賈立民,吳 畏,褚 寧,裴 闖
(天津航海儀器研究所,天津300131)
海洋重力儀是提高艦船慣導(dǎo)系統(tǒng)精度的重要設(shè)備,主要由慣性穩(wěn)定平臺(tái)和重力敏感器兩部分組成。重力敏感器測(cè)量重力值的方式多種多樣,但采用最多的是利用彈簧伸縮來(lái)敏感重力差值的方式。目前,國(guó)際上具有代表性的彈簧式重力敏感器多采用軸對(duì)稱垂直彈簧(零長(zhǎng)彈簧)的結(jié)構(gòu),這種特有的物理結(jié)構(gòu)能夠?qū)⑺幬恢弥亓铀俣鹊淖兓哭D(zhuǎn)換為電信號(hào),并通過(guò)線路閉環(huán)控制,從而對(duì)重力加速度進(jìn)行精確測(cè)量[1~3]。由于海洋環(huán)境的特殊性,海浪對(duì)重力敏感器的干擾較為明顯,為了盡可能抑制這種短周期的干擾,采用在重力敏感器內(nèi)部充滿阻尼液的方式。阻尼液對(duì)敏感器系統(tǒng)提供阻尼的大小用阻尼系數(shù)來(lái)衡量,如果阻尼系數(shù)值選取不合理,則會(huì)影響重力儀的測(cè)量精度和測(cè)量效果。因此,如何確定重力敏感器的阻尼系數(shù)并將之控制在合理范圍就顯得尤為重要。
本文針對(duì)充有阻尼液的強(qiáng)阻尼重力敏感器,提出了一種有效測(cè)量敏感器表體阻尼系數(shù)的方法。該方法通過(guò)在力矩線圈上施加不同頻率的正弦激勵(lì)源,從而引起敏感質(zhì)量產(chǎn)生不同幅值正弦振蕩的方式,能夠較為準(zhǔn)確地測(cè)量出敏感器彈性系統(tǒng)實(shí)際的阻尼系數(shù)。再選取合適粘度的阻尼液,可以將敏感器彈性系統(tǒng)的阻尼系數(shù)調(diào)整到所需的合理范圍,有利于提高重力儀測(cè)量精度。
德國(guó)Bodenseewerk 公司研制的KSS30/31型高精度海洋重力儀是國(guó)際上長(zhǎng)期以來(lái)較為成熟且有代表性的重力儀,該重力儀采用軸對(duì)稱結(jié)構(gòu),其核心部件是以“零長(zhǎng)彈簧”為基礎(chǔ)的零長(zhǎng)金屬?gòu)椈芍亓γ舾衅鳎?],其結(jié)構(gòu)如圖1所示。它的核心即敏感組件是由一豎直吊放的主彈簧(零長(zhǎng)彈簧)及其懸掛的敏感質(zhì)量(電容檢測(cè)極板、套筒和力矩線圈等)組成,五根細(xì)金屬絲控制敏感質(zhì)量只能在垂直方向上作無(wú)摩擦運(yùn)動(dòng)。敏感質(zhì)量的重力由零長(zhǎng)彈簧來(lái)補(bǔ)償,檢測(cè)電容傳感器能夠?qū)⒚舾匈|(zhì)量的位移轉(zhuǎn)換為電信號(hào),經(jīng)控制回路處理后由電磁換能器控制敏感質(zhì)量回到初始零位。
圖1 零長(zhǎng)彈簧重力敏感器內(nèi)部結(jié)構(gòu)圖Fig 1 Diagram of inner structure of gravity sensor with zero-length spring
海洋重力儀在工作時(shí)不可避免地受到海浪的干擾,海浪呈周期性且其周期遠(yuǎn)小于重力變化的周期,可以通過(guò)強(qiáng)阻尼和數(shù)字濾波加以抑制[5]。為了實(shí)現(xiàn)強(qiáng)阻尼,在敏感器內(nèi)部充滿特定粘度的阻尼液,通過(guò)調(diào)節(jié)阻尼液粘度,即可對(duì)重力敏感器的阻尼系數(shù)進(jìn)行調(diào)節(jié)[6]。但敏感器的阻尼系數(shù)除了受阻尼液粘度影響外,還與敏感器自身內(nèi)部結(jié)構(gòu)有關(guān)。
在充阻尼液情況下,軸向阻尼力與彈簧套筒結(jié)構(gòu)尺寸有很大關(guān)系,因此,在圖2 中給出與阻尼計(jì)算相關(guān)的彈簧套筒簡(jiǎn)化結(jié)構(gòu)示意圖。
圖2 中阻尼結(jié)構(gòu)分為檢測(cè)電容傳感器區(qū)域(區(qū)域I)、彈簧套筒本體部分(區(qū)域II)、電磁換能器線圈骨架和蓋板(區(qū)域III)三個(gè)部分。
下面分析這三個(gè)區(qū)域阻尼力與阻尼液性能參數(shù)和套筒結(jié)構(gòu)尺寸之間關(guān)系:
1)區(qū)域I
電容檢測(cè)極板側(cè)面與檢測(cè)電容傳感器內(nèi)壁間隙狹小,因此,在極板運(yùn)動(dòng)過(guò)程中隨極板側(cè)面流動(dòng)阻尼液與回流阻尼液共同對(duì)電容檢測(cè)極板側(cè)面產(chǎn)生阻尼力。
區(qū)域I 中電容檢測(cè)極板側(cè)面阻尼力為
圖2 阻尼系統(tǒng)軸向阻尼特性計(jì)算結(jié)構(gòu)示意圖Fig 2 Diagram of structure of damping system for calculation of axial damping properties
因電容檢測(cè)極板上下面壓力差產(chǎn)生阻力
區(qū)域I 阻尼力合力為
式中 a,b,d,h 為結(jié)構(gòu)尺寸參數(shù);μ 為阻尼液動(dòng)力粘度系數(shù);˙x 為電容檢測(cè)極板沿敏感軸方向運(yùn)動(dòng)速度。
2)區(qū)域II
區(qū)域II 是指彈簧套筒本體部分,該區(qū)域阻尼力是由套筒與阻尼液因相對(duì)運(yùn)動(dòng)而產(chǎn)生阻尼力。彈簧套筒外阻尼液流變化層厚度為H,也就是邊界層厚度,可得到阻尼力為
式中 b,e 為結(jié)構(gòu)尺寸參數(shù);H 為阻尼液在彈簧套筒上邊界層厚度。
3)區(qū)域III
區(qū)域III 是電磁換能器線圈骨架和蓋板構(gòu)成,該部分阻尼力主要是由于蓋板垂直于阻尼液液流方向,阻尼液繞流產(chǎn)生阻尼力是該區(qū)域主要阻尼力。繞流阻力是阻力系數(shù)cD與來(lái)流動(dòng)壓和迎風(fēng)面積A 的乘積[8],可表示為
綜上,圖2 所示阻尼結(jié)構(gòu)軸向阻尼力為
在阻尼液作用下,敏感質(zhì)量的移動(dòng)速度很小,可忽略速度的二次項(xiàng),近似認(rèn)為阻尼力大小與速度值˙x 呈正比,且方向相反。因此,得到重力敏感器工作原理簡(jiǎn)化模型,如圖3所示。
圖3 重力敏感器工作原理示意圖Fig 3 Working principle diagram of gravity sensor
選取重力敏感器靜態(tài)穩(wěn)定時(shí)敏感質(zhì)量所處位置為初始零位(x=0),此時(shí)彈簧拉力與敏感質(zhì)量重力大小相等,方向相反,互相抵消后敏感質(zhì)量處于穩(wěn)定靜止?fàn)顟B(tài)。敏感質(zhì)量m 在干擾力F 的影響下,其運(yùn)動(dòng)微分方程為[9]
式中 m 為敏感質(zhì)量m 的質(zhì)量;c 為重力敏感器阻尼系數(shù);k 為零長(zhǎng)彈簧彈性系統(tǒng)的彈性系數(shù)。
對(duì)式(7)進(jìn)行拉普拉斯變換并化簡(jiǎn),得到敏感質(zhì)量位移與干擾力的關(guān)系
利用敏感器自身結(jié)構(gòu),提出了一種在某個(gè)頻段內(nèi)選取不同頻率激勵(lì)源來(lái)實(shí)際測(cè)量重力敏感器阻尼系數(shù)的測(cè)試方法。
在與敏感質(zhì)量一體的力矩線圈上施加不同頻率的正弦激勵(lì)信號(hào),電磁換能器將之轉(zhuǎn)換為不同頻率的正弦作用力,則式(7)變?yōu)?/p>
這個(gè)方程的解分為兩部分,一部分是齊次方程的解,在物理上對(duì)應(yīng)的是自由阻尼振動(dòng)。但這里由于施加了正弦激勵(lì)信號(hào),該方程的解應(yīng)為由激勵(lì)引起的特殊解,即頻率與激勵(lì)頻率ω 相同的穩(wěn)態(tài)振動(dòng)??杉僭O(shè)特殊解具有如下形式
其中,X0為振蕩的振幅,φ 為位移相對(duì)于激勵(lì)F0的相位角。
將式(10)代入方程(9),聯(lián)立求解并化簡(jiǎn)為無(wú)因次形式,得到
其中,ωn為無(wú)阻尼振蕩固有頻率,ζ 為阻率。
圖4 不同阻率的振幅—頻率比曲線Fig 4 Curve of amplitude-frequency ratio with different damping coefficient
將重力敏感器處于實(shí)際工作狀態(tài),利用信號(hào)發(fā)生器對(duì)力矩線圈施加正弦信號(hào),激勵(lì)電壓幅值Ui0分別選取2,4,8 V,頻率ω 在0 ~3ωn范圍內(nèi)選擇7 個(gè)頻率點(diǎn)(T=1.9 s,T=2.9 s,T=3.9 s,T=4.9 s,T=5.9 s,T=6.9 s,T=7.9 s,),得到檢測(cè)電容傳感器經(jīng)前放處理過(guò)的輸出電壓信號(hào)利用同一套重力敏感器裝置,分別灌滿兩種不同粘度的阻尼液Ⅰ和Ⅱ,通過(guò)換算,得到在兩種阻尼液中敏感質(zhì)量振幅的實(shí)測(cè)數(shù)據(jù)如表1、表2,與理論曲線值比較如圖5、圖6 所示。
表1 灌阻尼液Ⅰ時(shí)輸出電壓測(cè)試數(shù)據(jù)Tab 1 Testing data of output voltage while pouring in damping liquidⅠ
表2 灌阻尼液Ⅱ時(shí)輸出電壓測(cè)試數(shù)據(jù)Tab 2 Testing data of output voltage while pouring in damping liquidⅡ
圖5 質(zhì)量敏感器在阻尼液Ⅰ中振幅實(shí)測(cè)數(shù)據(jù)與理論值比較圖Fig 5 Comparison graph of test value and theory value of amplitude of mass sensor in damping liquidⅠ
圖6 質(zhì)量敏感器在阻尼液Ⅱ中振幅實(shí)測(cè)數(shù)據(jù)與理論值比較圖Fig 6 Comparison graph of test value and theory value of amplitude of mass sensor in damping liquidⅡ
從圖5、圖6 可以看出:測(cè)試的這兩種阻尼液的阻率分別為:阻尼液Ⅰ的ξ=0.25,阻尼液Ⅱ的ξ=1.35,對(duì)應(yīng)的敏感器阻尼系數(shù):阻尼液Ⅰ的c=0.17,阻尼液Ⅱ的c=0.93。綜合考慮重力敏感器的使用狀態(tài)和其他參數(shù),最后選取阻尼系數(shù)為0.93 的阻尼液Ⅱ作為重力敏感器的阻尼液,再根據(jù)敏感質(zhì)量m 和零長(zhǎng)彈簧彈性系統(tǒng)的彈性系數(shù)k,即可確定重力敏感器表體的傳遞函數(shù)。
本文針對(duì)內(nèi)部充滿阻尼液的重力敏感器,提出了一種人為施加不同頻率激勵(lì)源來(lái)測(cè)量重力敏感器阻尼系數(shù)的測(cè)試方法。根據(jù)兩組實(shí)驗(yàn)的實(shí)際測(cè)試結(jié)果,驗(yàn)證了該方法的可行性,為重力敏感器阻尼液粘度的選取和控制回路的設(shè)計(jì)提供了參考。
[1] Chapin D.Gravity instruments:Past,present,future[J].The Leading Edge,1998,17(1):100-112.
[2] LaCoste L J B,Valliant H D.A new instrument for measuring relative gravity with absolute scale[J].The Leading Edge,1998,17(1):43-45.
[3] Ander M E,Sumners T,Gruchalla M E.LaCoste and Romberg gravity meter:System analysis and instrumental errors[J].Geophysics,1999,64(6):1708-1719.
[4] 黃謨濤,翟國(guó)君,管 錚,等.海洋重力場(chǎng)測(cè)定及其應(yīng)用[M].北京:測(cè)繪出版社,2005:60-77.
[5] 李宏生.海洋重力儀敏感組件的溫度特性分析與補(bǔ)償[J].船舶工程,2002(6):68-71.
[6] 謝清陸,李應(yīng)超,位文強(qiáng).垂直加速度對(duì)SⅡ型海洋重力儀的影響及消除[J].北京測(cè)繪,2012(2):65-67.
[7] 戴加成,黃 雄.對(duì)流體阻力和收尾速度的案例教學(xué)[J].物理通報(bào),2012(10):46-49.
[8] 趙國(guó)輝,劉健新,李 宇.基于隨機(jī)振動(dòng)的液體粘滯阻尼器參數(shù)優(yōu)化[J].西南交通大學(xué)學(xué)報(bào),2013,12(6):1002-1007.