胥克濤,袁揚勝,馮 霞,屈 軍
(安徽師范大學(xué)物理與電子信息學(xué)院,蕪湖241000)
激光在大氣遙感、目標(biāo)追蹤、遠距離光通信等領(lǐng)域得到了廣泛的應(yīng)用[1-12],光束在傳輸過程中,湍流會導(dǎo)致光束質(zhì)量變差。近年來,很多學(xué)者研究發(fā)現(xiàn),相對于完全相干光,部分相干光束或特殊輪廓光束受湍流影響?。?3-16]。WU等人利用高斯-謝爾模型部分相干光以及WANG和Lü等人利用部分相干扭曲各向異性高斯-謝爾模型光束和部分相干厄米-余弦高斯光束進行傳輸?shù)难芯慷甲C實了這一結(jié)論[13,17-20]。最近,激光光束陣列在大氣中的傳輸特性相繼得到研究。ZHOU等人研究了高斯光束陣列和部分相干平頂(partially coherent flat-topped,PCFT)光束陣列在大氣湍流中的傳輸特性[21-23],EYYUBOGLU等人研究了激光光束陣列在大氣湍流中的閃爍特性[24]。
特殊輪廓激光束在大氣湍流中的傳輸同樣也得到廣泛研究,CAI等人研究了各種空心光束在大氣湍流中的傳輸特性[25];WANG等人分析了部分相干拉蓋爾-高斯矢量光束在大氣湍流中偏振變化特性[26];JI等人探究了部分相干厄米-高斯光束在大氣湍流中的擴散特性[27]。從調(diào)研的文獻看,只有 KOROTKOVA等人研究了電磁光束在海洋湍流中的偏振特性[28],HANSON等人研究了激光光束在水下湍流的傳輸特性[29],TANG等人研究了徑向偏振環(huán)狀光束在湍流海洋中的光譜密度、方均根束寬、偏振度和桶中功率[30-33],但PCFT光束陣在海洋湍流中的傳輸特性相對較少。
鑒于此,假設(shè)光束在傳輸過程中沒有發(fā)生吸收和散射現(xiàn)象,且隨光束傳輸距離的增加,海洋湍流的強弱不發(fā)生變化,本文中基于惠更斯-菲涅耳原理和魏格納分布函數(shù)的二階矩理論得到了部分相干平頂光束陣列在均勻的各向同性的海洋湍流中傳輸因子、有效曲率半徑和瑞利長度的解析表達式,數(shù)值計算并簡要分析了它們與光束的相干長度、海水溫度與鹽度起伏、動能耗散率、溫度方差耗散率等參量的關(guān)系。得到相對于部分相干高斯光束、部分相干平頂光束、部分相干高斯光束陣列,PCFT光束陣列在海洋湍流中傳輸時受海洋湍流的影響相對更小。所得結(jié)果對研究光通信和激光實際傳輸有一定的參考價值。
在直角坐標(biāo)系中,PCFT光束陣列在源平面(z=0)的電場表達式為[16]:
式中,j表示光束的階數(shù),j=0,1,2,…,N;m 表示光束陣列中小光束的個數(shù),m=0,1,2,…,P-1;w0為源場中高斯光束的束腰寬度;r0為光束陣列的半徑;αm表示小光束與x軸所成的角度,αm=mα0,α0=2π/P。
在源平面上交叉譜密度函數(shù)可以表示為:
式中,
式中,(x1,y1),(x2,y2)為源平面任意兩點,〈〉表示求平均值,*表示復(fù)共軛,σl表示光束橫向相干長度[34]。
在近軸近似下,根據(jù)廣義惠更斯-菲涅耳原理,PCFT光束陣列經(jīng)相應(yīng)坐標(biāo)變化后通過湍流介質(zhì)的交叉譜密度可表示為[35]:
式中,k=2π/λ 為波數(shù)。(x,y),(xd,yd)為距離光源面z處接收面上的兩點,κd=(κd,x,κd,y)表示空間頻率域的位置矢量。exp[-L(xd,xd′,z)],exp[-L(yd,yd′,z)]項表示湍流介質(zhì)對光束傳輸?shù)挠绊?,其表達式為:
式中,J0為0階貝塞爾函數(shù),ξ為距離的歸一化積分變量,Φn為折射率指數(shù)波動的空間功率譜,κ為空間頻率,光束經(jīng)過湍流介質(zhì)傳輸距離z后,其交叉譜密度的魏格納分布函數(shù)可以表示為[35]:
式中,→θ=θx,θ()y表示光束傳輸角度。kθx,kθy分別表示沿x方向和y方向的波數(shù)。將(1)式、(2)式、(4)式代入(6)式,經(jīng)過運算可得:
式中,j,g和m,n是為了說明在交叉譜密度中任意兩點間的相互關(guān)系時所對應(yīng)的光束階數(shù)和光束陣列中小光束的個數(shù)。
根據(jù)定義,維格納分布函數(shù)的(n1+n2+m1+m2)階矩可以表示為:
式中,Ψ表示光束總功率:
將(1)式、(2)式帶入(10)式,經(jīng)過運算可得:
將(7)式帶入(9)式可得:
式中,
其中,海洋湍流的空間功率譜函數(shù)[36-37]為:
式中,χt為溫度方差耗散率,從海洋表面到深水層的取值范圍為10-10K2·s-1~10-2K2·s-1;ε為單位質(zhì)量湍流動能耗散率,取值范圍為10-10m2·s-3~10-4m2·s-3;η表示柯爾莫哥諾夫海洋湍流內(nèi)尺度,一般取值為η=10-3m;ω表示溫度起伏和鹽度起伏相對強弱的關(guān)系,其在海水中變化范圍是-5~0,-5表示由鹽度起伏占主導(dǎo)地位引起的光學(xué)湍流,0表示由溫度起伏占主導(dǎo)地位引起的光學(xué)湍流[36-37]。參量 At=1.863 ×10-2,As=1.9 × 10-4,At,s=9.41 × 10-3,δ=8.284(κη)4/3+12.978(κη)2。
在上述運算過程中,用到了以下關(guān)系式[35]:
式中,β(s0)為參考文獻[35]中給出的積分公式,用這個積分關(guān)系得到β函數(shù),(17)式中第3個公式為本文中用到的積分關(guān)系。
光束M2的表達式可用(9)式中的二階矩定義為[35]:
將(12)式~(14)式代入(18)式,可得在湍流介質(zhì)中PCFT光束陣列的傳輸質(zhì)量因子為:
在Φn(κ)=0時,(19)式表示PCFT光束陣列在自由空間中的質(zhì)量傳輸因子。(19)式可用來探究部分相干高斯光束(P=1,N=1,r0=0),部分相干平頂光束(P=1,N >1,r0=0)、部分相干高斯光束陣列(P >1,N=1,r0>0)和 PCFT光束陣列(P >1,N >1,r0>0)在海洋湍流中的光束質(zhì)量傳輸特性。
光束有效曲率半徑定義為二階矩〈→r(z)2〉與〈→r(z)·→θ(z)〉的比值[38-39]:
將(12)式、(14)式代入(20)式,可得PCFT光束陣列在海洋湍流中的有效曲率半徑表達式:
從(21)式可以看出:PCFT光束陣列在海洋湍流中的有效曲率半徑受束寬、相干寬度、波長、海洋湍流參量的影響。(21)式可以實現(xiàn)部分相干高斯光束、部分相干平頂光束、部分相干高斯光束陣列、PCFT光束陣列等不同種光束在海洋湍流中的有效曲率半徑的比較,探究它們在不同海洋湍流強度下有效曲率半徑大小的演變趨勢。
光束瑞利尺寸以及最小有效曲率半徑尺寸可表示為[40]:
分別將(12)式代入(22)式、(21)式代入(23)式,經(jīng)過運算后可得:
式中,
在自由空間中,瑞利尺寸zR和最小有效曲率半徑尺寸zm是相等的[18]。從(24)式、(25)式可以看出,與在自由空間中不同,PCFT光束陣列在海洋湍流中傳輸?shù)娜鹄叽鐉R與最小有效曲率半徑尺寸zm不再相等,這是受海洋湍流的影響所造成的,具體關(guān)系將在下面進一步討論。
Fig.1 a—curve of normalized M2factors of four different beams propagating through oceanic turbulence with the transverse coherence width σl=8mm b—curve of normalized M2factors of PCFT laser beam array propagating through oceanic turbulence with different the transverse coherence widths
Fig.2 a—curve of normalized M2factors of four different beams through oceanic turbulence with the ratio of temperature to salinity ω=-4.5 b—curve of normalized M2factors of PCFT laser beam array propagating through oceanic turbulence with different ratios of temperature to salinity
圖1a、圖2a、圖3a、圖4a中給出了4種不同光束歸一化M2在海洋湍流中的傳輸特性曲線(參量λ=632.8nm,w0=0.01m,ω =-3,ε =1.0 ×10-4m2·s-3,χt=1.0 ×10-10K2·s-1)。從圖 1a、圖 2a、圖 3a、圖 4a可以看出,各光束歸一化M2隨傳輸距離增加而增加,當(dāng)傳輸距離z>400m時,相比其它光束,PCFT光束陣列的歸一化 M2更小。圖1b、圖2b、圖3b、圖4b中描繪了在不同相干長度、溫度起伏和鹽度起伏相對強弱的關(guān)系、湍流動能耗散率、溫度方差耗散率下,PCFT光束陣列歸一化M2的傳輸特性曲線,從圖1b、圖2b、圖3b、圖4b可以看出,當(dāng)相干長度越小,ω越小,湍流動能耗散率越大,溫度方差耗散率越小時,光束歸一化M2越小。
Fig.3 a—curve of normalized M2factors of four different beams through oceanic turbulence with ε =1.0 ×10-4m2·s-3 b—curve of normalized M2factors of PCFT laser beam array propagating through oceanic turbulence with different ε
Fig.4 a—curve of normalized M2factors of four different beams through oceanic turbulence with χt=1.0 ×10-10K2·s-1 b—curve of normalized M2factors of PCFT laser beam array propagating through oceanic turbulence with different χt
圖5 、圖6中分別給出了不同光束有效曲率半徑在海洋湍流中的傳輸特性曲線(參量σl=8mm,w0=0.01m,ε =1.0 ×10-4m2·s-3,χt=1.0 ×10-10K2·s-1),從圖5、圖6可以看出,較其它光束,PCFT光束陣列的有效曲率半徑發(fā)散更小。圖7、圖8中分別給出了在不同相干長度、溫度起伏和鹽度起伏相對強弱的關(guān)系下PCFT光束陣列有效曲率半徑與傳輸距離的變化特性曲線,從圖7、圖8可以看出,當(dāng)光束相干長度更小、ω更小時,PCFT光束陣列的有效曲率發(fā)散特性更小,這個結(jié)論與圖1b、圖2b中所得到的結(jié)論是一致的。
Fig.5 Curve of effective radius of curvature of four different beams through oceanic turbulence with σl=8mm
Fig.6 Curve of effective radius of curvature of four different beams through oceanic turbulence with ω=-4.5
Fig.7 Curve of effective radius of curvature of PCFT laser beam array propagating through oceanic turbulence with different σl
Fig.8 Curve of effective radius of curvature of PCFT laser beam array propagating through oceanic turbulence with different ω
Fig.9 Curve of zm,zRof four different beams propagation through oceanic turbulence versus the ratio of temperature to salinity with the transverse coherence width σl=8mm,the transverse coherence width with the ratio of temperature to salinity ω =-4.5 and zm,zRof PCFT laser beam array propagating through oceanic turbulence
圖9a、圖9b中給出了不同光束最小有效曲率半徑尺寸zm、瑞利尺寸zR與ω的曲線(參量λ=632.8nm,w0=0.01m,σl=10mm,ε =1.0 × 10-4m2·s-3,χt=1.0×10-9K2·s-1),從圖9a、圖9b可以看出,各光束的zm與zR隨ω增加而減小,相對其它光束,PCFT光束陣列zm與zR最大。圖9d、圖9e中給出了不同光束zm和zR與相干長度的特性曲線(參量λ=632.8nm,w0=0.01m,ω =-3.5,ε =1.0 × 10-4m2·s-3,χt=1.0 ×10-9K2·s-1),從圖9d、圖9e可以看出,各光束的 zm與zR隨相干長度增加而增加,當(dāng)相干長度達到一定值時,各光束的zm與zR不變,且較其它光束,PCFT光束陣列的zm與zR最大。圖9c、圖9f中分別描繪了PCFT光束陣列的zm和zR與相對比值及相干長度的特性曲線,從圖9c、圖9f可以看出,與在自由空間中不同,PCFT光束陣列zm與zR不再相等,且zm的值大于zR的值,這主要是受海洋湍流的影響所造成的。
給出了PCFT光束陣列在海洋湍流中的M2因子、有效曲率半徑、瑞利尺寸的解析表達式,分析了相干長度、溫度變化、鹽度變化、湍流動能耗散率、溫度方差耗散率等參量對它們的影響。此結(jié)果不僅可以研究PCFT光束陣列的光束傳輸特性,同時還可以研究部分相干高斯光束、部分相干平頂光束、部分相干高斯光束陣列在海洋湍流中的光束傳輸特性。與在大氣湍流中各光束傳輸特性的演變趨勢相似,但在海洋湍流的干擾下,光束傳輸質(zhì)量的衰減更為嚴(yán)重,通過選擇合適的光束參量,可以減小海洋湍流的強度,探究光束在海洋弱湍流中的傳輸特性。此結(jié)果對于激光光束在海洋中傳輸特性的研究具有一定的理論參考價值。
[1] EYYUBOGLU H T.Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J].Optics& Laser Technology,2008,40(1):156-166.
[2] ZHU Z W,XU J C,CANG J.Propagation properties of J0-correlated partially coherent flt-topped beams in a turbulent atmosphere[J].Laser Technology,2010,34(4):565-568(in Chinese).
[3] RODRIGO J N M,JULIO C G V.Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere[J].Optics Express,2007,15(25):16328-16341.
[4] FEI J C,CUI Z F,WANG J S,et al.Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere[J].Laser Technology,2011,35(6):849-853(in Chinese).
[5] CHU X.The relay propagation of partially coherent cosh-Gaussian-Schell beams in turbulent atmosphere[J].Applied Physics,2010,B98(2/3):573-579.
[6] ZHOU P,MA Y,WANG X,et al.Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J].Optics Letters,2010,35(7):1043-1045.
[7] WANG B,F(xiàn)EI J Ch,CUI Zh F,et al.Research of degree of polarization of PCELG beam propagating through a circular aperture[J].Laser Technology,2013,37(5):672-678(in Chinese).
[8] CHEN Z,LI C,DING P,et al.Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence[J].Applied Physics,2012,B107(2):469-472.
[9] ALAYINEJAD M,GHAFARY B,KASHANI F D.Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere[J].Optics and Lasers in Engineering,2008,46(1):1-5.
[10] ZHANG R,WANG X Z,CHENG X.Far-zone polarization distribution properties of partially coherent beams with non-uniform source polarization distributions in turbulent atmosphere[J].Optics Express,2012,20(2):1421-1435.
[11] ZHAO T J,PU Z C.Effects of the aperture on the on-axis polarization properties of partially coherent light[J].Laser Technology,2008,32(4):424-433(in Chinese).
[12] JI X L,SHAO X L.Influence of turbulence on the propagation factor of Gaussian Schell-model array beams[J].Optics Communications,2010,283(6):869-873.
[13] WU J.Propagation of a Gaussian-Schell beam through turbulent media[J].Journal of Modern Optics,1990,37(4):671-684.
[14] PAN L Zh.Far-field behavior of partially polarized Gaussian Schellmodel beams diffracted through an aperture[J].Acta Optica Sinica,2006,26(8):1250-1255(in Chinese).
[15] WANG F,CAI Y J,KOROTKOVA O.Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J].Optics Express,2009,17(25):22366.
[16] ZHONG Y L,CUI Z F,SHI J P,et al.Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere[J].Laser Technology,2010,34(4):542-547(in Chinese).
[17] WU J,BOARDMAN A D.Coherence length of a Gaussian-Schell beam in atmospheric turbulence[J].Journal of Modern Optics,1991,38(7):1355-1363.
[18] WANG F,CAI Y J.Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere[J].Optics Express,2010,18(24):24661-24672.
[19] Lü B D,LUO Sh R.Beam propagation factor of aperture super-Gaussian beams[J].Optik,2001,112(11):503-506.
[20] Lü B D,MA H.A comparative study of elegant and standard Hermite-Gaussian beams[J].Optics Communications,2000,174(1):99-104.
[21] ZHOU P,MA Y,WANG X,et al.Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J].Optics Letters,2012,35(7):1043-1045.
[22] ZHOU P,LIU Z,XU X,et al.Propagation of coherently combined flattened laser beam array in turbulent atmosphere[J].Optics & Laser Technology,2009,41(4):403-407.
[23] ZHOU P,LIU Z,XU X,et al.Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J].Optics and Lasers in Engineering,2009,47(1):1254-1258.
[24] EYYUBOGLU H T,BAYKAL Y,CAI Y J.Scintillations of laser array beams[J].Applied Physics,2008,B91(2):265-271.
[25] CAI Y J,HE S.Propagation of various dark hollow beams in a turbulent atmosphere[J].Optics Express,2006,14(4):1353-1367.
[26] WANG H T,LIU D,ZHOU Z.The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere[J].Applied Physics,2010,B101(12):361-369.
[27] JI X L,CHEN X W,Lü B D.Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmos-phere turbulence[J].Journal of the Optics Society of America,2008,A25(1):21-28.
[28] KOROTKOVA O,F(xiàn)ARWELL N.Effect of oceanic turbulence on polarization of stochastic beams[J].Optics Communication,2011,287(7):1740-1746.
[29] HANSON F,LASHER M.Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber[J].Applied Optics,2010,49(16):3224-3230.
[30] TANG M M,ZHAO D M.Propagation of radially polarized beams in the oceanic turbulence[J].Applied Physics,2013,B111(4):665-670.
[31] ZHOU Y,CHEN Q ,ZHAO D M.Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence[J].Applied Physics,2013,B114(4):475-482.
[32] ZHOU Y,HUANG K,ZHAO D M.Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J].Applied Physics,2012,B109(2):289-294.
[33] TANG M M,ZHAO D M.Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean[J].Optics Communications,2014,312(3):89-93.
[34] MANDEL L,WOLF E.Optical coherence and quantum optics[M].Cambridge,UK:Cambridge University Press,1995:100-125.
[35] DAN Y Q,ZHANG B.Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J].Optics Express,2008,16(20):15563-15575.
[36] FARWELL N,KOROTKOVA O.Intensity and coherence properties of light in oceanic turbulence[J].Optics Communication,2012,285(6):872-875.
[37] LU W,LIU L R,SUN J F.Influence of temperature and salinity fluctuations on propagation behaviour of partially coherence in oceanic turbulence[J].Journal of Optics,2006,A8(12):1052-1058.
[38] JI X L,EYYUBOGLU H T,BAYKAL Y.Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J].Optics Express,2010,18(7):6922-6928.
[39] EYYUBOGLU H T,BAYKAL Y,JI X L.Radius of curvature variations for annular,dark hollow and flat topped beams in turbulence[J].Applied Physics,2010,B99(4):801-807.
[40] GBUR G,WOLF E.The Rayleigh range of Gaussian Schell-model beams[J].Journal of Modern Optics,2010,48(11):1735-1741.