崔立紅
海軍總醫(yī)院 消化內(nèi)科,北京 100048
腸道菌群與消化系疾病的關(guān)系
崔立紅
海軍總醫(yī)院 消化內(nèi)科,北京 100048
[專題組稿專家簡介]崔立紅,女,博士,主任醫(yī)師,教授,海軍總醫(yī)院消化內(nèi)科主任,博士研究生導(dǎo)師。兼任海軍消化專業(yè)委員會(huì)主任委員,中華消化學(xué)會(huì)腸內(nèi)營養(yǎng)學(xué)組副組長,北京醫(yī)師協(xié)會(huì)消化內(nèi)科??漆t(yī)師分會(huì)常務(wù)理事,世界華人消化雜志、Gastroentrology(中文版)、Gut(中文版)、海軍醫(yī)學(xué)、中華胃腸內(nèi)鏡電子雜志等雜志編委。主要從事功能性胃腸疾病,腸內(nèi)營養(yǎng)、微生態(tài)與消化系疾病,消化道早癌診斷的臨床研究和臨床診治。完成省部級(jí)科研課題5項(xiàng);獲軍隊(duì)科技進(jìn)步三等獎(jiǎng)1項(xiàng),醫(yī)療成果三等獎(jiǎng)3項(xiàng);發(fā)表論著80余篇,參與4部專著撰寫。
腸道菌群與消化系疾病的關(guān)系一直是學(xué)術(shù)界研究的熱點(diǎn),特別是近幾年相關(guān)報(bào)道越來越多,取得了一定的成果。本文主要就近期該領(lǐng)域的一些研究成果和發(fā)現(xiàn)進(jìn)行綜述,旨在從腸道菌群的角度為消化系疾病的診治提供思路。
腸道菌群;消化系疾病;益生菌
人體腸道定植著大量微生物,包括細(xì)菌、寄生蟲、病毒、古生菌及真菌[1]。主要微生物為細(xì)菌,其種類為500 ~ 1 000種,數(shù)量級(jí)在成人達(dá)到1014,約為人體軀體和生殖細(xì)胞總和的10倍[2-4],目前檢測出的基因數(shù)是人體基因的100 ~ 150倍[5]。這個(gè)龐大且復(fù)雜的群體,不僅構(gòu)成腸道黏膜屏障,阻止病原體的定植和生長,同時(shí)參與人體的許多生理過程,如食物消化、免疫刺激、情緒調(diào)節(jié)等[6-8]。這種與宿主間保持的共生關(guān)系十分重要,一旦外部環(huán)境條件或內(nèi)環(huán)境發(fā)生變化,平衡受到破壞,會(huì)產(chǎn)生許多疾病[9]。隨著16S rRNA基因檢測技術(shù)及宏基因組計(jì)劃開展,對(duì)腸道菌群作用的研究越來越多[10]。目前發(fā)現(xiàn),腸道菌群失調(diào)與免疫類疾病、代謝疾病及消化系疾病有關(guān)[11]。但是研究仍處于初級(jí)階段,還需大規(guī)模、多中心的實(shí)驗(yàn)進(jìn)行補(bǔ)充。本文主要就腸道菌群與消化系疾病之間的關(guān)系進(jìn)行綜述。
腸易激綜合征(irritable bowel syndrome,IBS)是以腹痛及排便習(xí)慣改變?yōu)樘卣鞯墓δ苄阅c道疾病,發(fā)病率較高,嚴(yán)重影響人們的生活健康[12-14]。IBS患者和健康人群的腸道菌群分布存在差異,不同亞型的IBS患者腸道菌群分布存在不同特點(diǎn)。Malinen等[15]研究發(fā)現(xiàn),便秘型IBS患者糞便中韋榮球菌數(shù)量升高,腹瀉型IBS患者糞便中乳酸桿菌數(shù)量降低,Parkes等[16]研究顯示,便秘型IBS患者中雙歧桿菌、乳酸桿菌正常定植菌數(shù)量多于腹瀉型,但兩種亞型患者中雙歧桿菌、乳酸桿菌數(shù)量均較健康人群減少。國內(nèi)胡樂義等[17]進(jìn)行糞便細(xì)菌培養(yǎng),發(fā)現(xiàn)IBS患者腸道內(nèi)有益的雙歧桿菌和乳桿菌明顯減少,其中便秘型IBS患者擬桿菌明顯增加,腹瀉型IBS患者雙歧桿菌及乳桿菌明顯減少;交替型患者腸桿菌顯著增加,乳桿菌明顯減少。腸道菌群在IBS中發(fā)揮著重要作用,Pimental等[18]研究報(bào)道,腸道菌群失調(diào)可導(dǎo)致IBS患者存在腸道內(nèi)低度炎癥,引起IBS患者的內(nèi)臟高敏感性,增加IBS的發(fā)病風(fēng)險(xiǎn)。
腸道菌群失調(diào)與肝疾病密切相關(guān)。當(dāng)腸道菌群失衡時(shí),可導(dǎo)致肝疾病,誘發(fā)或加重肝疾病的并發(fā)癥。在國內(nèi),浙江大學(xué)較早即發(fā)現(xiàn)肝病患者存在腸道微生態(tài)失衡[19],其程度與肝病的嚴(yán)重性相關(guān)。同時(shí)發(fā)現(xiàn)重型肝炎患者腸道雙歧桿菌減少、革蘭陰性腸桿菌增加;腸道細(xì)菌過度生長、腸道微生態(tài)失衡與內(nèi)毒素脂多糖(lipopolysaccharide,LPS)及腸道細(xì)菌移位有密切的關(guān)系。
腸道菌群失調(diào)導(dǎo)致或加重肝疾病的可能機(jī)制:1)腸道菌群失調(diào)后,患者腸黏膜屏障受損,內(nèi)毒素進(jìn)入血液循環(huán),可以通過直接損傷肝、激活枯否細(xì)胞產(chǎn)生炎性因子、影響人體能量代謝等機(jī)制加劇非酒精性脂肪肝[20];2)大量飲酒者腸道菌群失調(diào)后,腸道細(xì)菌分解乙醇產(chǎn)生的乙醛能通過影響機(jī)體免疫而改變腸道屏障功能,增加腸道通透性,從而使進(jìn)入肝的LPS增多,促進(jìn)酒精性脂肪肝發(fā)生;3)慢性病毒性肝炎患者腸道定植抗力下降,使腸道屏障功能受損,LPS入血增多,加重肝損害。有研究表明,慢性重型肝炎患者的腸道定植抗力下降最為顯著,提示腸道定植抗力與肝炎的嚴(yán)重程度有一定關(guān)系;4)腸道菌群失調(diào)與肝硬化及其并發(fā)癥互為因果,關(guān)系密切。一些研究顯示,肝硬化患者腸道內(nèi)大腸埃希菌增加,雙歧桿菌、乳酸桿菌減少,并伴有腸道內(nèi)細(xì)菌移位的傾向。另外一些研究則發(fā)現(xiàn),應(yīng)用益生菌通過改善腸道菌群失調(diào)進(jìn)而預(yù)防腸內(nèi)感染或細(xì)菌移位,利于肝性腦病的治療;5)腸道菌群失調(diào)可能影響肝細(xì)胞癌的發(fā)生,其機(jī)制:①致病菌增加了腸道黏膜的通透性,改變其受體活性,引起有害菌本身及其代謝產(chǎn)物進(jìn)入血液循環(huán),從而損傷肝;②腸道內(nèi)有害菌引起腸道及腸系膜淋巴結(jié)釋放多種細(xì)胞因子,損傷肝;③腸道細(xì)菌可能干擾腸肝反饋,影響肝代謝,損傷肝。
炎癥性腸病(inflammatory bowel disease,IBD)是一種慢性復(fù)發(fā)性胃腸道炎癥性疾病,包括潰瘍性結(jié)腸炎(ulcerative colitis,UC)和克羅恩病(Crohn′s disease,CD)[21]。IBD的發(fā)病機(jī)制復(fù)雜,宿主和腸道菌群相互作用可能是其中的關(guān)鍵。正常情況,宿主的先天和適應(yīng)性免疫可以阻止有害菌的入侵,同時(shí)對(duì)正常菌群保持免疫耐受。一旦發(fā)生菌群失調(diào),上述兩種平衡被打破,出現(xiàn)腸道黏膜免疫反應(yīng)過度,可能導(dǎo)致該疾病的發(fā)生[22-23]。動(dòng)物實(shí)驗(yàn)中發(fā)現(xiàn),結(jié)腸炎動(dòng)物模型均在腸道有菌情況下獲得,通過基因敲除的無菌動(dòng)物無法復(fù)制結(jié)腸炎動(dòng)物模型,提示腸道菌群對(duì)IBD的發(fā)生是必不可少的[24]。許多研究已經(jīng)發(fā)現(xiàn)IBD患者腸道菌群的組成和功能發(fā)生改變,同時(shí)益生菌治療IBD效果得到肯定。
3.1 IBD患者中腸道菌群數(shù)量和結(jié)構(gòu)發(fā)生變化IBD患者存在腸道菌群數(shù)量變化。有研究報(bào)道,與健康對(duì)照組相比,UC及CD患者的腸道菌群數(shù)量均有所減少,同一患者的腸道病變部位的菌群數(shù)也低于健康部位[25]。真菌的數(shù)量和組成在IBD患者中也發(fā)生變化。另外,IBD患者的腸道菌群的穩(wěn)定性下降,有研究表明,在UC患者緩解期,腸道菌群組成不穩(wěn)定[26],研究同時(shí)發(fā)現(xiàn)處于緩解期的UC患者前3個(gè)月腸道菌群尚處于穩(wěn)定期,但在3個(gè)月以后穩(wěn)定性明顯下降,同樣的結(jié)果在CD患者中也有報(bào)道[27]。
IBD患者腸道菌群的構(gòu)成也發(fā)生變化。主要表現(xiàn)為優(yōu)勢(shì)菌,如擬桿菌門、厚壁菌門等多樣性減少。有研究發(fā)現(xiàn),與對(duì)照組相比,IBD組優(yōu)勢(shì)菌群厚壁菌門和擬桿菌的數(shù)量顯著減少,而放線菌和變形菌門的數(shù)量則明顯增加[28]。Walker等[25]也發(fā)現(xiàn)了UC及CD的患者中厚壁菌門數(shù)量下降。另外,構(gòu)成改變也表現(xiàn)為抑炎菌,如雙歧桿菌、乳酸桿菌數(shù)量減少,促炎菌,如大腸埃希菌、梭狀芽孢桿菌量增加。張艷麗等[29]報(bào)道,與對(duì)照組、緩解組比較,活動(dòng)組IBD患者糞便中腸球菌、大腸埃希菌數(shù)量增加,乳酸桿菌、雙歧桿菌數(shù)量下降。在另一項(xiàng)研究中,也發(fā)現(xiàn)了CD患者中雙歧桿菌的減少[30]。
3.2 IBD患者腸道菌群功能發(fā)生變化 IBD患者腸道菌群結(jié)構(gòu)和數(shù)量的變化會(huì)改變某些細(xì)菌的功能,最重要的表現(xiàn)就是短鏈脂肪酸(short-chain fatty acids,SCFAs)合成減少,從而影響其抗炎及免疫調(diào)節(jié)作用[31]。另外還表現(xiàn)為氨基酸合成減少、氧化應(yīng)激、營養(yǎng)缺陷及毒素分泌增多[31]。其他研究也發(fā)現(xiàn)某些真菌數(shù)量增加后,IBD患者腸道炎癥、細(xì)胞因子及血清CRP水平增加[32]。除此之外,一些條件致病菌可能損傷腸道黏膜屏障,導(dǎo)致正常細(xì)菌及產(chǎn)物直接暴露于免疫細(xì)胞,破壞免疫耐受機(jī)制。上述功能改變可能從一定的角度解釋了IBD的臨床癥狀及發(fā)病機(jī)制。
4.1 結(jié)直腸癌患者腸道菌群特點(diǎn) Kostic等[33]研究顯示,結(jié)腸癌患者腫瘤組織與其癌旁組織的菌群特征相似,但不同結(jié)腸癌患者之間、結(jié)腸癌患者與正常人結(jié)腸之間差異較大。有研究通過分析腸道標(biāo)本發(fā)現(xiàn)結(jié)直腸癌患者雙歧桿菌數(shù)量有所降低,而梭桿菌、卟啉單胞菌、消化鏈球菌卻較豐富[34]。Ohigashi等[35]通過分析糞便發(fā)現(xiàn)結(jié)腸癌患者中專性厭氧菌及兼性厭氧菌數(shù)量明顯降低。結(jié)腸癌患者中,以擬桿菌屬增多較為多見,Sobhani等[36]發(fā)現(xiàn)擬桿菌屬在結(jié)腸癌組織及癌旁正常組織的豐度較正常對(duì)照組明顯升高,且結(jié)腸癌組織的擬桿菌屬豐度較癌旁正常組織高。另外,有對(duì)照研究顯示,21.9% ~ 97.0%的結(jié)直腸癌患者中發(fā)現(xiàn)有人類乳頭狀瘤病毒(human papilloma virus,HPV)感染,以HPV16和HPV17型最明顯[37]。
4.2 腸道菌群失調(diào)引起結(jié)直腸癌發(fā)生的3種可能機(jī)制 1)腸道菌群失調(diào)可引起腸黏膜細(xì)胞遺傳學(xué)改變:Kellermayer等[38]研究發(fā)現(xiàn),結(jié)腸癌腸黏膜細(xì)胞中CpG位點(diǎn)、基因啟動(dòng)區(qū)及CTCF-結(jié)合位點(diǎn)出現(xiàn)異常甲基化,且伴Ifit2、spon2、Fas、Anpep及Lgals2等相關(guān)基因表達(dá)異常。腸道菌群中擬桿菌屬、梭菌屬、彎曲菌屬等致病菌的大量增加可以引起腸道上皮細(xì)胞增殖和癌基因c-Myc表達(dá)[39]。大腸埃希菌能夠在黏膜組織中表達(dá)毒力因子,如pks、cnf1及cdt基因,pks能夠合成非核糖體多肽合成酶及聚酮合成酶參與腫瘤發(fā)生的各個(gè)階段,cnf可通過激活Rho-GTP酶和刺激細(xì)胞由G1期轉(zhuǎn)向S期,促進(jìn)細(xì)胞增殖,cdt則可引起真核細(xì)胞DNA鏈斷裂等[39]。2)腸道菌群紊亂可誘發(fā)腸道炎癥反應(yīng):腸道菌群失調(diào)能夠誘發(fā)腸道炎癥,而炎癥性腸病能夠明顯增加結(jié)直腸癌發(fā)生率[40]。腸道炎癥可刺激炎性細(xì)胞及IL-6,TNF-α,IL-23,IL-17等炎性介質(zhì)釋放,導(dǎo)致腸黏膜上皮細(xì)胞基因突變、DNA損傷、DNA異常甲基化、端??s短、細(xì)胞衰老,同時(shí)增加腸黏膜滲透性,加重異常免疫反應(yīng)[41-42]。腸道菌群失調(diào)可通過TLR-MyD88依賴的信號(hào)途徑上調(diào)腸道上皮細(xì)胞IL-17C的分泌,IL-17C則通過自分泌方式誘導(dǎo)Bcl-2和Bcl-xl分泌,促進(jìn)細(xì)胞生存和腫瘤發(fā)生;同時(shí),菌群失調(diào)亦可通過刺激IL-23和IL-1β分泌,誘導(dǎo)Th17細(xì)胞分泌IL-17A,引起細(xì)胞增殖[42]。IL-17還能與TNF-α協(xié)同刺激結(jié)直腸癌細(xì)胞有氧糖代謝和生長因子分泌,促進(jìn)結(jié)直腸癌細(xì)胞的生存和增殖[43]。產(chǎn)腸毒素脆弱類桿菌可分泌一種熱不穩(wěn)定金屬蛋白酶毒素,可激活轉(zhuǎn)錄因子NF-κB,刺激腸道上皮細(xì)胞上調(diào)炎性趨化因子IL-8、GRO-α、ENA-78DE等的表達(dá),導(dǎo)致腸道黏膜發(fā)生炎癥反應(yīng)[44]。牛鏈球菌生物型Ⅰ能合成多種蛋白和多聚糖形成膠囊外殼、膠原結(jié)合蛋白和鞭毛,引起菌血癥、心內(nèi)膜炎和結(jié)直腸癌。Arthur等[45]進(jìn)行的實(shí)驗(yàn)表明,腸道炎癥能夠特異性地促進(jìn)侵襲性大腸埃希菌的增殖,通過改變腸道菌群結(jié)構(gòu)促進(jìn)腸道腫瘤發(fā)生。牛鏈球菌生物型Ⅰ能刺激炎癥發(fā)生和使COX-2過度表達(dá),COX-2能夠抑制細(xì)胞凋亡,增加血管生成[46]。3)腸道菌群代謝產(chǎn)物的毒性作用:代謝組學(xué)顯示,結(jié)直腸癌患者癌組織中葡萄糖和短鏈脂肪酸減少,而丁酸鹽、乳酸、氨基酸、脂質(zhì)及脂肪酸增加[47]。丁酸鹽可通過p300介導(dǎo)的細(xì)胞外因子/連環(huán)蛋白信號(hào)途徑促進(jìn)結(jié)直腸癌細(xì)胞凋亡,還可通過p21WAF1表達(dá)減少組蛋白H3乙酰化而抑制結(jié)直腸癌發(fā)生[48]。結(jié)直腸癌患者腸道中細(xì)菌有毒產(chǎn)物明顯增加[49],細(xì)菌有毒產(chǎn)物能刺激腸道黏膜發(fā)生炎癥反應(yīng),誘導(dǎo)腸道上皮細(xì)胞增殖及癌基因c-Myc表達(dá)[50],腸道屏障功能的損傷會(huì)引起非致病性細(xì)菌的轉(zhuǎn)位,進(jìn)而影響免疫系統(tǒng)穩(wěn)態(tài),誘導(dǎo)結(jié)腸癌的發(fā)生[40]。梭菌屬可以通過7a脫羥基作用,產(chǎn)生次級(jí)膽汁酸,從而影響有絲分裂過程,誘導(dǎo)DNA損傷,并且可以誘導(dǎo)活性氧的產(chǎn)生,增加結(jié)腸癌的發(fā)生風(fēng)險(xiǎn)[51]。脆弱擬桿菌腸毒素可以通過分解黏連蛋白-E的胞外部分,引起核內(nèi)定位的β-連環(huán)蛋白與T細(xì)胞依賴性轉(zhuǎn)錄激活因子結(jié)合,導(dǎo)致c-Myc表達(dá),促進(jìn)結(jié)直腸癌發(fā)生[44]。
重癥急性胰腺炎(severe acute pancreatitis,SAP)是消化系病的急危重癥,病死率高達(dá)36% ~ 50%,后期合并感染可加重SAP患者的臨床癥狀、惡化預(yù)后、增加死亡率[52-53]。
完整和正常運(yùn)作的腸黏膜支持系統(tǒng)共同維持正常的腸黏膜屏障功能。SAP患者早期常伴有腸道灌注不足,液體復(fù)蘇后可能出現(xiàn)缺血再灌注損傷,造成腸道微循環(huán)障礙進(jìn)而加重SAP,同時(shí)可造成黏膜屏障受損及腸道菌群失調(diào)[54]。動(dòng)物實(shí)驗(yàn)表明[55],SAP大鼠盲腸內(nèi)容物中以大腸埃希菌為主的條件致病菌明顯增多,而雙歧桿菌屬和乳酸桿菌屬為主的益生菌生長受抑,腸道菌群中厭氧菌與需氧菌比值嚴(yán)重倒置;SAP大鼠造模成功后24 h,腸系膜淋巴結(jié)、胰腺、肝細(xì)菌培養(yǎng)陽性率及血漿內(nèi)毒素陽性率均升高,菌種鑒定結(jié)果提示移位菌來自腸道,腸黏膜屏障和腸道菌群的改變?yōu)槟c道細(xì)菌移位提供便利條件。胃腸減壓和質(zhì)子泵抑制劑等治療使得SAP患者胃液大量減少,以致胃酸抑制胃、十二指腸及近端空腸細(xì)菌過度繁殖的能力降低,易出現(xiàn)以上段空腸為主的菌群失調(diào)。既往研究表明,脫氧膽酸鹽可選擇抑制腸道內(nèi)的擬桿菌屬、乳酸桿屬、鏈球菌屬,而SAP患者因長期禁食和(或)膽道下端阻塞,膽汁分泌減少或不能有效達(dá)到腸道,可能造成腸道菌群失調(diào)。失調(diào)的菌群可通過破損的腸道黏膜屏障,造成腸道菌群移位,導(dǎo)致胰周感染和全身感染,“二次打擊”機(jī)體。文獻(xiàn)報(bào)道80% SAP患者死于胰腺和胰周組織的繼發(fā)感染,90%以上的繼發(fā)感染是由腸道菌群移位導(dǎo)致[56]。
隨著檢測腸道菌群技術(shù)的逐步提高以及學(xué)術(shù)界對(duì)其認(rèn)識(shí)的逐漸加深,腸道菌群的作用越來越受到認(rèn)可,從腸道菌群的角度對(duì)消化系疾病進(jìn)行研究和治療可能成為醫(yī)學(xué)界的發(fā)展方向。但是,由于腸道菌群種類多、數(shù)量大,具體的菌種在具體疾病中的作用還不夠明確,個(gè)體對(duì)于不同菌種的反應(yīng)是否一致還不甚明了。因此,雖然目前取得以一定的成果,腸道菌群與消化系疾病之間的關(guān)系仍需進(jìn)一步的探索與研究。
1 Sommer F, B?ckhed F. The gut microbiota--masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4):227-238.
2 Lagier JC, Armougom F, Million M, et al. Microbial culturomics:paradigm shift in the human gut microbiome study[J]. Clin Microbiol Infect, 2012, 18(12): 1185-1193.
3 Shen D, Liu C, Xu R, et al. Human gut microbiota: dysbiosis and manipulation[J]. Front Cell Infect Microbiol, 2012, 2(2): 123.
4 Jeffery IB, Claesson MJ, O’Toole PW, et al. Categorization of the gut microbiota: enterotypes or gradients?[J]. Nat Rev Microbiol,2012, 10(9):591-592.
5 Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
6 Kamada N, Chen G, Nú?ez G. A complex microworld in the gut:Harnessing pathogen-commensal relations[J]. Nat Med, 2012, 18(8): 1190-1191.
7 Hur KY, Lee MS. Gut microbiota and metabolic disorders[J]. Diabetes Metab J, 2015, 39(3): 198-203.
8 楊異卉,李玲,黃海麗,等.腸道菌群與疾病的關(guān)系[J].藥學(xué)研究,2015,34(6):353-356.
9 Faith JJ, Mcnulty NP, Rey FE, et al. Predicting a human gut microbiota’s response to diet in gnotobiotic mice[J]. Science,2011, 333(638): 101-104.
10 陳玉霞,詹學(xué).腸道菌群與炎癥性腸?。跩].中華臨床醫(yī)師雜志:電子版,2014,8(8):1561-1566.
11 郭慧玲,邵玉宇,孟和畢力格,等.腸道菌群與疾病關(guān)系的研究進(jìn)展[J].微生物學(xué)通報(bào),2015,42(2):400-410.
12 Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis[J]. Clin Gastroenterol Hepatol,2012, 10(7): 712-721.e4.
13 Ebling B, Jurci? D, Gmajni? R, et al. Anthropological, demographic and socioeconomic characteristics of irritable bowel syndrome[J]. Coll Antropol, 2011, 35(2): 513-521.
14 Lee YJ, Park KS. Irritable bowel syndrome: emerging paradigm in pathophysiology[J]. World J Gastroenterol, 2014, 20(10):2456-2469.
15 Malinen E, Rinttil? T, Kajander K, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR[J]. Am J Gastroenterol, 2005, 100(2):373-382.
16 Parkes GC, Rayment NB, Hudspith BN, et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome[J]. Neurogastroenterol Motil, 2012,24(1): 31-39.
17 胡樂義, 王巧民, 姜彬言, 等. 腸易激綜合征患者腸道菌群的變化及意義[J]. 安徽醫(yī)科大學(xué)學(xué)報(bào), 2012, 47(1): 86-89.
18 Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome[J]. Am J Gastroenterol, 2000, 95(12): 3503-3506.
19 李蘭娟. 腸道微生態(tài)改變對(duì)肝臟疾病的影響[J]. 中華肝臟病雜志, 2013, 21(1): 2-4.
20 王麗,李顯輝.益生菌對(duì)大鼠非酒精性脂肪肝的治療作用及機(jī)制[J].世界華人消化雜志,2013,(36):4127-4132.
21 Ghouri YA, Richards DM, Rahimi EF, et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease[J]. Clin Exp Gastroenterol, 2014, 7:473-487.
22 Zhang YJ, Li S, Gan RY, et al. Impacts of gut bacteria on humanhealth and diseases[J]. Int J Mol Sci, 2015, 16(4): 7493-7519.
23 Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease[J]. Nature, 2011, 474(7351):307-317.
24 劉寶珍,薛春霞,金世祿.腸道菌群與消化系疾病[J].內(nèi)蒙古中醫(yī)藥,2011,(3):86-88.
25 Walker AW, Sanderson JD, Churcher C, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease[J]. BMC Microbiol,2011, 11(1): 7.
26 Cammarota G, Ianiro G, Cianci R, et al. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy[J]. Pharmacol Ther, 2015, 149: 191-212.
27 Scanlan PD, Shanahan F, O’mahony C, et al. Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease[J]. J Clin Microbiol, 2006, 44(11): 3980-3988.
28 Frank DN, Robertson CE, Hamm CM, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2011, 17(1): 179-184.
29 張艷麗,劉新風(fēng),于秀娟,等.炎癥性腸病患者腸道菌群變化及其與炎性因子的相關(guān)性[J].山東醫(yī)藥,2015,55(10):79-80.
30 Andoh A, Kuzuoka H, Tsujikawa T, et al. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease[J]. J Gastroenterol, 2012, 47(12): 1298-1307.
31 Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead[J]. Gastroenterology, 2014, 146(6): 1489-1499.
32 Li Q, Wang C, Tang C, et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease[J]. J Clin Gastroenterol, 2014, 48(6): 513-523.
33 Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J]. Genome Res, 2012, 22(2): 292-298.
34 Chen W, Liu F, Ling Z, et al. Human intestinal lumen and mucosaassociated microbiota in patients with colorectal cancer[J]. PLoS One, 2012, 7(6):e39743.
35 Ohigashi S, Sudo K, Kobayashi D, et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer[J]. Dig Dis Sci, 2013, 58(6): 1717-1726.
36 Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients[J]. PLoS One, 2011, 6(1):e16393.
37 Deschoolmeester V, Van Marck V, Baay M, et al. Detection of HPV and the role of p16INK4A overexpression as a surrogate marker for the presence of functional HPV oncoprotein E7 in colorectal cancer[J]. BMC Cancer, 2010, 10: 117.
38 Kellermayer R, Dowd SE, Harris RA, et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice[J]. FASEB J, 2011, 25(5): 1449-1460.
39 Buc E, Dubois D, Sauvanet P, et al. High prevalence of mucosaassociated E. coli producing cyclomodulin and genotoxin in colon cancer[J]. PLoS One, 2013, 8(2): e56964.
40 Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation:inflammatory bowel disease and colitis-associated colon cancer[J]. Front Immunol, 2012, 3(2): 107.
41 Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies[J]. Clin Gastroenterol Hepatol, 2012, 10(6):639-645.
42 Song X, Gao H, Lin Y, et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis[J]. Immunity, 2014, 40(1): 140-152.
43 Straus DS. TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells[J]. Mol Cancer, 2013, 12(1): 78.
44 鄭晴晴, 徐艷麗, 常英, 等. 腸道菌群失調(diào)對(duì)結(jié)直腸癌發(fā)生的影響[J]. 中華老年多器官疾病雜志, 2014, 13(7): 552-556.
45 Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(613): 120-123.
46 Abdulamir AS, Hafidh RR, Abu Bakar F. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the Nature and the underlying mechanisms of its etiological role[J]. J Exp Clin Cancer Res, 2011, 30: 11.
47 Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome[J]. PLoS One, 2011, 6(5): e20447.
48 Lazarova DL, Wong T, Chiaro C, et al. p300 influences Butyrate-Mediated WNT hyperactivation in colorectal cancer cells[J]. J Cancer, 2013, 4(6): 491-501.
49 Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers[J]. ISME J,2012, 6(2): 320-329.
50 Wu N, Yang X, Zhang R, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients[J]. Microb Ecol, 2013, 66(2): 462-470.
51 Bernstein C, Holubec H, Bhattacharyya AK, et al. Carcinogenicity of deoxycholate, a secondary bile acid[J]. Arch Toxicol, 2011, 85(8):863-871.
52 王興鵬,李兆申,袁耀宗,等.中國急性胰腺炎診治指南(2013,上海)[J].中國實(shí)用內(nèi)科雜志,2013,33(7):530-535.
53 De Waele JJ, Rello J, Anzueto A, et al. Infections and use of antibiotics in patients admitted for severe acute pancreatitis: data from the EPIC II study[J]. Surg Infect (Larchmt), 2014, 15(4):394-398.
54 Wang F, Li Q, Wang C, et al. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury[J]. PLoS One,2012, 7(7): e42027.
55 李燕,吳浩,鄧一蕓,等.重癥急性胰腺炎大鼠腸黏膜屏障及腸道菌群的變化[J].生物醫(yī)學(xué)工程學(xué)雜志,2015,32(2):412-417.
56 姜志明,魯召欣,張明,等.烏司他丁對(duì)重癥急性胰腺炎患者腸道黏膜屏障功能的影響[J].中國醫(yī)藥導(dǎo)報(bào),2011,(13):16-17.
Relationship between gut microbiota and digestive disease
CUI Lihong
Department of Gastroenterology, Navy General Hospital, Beijing 100048, China
The relationship between gut microbiota and digestive disease has always been the hot spot of academic research. Especially in recent years, more and more related researches have been reported and certain achievements have been obtained. Recent researchResultsand findings in this field will be reviewed and gut microbiota for diagnosis and treatment of digestive diseases will be discussed in this paper.
gut microflora; digestive diseases; probiotics
R 574
:A
2095-5227(2015)10-0965-05
10.3969/j.issn.2095-5227.2015.10.001
時(shí)間:2015-09-06 11:01
http://www.cnki.net/kcms/detail/11.3275.R.20150906.1101.002.html
2015-08-04
海軍后勤科研計(jì)劃課題(CHJ12J027);吳階平臨床科研專項(xiàng)資助基金(320.6750.13175)
Supported by the Foundation of Logistics of Chinese Navy (CHJ12J027); the Foundation of WU Jie-Ping (320.6750.13175)
崔立紅,女,博士,主任醫(yī)師,教授,主任,博士生導(dǎo)師。研究方向:功能性胃腸疾?。荒c內(nèi)營養(yǎng)、微生態(tài)與消化系疾病;消化道早癌診治。Email: luckycui861@sina.com
The first author: CUI Lihong. Email: luckycui861@sina.com