量
劉啟國(guó)1, 劉振平1,2, 王宏玉1,2, 陳 星1, 蔡儒帥1, 秦 柯1
(1.油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室(西南石油大學(xué)),四川成都610500;2.中國(guó)石油新疆油田分公司,新疆克拉瑪依 834000)
為了解決水侵量計(jì)算較為復(fù)雜的問(wèn)題,根據(jù)存水體積系數(shù)的物理意義,將存水體積系數(shù)用當(dāng)前氣藏含水飽和度與初始含水飽和度的差值來(lái)表示,推導(dǎo)了計(jì)算氣井控制儲(chǔ)量和水侵量的公式。利用該公式計(jì)算了某水驅(qū)氣藏3口氣井的控制儲(chǔ)量和水侵量,結(jié)果表明,計(jì)算精度與其他常用計(jì)算方法相當(dāng)。利用該公式還計(jì)算了該氣藏某口氣井不同時(shí)刻的含水飽和度、單井控制儲(chǔ)量及水侵量,結(jié)果表明,在一定采出程度條件下,隨著氣井生產(chǎn)時(shí)間的延長(zhǎng),氣藏的含水飽和度升高,氣井的控制儲(chǔ)量和水侵量增大。氣井的控制儲(chǔ)量與地層壓力差、含水飽和度均呈線性關(guān)系;水侵量與地層壓力差呈線性關(guān)系,與氣藏含水飽和度呈指數(shù)關(guān)系。由于該計(jì)算方法中求取含水飽和度時(shí)要用穩(wěn)定的生產(chǎn)數(shù)據(jù),因此,該計(jì)算方法僅適用于生產(chǎn)時(shí)間較長(zhǎng)的氣井。
水驅(qū)氣藏 單井控制儲(chǔ)量 物質(zhì)平衡方程 存水體積系數(shù) 水侵量
利用水驅(qū)氣藏物質(zhì)平衡方程計(jì)算氣井的控制儲(chǔ)量,一般須首先計(jì)算水侵量。常用的水侵量計(jì)算模型包括穩(wěn)態(tài)模型、非穩(wěn)態(tài)模型和擬穩(wěn)態(tài)模型。非穩(wěn)態(tài)模型又分為平面徑向流模型、直線流模型和半球形流模型[1]。這些水侵量的計(jì)算方法比較繁瑣和復(fù)雜,計(jì)算結(jié)果偏差較大,而且還必須在滿足假設(shè)條件的情況下才能應(yīng)用[2-3]。為了解決水侵量計(jì)算較為復(fù)雜的問(wèn)題,不少學(xué)者利用最優(yōu)化思想和圖版擬合法對(duì)水驅(qū)氣藏單井控制儲(chǔ)量進(jìn)行了計(jì)算[4-14]。但以上方法都需要利用計(jì)算機(jī)編程來(lái)實(shí)現(xiàn),限制了其在現(xiàn)場(chǎng)的應(yīng)用。為此,筆者提出用當(dāng)前氣藏含水飽和度與初始含水飽和度的差值來(lái)表示存水體積系數(shù),并將其代入水驅(qū)氣藏物質(zhì)平衡方程中,推導(dǎo)出了計(jì)算單井控制儲(chǔ)量和水侵量的公式。
當(dāng)氣井穩(wěn)定生產(chǎn)時(shí),生產(chǎn)水氣比基本為一定值。這說(shuō)明地層中氣水兩相的滲流情況穩(wěn)定,水相、氣相的平均相對(duì)滲透率穩(wěn)定,根據(jù)相滲曲線確定出的含水飽和度即為當(dāng)前氣藏的含水飽和度。由于真正來(lái)自地層的自由水應(yīng)該除去凝析水,而井底分流率定義為井底產(chǎn)出自由水量占井底流動(dòng)條件總流體量的比例。因此,氣井的井底分流率為[15]:
(1)
從滲流力學(xué)角度分析,在忽略毛管壓力及重力影響時(shí),分流率方程式可寫為[16]:
(2)
式中:fw為井底分流率;Bg為當(dāng)前地層條件下的氣體體積系數(shù);Rwgp為生產(chǎn)水氣比,m3/104m3;Rwgc為凝析水氣比,m3/104m3;Krg為氣相相對(duì)滲透率;Krw為水相相對(duì)滲透率;μg為氣相黏度,mPa·s;μw為水相黏度,mPa·s。
當(dāng)前氣藏含水飽和度的確定步驟:1)根據(jù)實(shí)驗(yàn)室?guī)r心分析所獲得的氣水相對(duì)滲透率曲線,繪制出Krg/Krw-Sw曲線;2)利用氣井的日產(chǎn)水量、日產(chǎn)氣量,計(jì)算出生產(chǎn)水氣比Rwgp(凝析水氣比Rwgc一般由現(xiàn)場(chǎng)試氣作業(yè)獲得,也可根據(jù)文獻(xiàn)[17]中的方法計(jì)算得到),將Rwgp和Rwgc代入式(1)中可計(jì)算出井底分流率fw,再將其代入式(2)中便求得到氣井的Krg/Krw;3)在Krg/Krw-Sw曲線中,查找氣井Krg/Krw對(duì)應(yīng)的含水飽和度Sw,由于Krg/Krw-Sw曲線是單調(diào)遞減的,所以可以確定出當(dāng)前氣藏的含水飽和度Sw。
常規(guī)的水驅(qū)氣藏物質(zhì)平衡方程未考慮凝析水的產(chǎn)出,認(rèn)為氣井產(chǎn)出水全部為地層水[1]。這樣計(jì)算出的氣藏存水體積偏小,氣藏存水體積系數(shù)偏低。因此,考慮凝析水的產(chǎn)出,對(duì)常規(guī)水驅(qū)氣藏的物質(zhì)平衡方程進(jìn)行改進(jìn)。
氣藏存水體積物質(zhì)平衡方程為:
W=We+GpRwgcBw-WpBw
(3)
式中:W為氣藏的存水體積,m3;We為氣藏的水侵量,m3;Gp為氣藏的累積采氣量,m3;Wp為累積產(chǎn)水量,m3;Bw為地層水的體積系數(shù)。
水驅(qū)氣藏的物質(zhì)平衡方程為:
(4)
式中:Bgi為原始地層條件下天然氣的體積系數(shù);G為氣藏的動(dòng)態(tài)儲(chǔ)量,m3;p和pi分別為氣藏當(dāng)前地層壓力和原始地層壓力,MPa;Cp為巖石孔隙壓縮系數(shù),MPa-1;Swc為束縛水飽和度;Cw為地層水壓縮系數(shù),MPa-1。
令氣藏的容積壓縮系數(shù)為:
(5)
氣藏的存水體積系數(shù)為:
(6)
將式(5)和式(6)代入式(4)得:
(7)
式中:Cc為氣藏的容積壓縮系數(shù),MPa-1;ω為氣藏的存水體積系數(shù)。
氣藏的存水體積系數(shù)即氣藏的存水體積占?xì)獠厝莘e的比例,也可以由當(dāng)前氣藏含水飽和度Sw與初始含水飽和度Swi的差值來(lái)表示,即:
ω=Sw-Swi
(8)
聯(lián)立式(7)和式(8)可得氣藏的動(dòng)態(tài)儲(chǔ)量:
(9)
當(dāng)氣藏被單井控制時(shí),或多生產(chǎn)井間無(wú)干擾時(shí),單井控制的氣藏范圍可以認(rèn)為是一個(gè)小型的氣藏。此時(shí),氣井的控制儲(chǔ)量就是這個(gè)小型氣藏的動(dòng)態(tài)儲(chǔ)量,可用式(9)計(jì)算。
聯(lián)立式(6)和式(8)可得氣藏水侵量的物質(zhì)平衡方程式:
We=GBgi(Sw-Swi)+WpBw-GpRwgcBw
(10)
某水驅(qū)氣藏巖石的孔隙壓縮系數(shù)Cp為1×10-4MPa-1,地層水壓縮系數(shù)Cw為4×10-4MPa-1,初始含水飽和度Swi為0.289,束縛水飽和度Swc為0.277,原始地層條件下天然氣的體積系數(shù)Bgi為0.003 8,地層水的體積系數(shù)Bw為1.03,試氣作業(yè)確定凝析水氣比Rwgr為0.108 m3/104m3。根據(jù)該氣藏的相對(duì)滲透率曲線(見(jiàn)圖1)及3口井的壓力測(cè)試數(shù)據(jù)、生產(chǎn)動(dòng)態(tài)數(shù)據(jù),利用不同方法計(jì)算了3口氣井的控制儲(chǔ)量和水侵量,結(jié)果見(jiàn)表1。
由表1可知:文中方法計(jì)算的單井控制儲(chǔ)量與流動(dòng)物質(zhì)平衡法的相對(duì)誤差為1.93%~6.90%,與動(dòng)態(tài)擬合法的相對(duì)誤差為1.15%~6.07%;文中方法計(jì)算出的水侵量與胡俊坤法[12]的相對(duì)誤差為0.81%~7.01%。這說(shuō)明文中方法與其他方法的計(jì)算精度相當(dāng)。
該氣藏某氣井,至今總共進(jìn)行了6次壓力測(cè)試。根據(jù)文中方法及相關(guān)參數(shù),計(jì)算出不同時(shí)刻的含水飽和度、單井控制儲(chǔ)量及水侵量,結(jié)果見(jiàn)表2。
由表2可知,隨著氣井生產(chǎn)時(shí)間的延長(zhǎng),地層壓力下降,氣藏的含水飽和度升高,氣井的控制儲(chǔ)量和水侵量增大。
根據(jù)表2中的數(shù)據(jù)繪制該氣井控制儲(chǔ)量、水侵量與地層壓力差和氣藏含水飽和度的關(guān)系曲線,見(jiàn)圖2和圖3。由圖2、圖3可知:氣井的控制儲(chǔ)量與地層壓力差、氣藏含水飽和度Sw呈線性關(guān)系;水侵量與地層壓力差呈線性關(guān)系、與氣藏含水飽和度Sw呈指數(shù)關(guān)系。
1) 筆者提出的方法,不用考慮水體的形態(tài)和大小,僅利用生產(chǎn)數(shù)據(jù)和相對(duì)滲透率數(shù)據(jù)就可以求得氣藏的動(dòng)態(tài)儲(chǔ)量和水侵量,實(shí)用性強(qiáng),但由于求取氣藏含水飽和度時(shí)要用穩(wěn)定生產(chǎn)數(shù)據(jù),因此該方法僅適應(yīng)于生產(chǎn)時(shí)間較長(zhǎng)(一般不少于半年)的氣井。
2) 利用同一口氣井不同時(shí)刻的數(shù)據(jù),計(jì)算出不同時(shí)刻的單井控制儲(chǔ)量和水侵量,有利于跟蹤和分析氣井控制范圍的變化。
3) 煤層氣藏、頁(yè)巖氣藏中由于存在解吸過(guò)程,利用生產(chǎn)數(shù)據(jù)計(jì)算氣井控制儲(chǔ)量存在較大誤差,需進(jìn)一步根據(jù)其特殊的滲流機(jī)理提出新的計(jì)算方法。
References
[1] 李傳亮.油藏工程原理[M].北京:石油工業(yè)出版社,2005:121-168. Li Chuanliang.Fundamentals of reservoir engineering[M].Beijing:Petroleum Industry Press,2005:121-168.
[2] 張風(fēng)東,康毅力,劉永良,等.致密氣藏開(kāi)發(fā)過(guò)程中水侵量的最優(yōu)化計(jì)算[J].油氣地質(zhì)與采收率,2007,14(6):85-87. Zhang Fengdong,Kang Yili,Liu Yongliang,et al.Optimized calculation of water influx in tight gas reservoir development [J].Petroleum Geology and Recovery Efficiency,2007,14(6):85-87.
[3] 趙繼勇,胡建國(guó),凡哲元.無(wú)因次水侵量計(jì)算新方法[J].新疆石油地質(zhì),2006, 27(2):225-228. Zhao Jiyong,Hu Jianguo,Fan Zheyuan.A new method for calculating dimensionless water influx rate[J].Xinjiang Petroleum Geology,2006,27(2):225-228.
[4] 王怒濤,唐剛,任洪偉.水驅(qū)氣藏水侵量及水體參數(shù)計(jì)算最優(yōu)化方法[J].天然氣工業(yè),2005,25(5):75-77. Wang Nutao,Tang Gang,Ren Hongwei.Optimized calculating method of aquifer influx and parameters for water-drive gas reservoirs[J].Natural Gas Industry,2005,25(5):75-77.
[5] 匡建超,史乃光,楊正文.綜合總目標(biāo)函數(shù)最優(yōu)化方法計(jì)算水驅(qū)氣藏儲(chǔ)量與水侵量[J].天然氣工業(yè),1993,13(6):41-47,6. Kuang Jianchao,Shi Naiguang,Yang Zhengwen.Comprehensive general objective function optimization method to calculate reserves and water influx of water drive gas reservoir[J].Natural Gas Industry,1993,13(6):41-47,6.
[6] 程時(shí)清,楊秀祥,謝林峰,等.物質(zhì)平衡法分區(qū)計(jì)算定容氣藏動(dòng)儲(chǔ)量和壓力[J].石油鉆探技術(shù),2007, 35(3):66-68. Cheng Shiqing,Yang Xiuxiang,Xie Linfeng,et al.Multi-region calculation of dynamic reserve and pressure of constant volume reservoirs using material balance[J].Petroleum Drilling Techniques,2007,35(3):66-68.
[7] 楊琨,王怒濤,張建民.水驅(qū)氣藏水侵量及水體參數(shù)計(jì)算方法研究[J].大慶石油地質(zhì)與開(kāi)發(fā),2005, 24(5):48-50. Yang Kun,Wang Nutao,Zhang Jianmin.Research on calculation methods of water influx and water body parameters in water drive gas reservoir[J].Petroleum Geology & Oilfield Development in Daqing,2005,24(5):48-50.
[8] Leung W F.A fast convolution method for implementing single-porosity finite/infinite aquifer models for water-influx calculations[R].SPE 122276,1986.
[9] 熊偉,朱志強(qiáng),高樹(shù)生,等.考慮封閉氣的水驅(qū)氣藏物質(zhì)平衡方程[J].石油鉆探技術(shù),2012,40(2):93-97. Xiong Wei,Zhu Zhiqiang,Gao Shusheng,et al.Material balance equation of waterflooding gas reservoir considering trapped gas[J].Petroleum Drilling Techniques,2012,40(2):93-97.
[10] 馮景林.基于Havlena-Odeh法求取水驅(qū)氣藏單井控制動(dòng)態(tài)儲(chǔ)量的簡(jiǎn)便算法[J].中國(guó)海上油氣,2006, 18(4):255-257. Feng Jinglin.A simple method to calculate single well controlled reserves of water drive gas reservoir based on Havlena-Odeh method[J].China Offshore Oil and Gas,2006,18(4):255-257.
[11] 王富平,黃全華,王樂(lè)旭,等.滲透率對(duì)低滲氣藏單井控制儲(chǔ)量的影響[J].斷塊油氣田,2008,15(1):45-47. Wang Fuping,Huang Quanghua,Wang Lexu,et al.Influence of permeability on single well controlling reserves in low permeability gas reservoirs[J].Fault-Block Oil & Gas Field,2008,15(1):45-47.
[12] 胡俊坤,李曉平,張健濤,等.計(jì)算水驅(qū)氣藏動(dòng)態(tài)儲(chǔ)量和水侵量的簡(jiǎn)易新方法[J].天然氣地球科學(xué),2012,23(6):1175-1178. Hu Junkun,Li Xiaoping,Zhang Jiantao,et al.A new convenient method for calculating dynamic reserves and water influx in water driving gas reservoir[J].Natural Gas Geoscience,2012,23(6):1175-1178.
[13] 胡俊坤,李曉平,敬偉,等.確定水驅(qū)氣藏動(dòng)態(tài)儲(chǔ)量及水侵量新方法[J].新疆石油地質(zhì),2012, 33(6):720-722. Hu Junkun,Li Xiaoping,Jing Wei,et al.A new method for determining dynamic reserves and water influx in water drive gas reservoir[J].Xinjiang Petroleum Geology,2012,33(6):720-722.
[14] 劉斐,陸正元,王慶魁.隔氣式有水氣藏被分隔儲(chǔ)集空間的儲(chǔ)量計(jì)算[J].石油鉆探技術(shù),2007, 35(3):69-71. Liu Fei,Lu Zhengyuan,Wang Qingkui.Reserve calculation of compartment reservoirs[J].Petroleum Drilling Techniques,2007,35(3):69-71.
[15] 劉鵬超,唐海,呂漸江,等.生產(chǎn)水氣比對(duì)氣井產(chǎn)能影響規(guī)律研究[J].特種油氣藏,2011,18(5):100-102,140. Liu Pengchao,Tang Hai,Lv Jianjiang,et al.Study on the impact of producing WGR on gas well productivity[J].Special Oil & Gas Reservoirs,2011,18(5):100-102,140.
[16] 翟云芳.滲流力學(xué)[M].北京:石油工業(yè)出版社,1999:88-89. Zhai Yunfang.Fluid mechanics in porous medium[M].Beijing:Petroleum Industry Press,1999:88-89.
[17] 李士倫.天然氣工程[M].北京:石油工業(yè)出版社,2008:44-46. Li Shilun.Gas engineering[M].Beijing:Petroleum Industry Press,2008:44-46.
[編輯 劉文臣]
A Method to Calculate Gas Well Controlled Reserves andWater Influx from Production Data
Liu Qiguo1, Liu Zhenping1,2,Wang Hongyu1,2,Chen Xing1,Cai Rushuai1,Qin Ke1
(1.StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation(SouthwestPetroleumUniversity),Chengdu,Sichuan,610500,China;2.PetroChinaXinjiangOilfieldCompany,Karamay,Xinjiang,834000,China)
To avoid complex water influx calculations,a new formula was derived to calculate gas well controlled reserves and water influx based on water storage volume coefficient which was expressed by the gap between current water saturation and initial water saturation of the gas reservoir.Using the new formula,the controlled reserves and water influx of three wells in a water driven gas reservoir were calculated.The results showed that this method provided a precision equivalent to other methods.Moreover,the formula was used to calculate water saturation,single well controlled reserves and water influx of a well in such reservoir at different times,which indicated recovery degree,water saturation of gas reservoir increased and gas well controlled reserves and water influx increased over the well production time.The well controlled reserves had a linear relation to formation pressure difference or water saturation,while water influx had a linear relation to the formation pressure difference and an exponential relation to the water saturation.This method requires steady production data to calculate the water saturation,so it is only suitable for the gas wells that have been produced for some time.
water driven gas reservoir;single well controlled reserves;material balance equation;water storage volume coefficient;water influx
2014-06-29;改回日期:2014-11-27。
劉啟國(guó)(1969—),男,四川資中人,1991年畢業(yè)于西南石油學(xué)院計(jì)算機(jī)軟件專業(yè),1994年獲西南石油學(xué)院油氣田開(kāi)發(fā)工程專業(yè)碩士學(xué)位,1997年獲西南石油學(xué)院油氣田開(kāi)發(fā)工程專業(yè)博士學(xué)位,教授,主要從事油氣藏滲流力學(xué)及試井分析的教學(xué)與科研工作。
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(“973”計(jì)劃)課題 “二氧化碳置換頁(yè)巖氣多尺度多場(chǎng)滲流理論” (編號(hào):2014CB239205)資助。
?油氣開(kāi)采?
10.11911/syztjs.201501016
TE33+2
A
1001-0890(2015)01-0096-04
聯(lián)系方式:(028)83032052,liuqg2002@163.com。