任文暢,王沛芳,b,錢 進,b,任凌霄
(河海大學 a.淺水湖泊綜合治理與資源開發(fā)教育部重點實驗室;b.環(huán)境學院,南京 210098)
干濕交替對土壤磷素遷移轉(zhuǎn)化影響的研究綜述
任文暢a,王沛芳a,b,錢 進a,b,任凌霄a
(河海大學 a.淺水湖泊綜合治理與資源開發(fā)教育部重點實驗室;b.環(huán)境學院,南京 210098)
土壤磷素的豐缺制約著生態(tài)系統(tǒng)初級生產(chǎn)力的生長狀況。土壤的結(jié)構(gòu)與理化性質(zhì)長期受到干濕交替的周期性擾動,而干濕交替又顯著影響著土壤磷素的遷移轉(zhuǎn)化途徑。系統(tǒng)總結(jié)了近年來國內(nèi)外對干濕交替作用下土壤的水分含量、吸附特性以及微生物對土壤磷素遷移轉(zhuǎn)化影響的研究及報道。研究成果表明:①不同水分條件改變了土壤空隙與傳輸通道,且不同程度地刺激了有機殘體的礦化分解以及氧化還原強度,進而影響土壤磷素的遷移與形態(tài)轉(zhuǎn)化;②干濕交替改變了土壤顆粒粒徑、土壤吸附點位以及金屬化合物形態(tài),進而影響了土壤磷的吸附性能;③土壤微生物磷在干濕交替過程中成為土壤磷素的主要來源之一,微生物對干濕交替的不同響應(yīng)影響著土壤磷素。并對今后的研究進行了展望。
土壤;土壤磷素;干濕交替;遷移轉(zhuǎn)化;生態(tài)系統(tǒng)
干濕交替是土壤經(jīng)歷的最廣泛的非生物脅迫形式之一[1-2],是大自然存在的一種普遍現(xiàn)象。早在1925年,就有學者開始研究干濕交替對土壤產(chǎn)生的影響[3]。引發(fā)干濕交替的因素有很多,降雨不足以及降雨的不均勻性[4]、經(jīng)常性的暖干氣候等[5],都導致土壤頻繁出現(xiàn)干濕交替現(xiàn)象;江河、湖泊等水體周期性的水位漲落同樣會造成河湖濱水帶的干濕交替現(xiàn)象[6]。干濕交替作用下,土壤產(chǎn)生了物理、化學、生物等變化[7],主要表現(xiàn)為對土壤結(jié)構(gòu)的形成、有機質(zhì)的分解礦化、土壤微生物群落的數(shù)量與結(jié)構(gòu)等的改變[8],進而牽動著土壤理化性質(zhì)的變化,從而對土壤生態(tài)系統(tǒng)的結(jié)構(gòu)和功能產(chǎn)生重大影響。近年來,干濕交替過程作為土壤生態(tài)系統(tǒng)養(yǎng)分循環(huán)的主要驅(qū)動因子之一,使那些不易分解的營養(yǎng)物質(zhì)轉(zhuǎn)化為易分解的簡單的營養(yǎng)物質(zhì),從而有助于營養(yǎng)物質(zhì)礦化作用以及溶解作用在短時間的增強[9],進而影響著土壤營養(yǎng)元素的生物地球化學循環(huán)過程。另外,磷作為一種重要的土壤營養(yǎng)元素,是植物發(fā)育生長不可或缺的養(yǎng)分之一[10]。土壤磷的缺失會導致植物生長遲緩等不良結(jié)果,而過多的土壤磷素會通過地表徑流、侵燭和淋溶(泄漏或地下徑流)等方式進入地表水體和地下水中[11-12],導致水體富營養(yǎng)化。
干濕交替不僅使得土壤磷素之間各種磷形態(tài)發(fā)生改變及轉(zhuǎn)換,而且也影響著土壤磷素的滯留或流失,而這些遷移轉(zhuǎn)化最終取決于干濕交替在物理、化學、生物方面對土壤磷的影響程度。目前,通過研究土壤含水率、土壤吸附以及土壤微生物在干濕交替條件下對土壤磷素遷移轉(zhuǎn)化的影響,探討土壤磷在干濕交替條件下的遷移轉(zhuǎn)化過程,認知土壤磷素的生物地球化學循環(huán)過程在干濕交替過程中的變化,已成為國內(nèi)外學者研究的熱點問題[7, 13-17]。
土壤水分是調(diào)節(jié)養(yǎng)分流失及利用性的重要因素[2],是土壤中可溶態(tài)磷在水平和垂直方向上遷移流失的載體[18]。干濕交替顯著影響著土壤水分狀況,進而改變土壤理化性質(zhì),最終影響土壤營養(yǎng)元素的遷移與轉(zhuǎn)化。
Butterly等[19]在“保持田間持水量、均勻間隔干濕交替、長短結(jié)合間隔干濕交替、風干”4種水分管理下,對2種農(nóng)田土壤進行了培育,研究結(jié)果表明:活性磷(樹脂可提取磷)濃度不受上述土壤水分管理的影響。尹金來等[20]選用室內(nèi)恒溫培育試驗,研究了水分含量對石灰性土壤磷形態(tài)轉(zhuǎn)化的影響。研究表明:淹水促進石灰性土壤磷向Fe-P和O-P(為蔣柏藩提取法中的磷酸鐵鹽和閉蓄態(tài)磷酸鹽)轉(zhuǎn)化,擬旱(使土壤水分維持在飽和持水量的50%~70%)使土壤Ca2-P和Ca8-P (為蔣柏藩提取法中磷酸鈣鹽中的磷酸二鈣型和磷酸八鈣型)較高;淹水—回旱后Ca2-P和Ca8-P較高,擬旱—淹水后Fe-P和O-P較高。楊連飛[21]研究了水層灌溉、輕干濕交替灌溉、重干濕交替灌溉3種水分管理模式下秸稈還田對土壤性質(zhì)的影響,研究結(jié)果表明:土壤有效磷在干濕交替條件下更高,其中在灌漿期(指水稻灌漿期,具體是指水稻通過光合作用產(chǎn)生淀粉、蛋白質(zhì)和積累的有機質(zhì)通過同化作用將他們儲存在籽粒里的階段)輕干濕交替條件下有效磷更高,在收獲期重干濕交替條件下有效磷更高。彭娜等[22]研究了不同水分條件下稻草還田對有效磷的影響,結(jié)果表明:施加稻草能提高土壤有效磷含量,且連續(xù)淹水處理升高的幅度顯著高于干濕交替處理。徐燕花[23]對含水量分別為13.39%,61.05%,63.27%的狗牙根草地、南荻洲灘地、苔草洲灘地土壤進行了研究,結(jié)果表明:樹脂磷和NaHCO3-P(用0.5M碳酸氫鈉提取的土壤磷)在狗牙根草地最高;總有效磷狗牙根草地<苔草洲灘地<南荻洲灘地,說明水分含量適中有利于提高有效磷含量,過濕過干都會降低有效磷含量;經(jīng)相關(guān)分析表明濕地土壤低水分情況下水分含量能顯著影響各種形態(tài)P的含量。Blackwell等[24]研究了干土(0.9%含水量)和濕土(24.2%含水量)在不同復水(加水使干土濕潤的過程)速率下滲濾液中磷濃度和形態(tài)的研究,結(jié)果表明:在各種復水速率下干土滲濾液中總磷量明顯比濕土高,顆粒態(tài)磷無明顯差異,溶解態(tài)磷干土明顯高于濕土,并且滲濾液中有機磷所占比例遠高于無機磷。
干濕交替變化中,土壤經(jīng)歷著從干到濕,從濕到干的循環(huán),從而引起土壤含水率的變化,對土壤結(jié)構(gòu)體、營養(yǎng)元素的遷移轉(zhuǎn)化、土壤化合物的轉(zhuǎn)變產(chǎn)生深遠影響,進而影響著磷的遷移轉(zhuǎn)化。由于潮濕土對土壤間質(zhì)孔隙間的間隙水有更牢的固持力,相比之下干化土在復水濕潤后水分能更均勻的分散,使得濕潤干化土的水可能接觸更多的土壤表面,因而能溶解轉(zhuǎn)化更多土壤磷素[24]。然而,風干土壤快速潮濕時,大團聚體會水化成小團聚體,部分不穩(wěn)定的小團聚體以云狀物的形式散布在聚集體周圍,阻塞水的傳送和儲水孔隙,對土壤結(jié)構(gòu)產(chǎn)生不利影響,形成土壤板結(jié)等[25],影響土壤磷素的遷移轉(zhuǎn)化。此外,土壤中留有大量植物殘體,土壤水分條件影響其礦化分解過程[26],不同水分條件不同程度地刺激植物殘體的破碎分解,產(chǎn)生有機酸促進土壤磷的溶解和活化[22];淹水條件下可致使鐵鋁化合物還原,隨著水分的增加和還原作用的加強,使吸附在其表面甚至部分蓄閉態(tài)磷得以釋放[23,27],實現(xiàn)磷形態(tài)之間的轉(zhuǎn)化。
土壤吸附是一種重要的土壤截磷機制[28],能將土壤中的有效磷轉(zhuǎn)化為各種植物難利用的磷,而存留在土壤中[29]。黏土礦物、各種氧化物以及有機固相的表面是土壤磷吸附的主要場所[30]。酸性土壤的主要吸附載體是鐵鋁氧化物[31],物理性黏粒和碳酸鈣是石灰性土壤的主要固磷基質(zhì)[32]。此外,有機質(zhì)、pH、氧化還原點位、溫度等對土壤磷吸附作用的影響也很大[33-35]。干濕交替會引起土壤理化性質(zhì)和功能結(jié)構(gòu)的改變[36- 37],進而導致土壤磷吸附性能的改變,影響磷素在土壤中的遷移轉(zhuǎn)化。
王里奧等[38]研究了三峽庫區(qū)消落帶土壤,運用Langumir等溫吸附方程對磷的吸附行為進行了擬合分析,研究結(jié)果表明:淹水—落干后吸磷能力增強,最大吸附量增加,土壤磷的解吸率降低。Zhang等[39]在室內(nèi)研究了2種水稻土在淹水和風干條件下的磷吸附、解吸及其有效磷的差異,結(jié)果表明:在淹水條件下,土壤磷吸附能力增加,解吸能力下降和有效磷減?。欢谘退L干過程中,土壤磷吸附顯著減少,磷解吸量和有效磷含量提高。Phillips[40]對紅壤土、砂壤土、高有機質(zhì)沼澤土,進行了土壤磷吸附性研究,模擬了干化、淹水及淹水—干化條件,結(jié)果表明:淹水對各種土壤磷吸附的影響不顯著,淹水—干化對吸附等溫線(指一定溫度下溶質(zhì)分子在兩相界面上吸附平衡時,兩相中濃度之間的關(guān)系曲線)無影響。此外,Pelovuori[41]測試了芬蘭4種耕地土壤在濕潤和風干情況下的吸附作用,用改進的Freundlich方程擬合數(shù)據(jù),以Q/I表示土壤磷的吸附量(Q表示吸附(解吸)量,I表示吸附(解吸)時的濃度)。結(jié)果表明:樣品的風干改變了Q/I值[弗倫德利希方程(Freundlich equation)中的參數(shù)。低磷濃度試驗時,增加了土壤磷的釋放;高磷濃度試驗時,增加了土壤磷的吸附,以及提高了磷的最大緩沖值。Litaor等[42]研究了泥炭土的吸附特性,用Langumir模型擬合試驗數(shù)據(jù),結(jié)果表明:泥炭土的再濕潤導致最大吸附量減小、最大緩沖量下降,但是EPC0(臨界平衡濃度)增加,將導致磷的遷移性變強。周馳等[43]用改進的Langumir等溫吸附方程,研究了巢湖湖濱帶土壤和沉積物歷經(jīng)干濕交替后的磷吸附行為,研究表明:沉積物磷最大吸附量和吸附能常數(shù)在風干后分別顯著降低和提高,但對磷平衡濃度影響不大,進而影響磷的吸附能力。
上述研究結(jié)果各不相同,干濕交替對土壤磷吸附作用的影響在不同試驗研究中呈現(xiàn)出增強、減弱以及不變的結(jié)果,這可能與各自土壤的類型、性質(zhì)及所處地層地質(zhì)條件等不同有關(guān)[41]。風干能增加沼澤土壤和耕地土壤磷的吸附[44-45],但是對濕地及湖泊土壤/沉積物磷的吸附量減少[46-50]。從吸附機理出發(fā)分析,一方面,干濕交替使土壤熟化(壓縮在潮濕時卷入的空氣,而分解團聚體)和不同程度的膨脹導致大團聚體轉(zhuǎn)變?yōu)樾F聚體,產(chǎn)生小顆粒物(<50 μm)[17],增大了比表面積,以及使Fe-Al-有機化合物結(jié)合鍵斷裂,形成新的吸附點位[51],從而增強了土壤磷的吸附能力。另一方面,團聚體的破壞,有機質(zhì)的分解,使有機質(zhì)中的富里酸聚等陰離子釋放,與磷酸鹽陰離子產(chǎn)生吸附競爭,減小了土壤磷的吸附能力,促進磷的釋放[43, 52]。此外,干濕交替條件下,F(xiàn)e2+氧化物與Fe3+氧化物及氫氧化物之間的轉(zhuǎn)換,也影響著磷的吸附性能[40, 53-54]??傊?,干濕交替下土壤成分構(gòu)成、土壤理化性質(zhì)以及各種環(huán)境因素的改變共同影響著土壤磷的吸附行為,這些因素的相互協(xié)同、相互制約,綜合表現(xiàn)為干濕交替下土壤磷的滯留或流失現(xiàn)象。
生活在土壤中的細菌、真菌、放線菌、藻類統(tǒng)稱為土壤微生物,一般細菌所占比例最大。
土壤微生物是土壤亞生態(tài)系統(tǒng)中最為活躍的成員,對改善土壤理化性質(zhì)、形成和維持土壤團聚體等土壤結(jié)構(gòu)以及提高土壤肥力等有著極其重要的決定性作用[55],此外,還在土壤腐殖質(zhì)形成、有機質(zhì)分解等能量流動過程中和在養(yǎng)分動態(tài)平衡與轉(zhuǎn)化等物質(zhì)循環(huán)過程中起著重要的作用[56]。
Turner等[57]利用直接細菌細胞計數(shù)法,統(tǒng)計了2種澳大利亞牧場土壤水分以及焦磷酸四鈉提取物中的細胞數(shù)量,發(fā)現(xiàn)幾乎所有的可提取出的細胞都隨著干泥的再濕潤過程而溶解,溶解的微生物細胞中的磷酸鹽含量與再濕潤過程水體中的可提取態(tài)磷酸鹽的增加有密切聯(lián)系,這表明了細菌細胞溶解是釋放磷酸鹽的主要來源之一。Butterly等[58]研究了多重干濕交替對澳大利亞新南威爾士州土壤磷素脈沖和微生物量的影響,在第1次干濕交替后土壤微生物量驟減,但微生物量中磷仍然比潮濕條件下低;再濕潤后,樹脂交換磷釋放超過了7 mg/kg,相當于有效磷增加了35%~40%,但是樹脂磷的這種脈沖現(xiàn)象在7 d濕潤培養(yǎng)后就消失了;與干濕交替下微生物磷減少不同,樹脂磷在隨后的干濕交替后增加,這說明樹脂磷脈沖可能不是來源于微生物量;此外還指出,干濕交替減少了細菌但增加了革蘭氏陽性細菌。總之干濕交替導致了磷素脈沖現(xiàn)象,但是這與微生物量改變無關(guān)。Mitchell等[59]研究了干化/氧化對澳大利亞Chaffey水庫沉積物磷釋放性能的影響,干化沉積物磷的厭氧釋放低于濕沉積物;加有甲醛但未暴露于空氣中的沉積物磷釋放量減少了很多,說明厭氧磷釋放可能是由微生物引起;未干化沉積物加碳源硫源后能提高磷釋放量,說明C(碳)和S(硫)限制了沉積物中細菌的活動。研究結(jié)果表明:風干引起的磷釋放減少是由微生物群落結(jié)構(gòu)(尤其是活性硫酸鹽還原細菌的減少)的改變、干化導致的碳限制造成的。Qiu等[60]研究了干濕交替下浮游生物和微生物量對西澳大利亞北湖沉積物磷釋放的影響,干化前浮游生物剛殺死后釋放的磷比風干后多;通過消毒殺菌對比表明細菌對干濕交替后磷釋放量的貢獻占很大比例;在可提取磷濃度相對低的時候(<1 000 μg/L)時,干濕交替引起的磷增加主要來源于死亡的微生物量。這與其他學者提出來的結(jié)論[61-63]一致。
干濕交替迫使大約58%以上的微生物死亡[64],但是不同微生物群落對干濕交替的反應(yīng)不一,直接影響磷釋放量[65-66],以及微生物合成磷的形態(tài)[67]。在干化時,有些微生物通過釋放細胞液來抵抗干燥,這成為有機磷的一種可能來源[68];有些微生物直接破裂死亡溶解,釋放有機磷[57]。在復水時,有些微生物細胞由于涌進大量的水而導致破裂溶解,有些會通過釋放細胞液來維持合適的細胞壓存活下來,隨后快速礦化由死亡微生物釋放化合物[69]。在周期性的干濕交替下,有些微生物可能已經(jīng)適應(yīng)生存下來[2],有些微生物在復水后因細胞修復而生還[65],而這些活著的微生物在一定程度上能調(diào)節(jié)及控制滲濾液中的磷濃度[24],重新吸收土壤中的溶解性無機磷,轉(zhuǎn)化成有機磷。
系統(tǒng)闡述了干濕交替作用下土壤含水率、吸附性能以及微生物3種主要影響因子對土壤磷素遷移轉(zhuǎn)化的影響機理和研究進展。到目前為止,關(guān)于干濕交替作用下土壤磷素的遷移轉(zhuǎn)化研究已取得一定成果,但是仍有諸多問題需進一步探討和深化研究。
(1) 干濕交替作用下土壤磷素在流域尺度上的遷移轉(zhuǎn)化研究很少。流域尺度上的土壤在共同遭受干濕交替的同時,由于其地貌地形、土壤結(jié)構(gòu)和成分、水文情況、生物種類等的差異,使得土壤磷素的遷移轉(zhuǎn)化具有多變性和復雜性。大部分學者的研究對象集中在農(nóng)田、草地、濕地、林地等單一土壤類型,而缺乏對流域河岸帶、湖濱帶等土壤利用形式多變區(qū)域的研究。
(2) 研究土壤磷素遷移轉(zhuǎn)化的技術(shù)和方法比較單一。目前,傳統(tǒng)的化學試劑提取法在磷形態(tài)測定中占主導地位,缺乏31P(磷的原子量為31的同位素,半衰期穩(wěn)定)核磁共振(NMK)技術(shù)、X射線近邊結(jié)構(gòu)光譜同步輻射(XANES)技術(shù)、同位素示蹤技術(shù)等的應(yīng)用;對磷吸附性能研究時,幾乎都是針對無機磷酸鹽的吸附,而對有機磷吸附試驗非常缺乏;干濕交替的條件大多數(shù)是在室內(nèi)模擬淹水—風干,這與野外的真實情況相差甚遠,不能很好地反映野外干濕交替效果。
(3) 如何控制干濕交替引起的土壤磷流失的措施較為缺乏?,F(xiàn)有的控磷技術(shù)大多未考慮干濕交替帶來的影響,而干濕交替對土壤磷素的遷移轉(zhuǎn)化的研究主要集中在機理和影響因素方面,缺乏治理和控制干濕交替引起的土壤磷流失的研究。
干濕交替不僅是一種常見的自然現(xiàn)象,也是一種可人為調(diào)節(jié)的管理方式。開展干濕交替對土壤磷素遷移轉(zhuǎn)化的研究,有利于我們更清楚地認知干濕條件下磷在土壤中的遷移轉(zhuǎn)化過程以及其影響因子,從而為土壤磷的有效管理、土壤環(huán)境質(zhì)量的演變過程、生態(tài)環(huán)境的恢復、水體富營養(yǎng)化的分析與預防提供科學的基礎(chǔ)數(shù)據(jù)和理論依據(jù)。
[1] SOULIDES D, ALLISON F. Effect of Drying and Freezing Soils on Carbon Dioxide Production, Available Mineral Nutrients, Aggregation, and Bacterial Population[J]. Soil Science, 1961, 91(5): 291-298.
[2] BLACKWELL M S, CARSWELL A M, BOL R. Variations in Concentrations of N and P Forms in Leachates from Dried Soils Rewetted at Different Rates[J]. Biology and Fertility of Soils, 2013, 49(1): 79-87.
[3] PURI A N, CROWTHER E M, KEEN B A. The Relation Between the Vapour Pressure and Water Content of Soils[J]. The Journal of Agricultural Science, 1925, 15(1): 68-88.
[4] 王 明. 干濕交替驅(qū)動下土壤微生物量及N2O變化規(guī)律[D].北京:中國農(nóng)業(yè)科學院, 2013. (WANG Ming. Microbial Biomass and N2O Emission as Affected by the Soil Drying and Rewetting Events[D]. Beijing: Chinese Academyof Agricultural Sciences, 2013. (in Chinese))
[5] 張雪雯, 莫 熠, 張博雅,等.干濕交替及凋落物對若爾蓋泥炭土可溶性有機碳的影響[J]. 濕地科學,2014, 12(2): 134-140.(ZHANG Xue-wen, MO Yi, ZHANG Bo-ya,etal. Effect of Wetting-drying Cycle and Litter on Dissolved Organic Carbon in Peat Soil in Zoigê Plateau[J]. Wetland Science,2014,12(2):134-140.(in Chinese))
[6] 楊紅軍. 五里湖湖濱帶生態(tài)恢復和重建的基礎(chǔ)研究[D].上海:上海交通大學, 2008.(YANG Hong-jun. Basic Study on the Ecological Restoration and Reconstruction in Wulihu Lake[D]. Shanghai: Shanghai Jiaotong University, 2008.(in Chinese))
[7] THANH NGUYEN B,MARSCHNER P.Effect of Drying and Rewetting on Phosphorus Transformations in Red Brown Soils with Different Soil Organic Matter Content[J]. Soil Biology and Biochemistry, 2005, 37(8): 1573-1576.
[8] 樸河春, 劉廣深,洪業(yè)湯. 干濕交替和凍融作用對土壤肥力和生態(tài)環(huán)境的影響[J]. 生態(tài)學雜志, 1995, 14(6): 29-34. (PIAO He-chun, LIU Guang-shen,HONG Ye-tang. Effect of Alternative Drying-Rewetting and Freezing-Thawing on Soil Fertility and Ecological Environment[J]. Chinese Journal of Ecology, 1995, 14(6): 29-34. (in Chinese))
[9] SCHIMEL J, BALSER T C, WALLENSTEIN M. Microbial Stress-response Physiology and Its Implications for Ecosystem Function[J]. Ecology, 2007, 88(6): 1386-1394.
[10]郭彥軍, 倪 郁, 韓建國. 農(nóng)牧交錯帶人工種草對土壤磷素有效性的影響[J]. 草業(yè)學報, 2010, 19(2): 169-174.(GUO Yan-jun,NI Yu,HAN Jian-guo.Effects of Establishing Perennial Artificial Grasslands on the Availability of Soil Phosphorus in Agro-pastoral Transitional Zones, Northern China[J]. Acta Prataculturae Sinica, 2010,19(2): 169-174 .(in Chinese))
[11]HESKETH N, BROOKES P. Development of an Indicator for Risk of Phosphorus Leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110.
[12]TUNNEY H, CARTON O, BROOKES P,etal. Phosphorus Loss from Soil to Water[M]. Oxon, UK: CAB International, 1997.
[13]馬利民, 張 明, 滕衍行,等. 三峽庫區(qū)消落區(qū)周期性干濕交替環(huán)境對土壤磷釋放的影響[J]. 環(huán)境科學, 2008,29(4):1035-1039.(MA Li-min,ZHANG Ming,TENG Yan-hang,etal.Characteristics of Phosphorous Release from Soil in Periodic Alternately Waterlogged and Drained Environments at WFZ of the Three Gorges Reservoir[J]. Environmental Science,2008,29(4):1035-1039.(in Chinese))
[14]曹 琳, 吉芳英, 林 茂, 等. 三峽庫區(qū)干濕交替消落區(qū)土壤磷形態(tài)[J]. 長江流域資源與環(huán)境, 2011, 20(1):101-106.(CAO Lin,JI Fang-ying,LIN Mao,etal.Soil Phosphorous from Analysis in Fluctuating (Dry-Wet Cycling) Zone of Three Gorges Reservoir Area[J]. Resources and Environment in the Yangtze Basin, 2011, 20(1): 101-106.(in Chinee))
[15]ZHANG B, FANG F, GUO J,etal. Phosphorus Fractions and Phosphate Sorption-release Characteristics Relevant to the Soil Composition of Water-level-fluctuating Zone of Three Gorges Reservoir[J]. Ecological Engineering, 2012, 40: 153-159.
[16]SCH?NBRUNNER I M, PREINER S, HEIN T. Impact of Drying and Re-flooding of Sediment on Phosphorus Dynamics of River-floodplain Systems[J]. Science of the Total Environment, 2012, 432: 329-337.
[17]BüNEMANN E, KELLER B, HOOP D,etal. Increased Availability of Phosphorus after Drying and Rewetting of a Grassland Soil: Processes and Plant Use[J]. Plant and Soil, 2013, 370(1/2): 511-526.
[18]單艷紅, 楊林章, 顏廷梅, 等. 水田土壤溶液磷氮的動態(tài)變化及潛在的環(huán)境影響[J]. 生態(tài)學報, 2005, 25(1):115-121. (SHAN Yan-hong, YANG Lin-zhang, YAN Ting-mei,etal. The Variation of P&N Contents in Paddy Soil Water and Its Environment Effect[J]. Acta Ecologica Sinica, 2005, 25(1):115-121.(in Chinee))
[19]BUTTERLY C R, MCNEILL A M, BALDOCK J A,etal. Changes in Water Content of Two Agricultural Soils Does Not Alter Labile P and C Pools[J]. Plant and Soil, 2011, 348(1/2): 185-201.
[20]尹金來, 周春霖,洪立洲,等. 水分和秸稈對石灰性土壤磷素形態(tài)轉(zhuǎn)化影響的研究[J]. 南京農(nóng)業(yè)大學學報, 1994, 17(1): 65-70.(YIN Jin-lai, ZHOU Chun-lin, HONG Li-zhou,etal. Effect of Flooding and Drainage on the Morphological Transformation of Phosphates in Limy Soils[J]. Journal of Nanjing Agricultural University, 1994, 17(1): 65-70.(in Chinese))
[21]楊連飛. 不同水分管理模式下秸稈還田對土壤性質(zhì)的影響研究[D].揚州:揚州大學, 2013. (YANG Lian-fei. The Effect of Returning Straw to Field on Soil Properties Under Different Water Management Model[D]. Yangzhou: Yangzhou University, 2013.(in Chinese))
[22]彭 娜, 王凱榮, BURESH R J, 等. 不同水分條件下施用稻草對土壤有機酸和有效磷的影響[J]. 土壤學報, 2006, 43(2): 347-351. (PENG Na, WANG Kai-rong, BURESH R J,etal. Effect of Rice Straw Incorporation on Concentration of Organic Acids and Available Phosphorus in Soil Under Different Water Regimes[J].Acta Pedologica Sinica, 2006, 43(2): 347-351.(in Chinese))
[23]徐燕花. 水分梯度下鄱陽湖典型濕地土壤有效 N, P 含量及其形態(tài)的季節(jié)變化[D].南昌:南昌大學, 2011.(XU Yan-hua. The Seasonal Changes of Soli Available N,P Contents and Their Forms Under Different Water Gradients in the Typical Wetland of Poyang Lake[D]. Nanchang: Nanchang University, 2011. (in Chinese))
[24]BLACKWELL M, BROOKES P, DE LA FUENTE-MARTINEZ N,etal. Effects of Soil Drying and Rate of Re-wetting on Concentrations and Forms of Phosphorus in Leachate[J]. Biology and Fertility of Soils, 2009, 45(6): 635-643.
[25]TISDALL J, OADES J M. Organic Matter and Water-stable Aggregates in Soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
[26]堯水紅. 干濕交替強度對旱地土壤結(jié)構(gòu)形成及水稻秸稈分解過程的相互作用的影響[D]. 南京:南京農(nóng)業(yè)大學,2005. (YAO Shui-hong. Soil Biophysical Processes Involved in Decomposition of Rice Straw Incorporated in Upland and Soil Under Wetting and Drying Cycles for Stabilization of Soil Carbon Pools and Soil Structure[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese))
[27]MILLER A J, SCHUUR E A, CHADWICK O A. Redox Control of Phosphorus Pools in Hawaiian Montane Forest Soils[J]. Geoderma, 2001, 102(3): 219-237.
[28]錢 進, 王 超, 王沛芳, 等. 河湖濱岸緩沖帶凈污機理及適宜寬度研究進展[J]. 水科學進展, 2009, 20(1): 139-144.(QIAN Jin,WANG Chao, WANG Pei-fang,etal. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip[J]. Advances in Water Science, 2009, 20(1): 139-144.(in Chinese))
[29]趙慶雷, 吳 修, 袁守江, 等. 長期不同施肥模式下稻田土壤磷吸附與解吸的動態(tài)研究[J]. 草業(yè)學報, 2014, 23(1): 113-122.(ZHAO Qing-lei, WU Xiu, YUAN Shou-jiang,etal. A Study on the Dynamics of Phosphorus Adsorption and Desorption Characteristics of Paddy Soil with Long-term Fertilization[J]. Acta Prataculturae Sinica, 2014, 23(1): 113-122.(in Chinese))
[30]羅 敏. 黃土高原土壤對磷素的吸附-解吸特征及其影響因素研究[D]. 西安: 西北農(nóng)林科技大學, 2008.(LUO Min. Study on Adsorption and Desorption of Soil Phosphorus in Loess Plateau and the Influencing Factors[D]. Xi’an: Northwest Agricultural University, 2008. (in Chinese))
[31]ARAI Y, SPARKS D. Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach[J]. Advances in Agronomy, 2007, 94: 135-179.
[32]呂家瓏, 李祖蔭. 石灰性土壤中固磷基質(zhì)的探討[J]. 西北農(nóng)林科技大學學報 (自然科學版), 1991, 18(5):204-206. (LV Jia-long, LI Zu-yin. Discussions on Medium for Fixing Phosphorus in Calcareous Soils[J]. Journal of Northwest A & F University (Natural Science Edition), 1991, 18(5):204-206. (in Chinese))
[33]馬 良, 徐仁扣. pH 和添加有機物料對 3 種酸性土壤中磷吸附-解吸的影響[J]. 生態(tài)與農(nóng)村環(huán)境學報, 2010, 26(6): 596-599. (MA Liang, XU Ren-kou. Effects of Regulation of pH and Application of Organic Materil on Adsorption and Desorption of Phosphorus in Three Types of Acid Soils[J]. Journal of Ecology and Rural Environment, 2010, 26(6): 596-599.(in Chinese))
[34]王國平. 濕地磷的生物地球化學特性[J]. 水土保持學報, 2004, 18(4): 193-195.(WANG Guo-ping. Character of Phosphorus Biogeochemistry on Wetlands[J]. Journal of Soil and Water Conservation, 2004, 18(4): 193-195. (in Chinese))
[35]MOORE A, REDDY K. Role of Eh and pH on Phosphorus Geochemistry in Sediments of Lake Okeechobee, Florida[J]. Journal of Environmental Quality, 1994, 23(5): 955-964.
[36]吳 韓. 丹江口消落帶表層土壤理化性質(zhì)特征及水位影響研究[D]. 武漢:華中農(nóng)業(yè)大學, 2012. (WU Han. Characteristic and Water Level Influence on Surface Soil Physical and Chemical Properties in Danjiangkou Reservoir Hydro-fluctuation Belt[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese))
[37]LI C H, LI Y, TANG L S. Comparison of Soil Properties and Microbial Activities between Air-dried and Rewetted Desert and Oasis Soils in Northwest China[J]. Communications in Soil Science and Plant Analysis, 2011, 42(15): 1833-1846.
[38]王里奧, 黃 川, 詹艷慧, 等. 三峽庫區(qū)消落帶淹水—落干過程土壤磷吸附—解吸及釋放研究[J]. 長江流域資源與環(huán)境, 2006, 15(5): 593-597. (WANG Li-ao, HUANG Chuan, ZHAN Yan-hui,etal. Flooding and Subsequent Air-Drying on Adsorption, Desorption and Release of Phosphorus of Soil in Drawdown Areas in Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2006, 15(5): 593-597.(in Chinese))
[39]ZHANG Y, LIN X, NI W. Effects of Flooding and Subsequent Air-drying on Phosphorus Adsorption, Desorption and Available Phosphorus in the Paddy Soils[J]. Chinese Journal of Rice Science, 1998, 12(1): 40-44.
[40]PHILLIPS I. Phosphorus Availability and Sorption under Alternating Waterlogged and Drying Conditions[J]. Communications in Soil Science & Plant Analysis, 1998, 29(19/20): 3045-3059.
[41]PELTOVUORI T. Sorption of Phosphorus in Field-moist and Air-dried Samples from Four Weakly Developed Cultivated Soil Profiles[J]. European Journal of Soil Science, 2007, 58(1): 8-17.
[42]LITAOR M, REICHMANN O, HAIM A,etal. Sorption Characteristics of Phosphorus in Peat Soils of a Semiarid Altered Wetland[J]. Soil Science Society of America Journal, 2005, 69(5): 1658-1665.
[43]周 馳, 李 陽, 曹秀云, 等. 風干和淹水過程對巢湖流域土壤和沉積物磷吸附行為的影響[J]. 長江流域資源與環(huán)境, 2012,21(2):10-17. (ZHOU Chi, LI Yang, CAO Xiu-yun,etal. Effect of Air-Drying and Flooding on Phosphorus Sorption Behavior of Soils and Sediments along the Aquatic-Terrestrial Ecotone of Lake Chaohu[J]. Resources and Environment in the Yangtze Basin, 2012,21(2):10-17.(in Chinese))
[44]DE GROOT C J, VAN WIJCK C. The Impact of Desiccation of a Freshwater Marsh (Garcines Nord, Camargue, France) on Sediment-water-vegetation Interactions[J]. Hydrobiologia, 1993, 252(1): 83-94.
[45]PELTOVUORI T, SOINNE H. Phosphorus Solubility and Sorption in Frozen, Air-dried and Field-moist Soil[J]. European Journal of Soil Science, 2005, 56(6): 821-826.
[46]TWINCH A. Phosphate Exchange Characteristics of Wet and Dried Sediment Samples from a Hypertrophic Reservoir: Implications for the Measurements of Sediment Phosphorus Status[J]. Water Research, 1987, 21(10): 1225-1230.
[47]QIU S, MCCOMB A. Effects of Oxygen Concentration on Phosphorus Release from Reflooded Air-dried Wetland Sediments[J]. Marine and Freshwater Research, 1994, 45(7): 1319-1328.
[48]BALDWIN D S. Effects of Exposure to Air and Subsequent Drying on the Phosphate Sorption Characteristics of Sediments from a Eutrophic Reservoir[J]. Limnology and Oceanography, 1996, 41(8): 1725-1732.
[49]WATTS C. Seasonal Phosphorus Release from Exposed, Re-inundated Littoral Sediments of Two Australian Reservoirs[J]. Hydrobiologia, 2000, 431(1): 27-39.
[50]XIAO W J, SONG C L, CAO X Y,etal. Effects of Air-drying on Phosphorus Sorption in Shallow Lake Sediment, China[J]. Fresenius Environmental Bulletin, 2012, 21: 672-678.
[51]HAYNES R, SWIFT R. Effects of Air-drying on the Adsorption and Desorption of Phosphate and Levels of Extractable Phosphate in a Group of Acid Soils, New Zealand[J]. Geoderma, 1985, 35(2): 145-157.
[52]KASTELAN-MACAN M, PETROVIC M. The Role of Fulvic Acids in Phosphorus Sorption and Release from Mineral Particles[J]. Water Science and Technology, 1996, 34(7): 259-265.
[53]JUGSUJINDA A, KRAIRAPANOND A, PATRICK JR W. Influence of Extractable Iron, Aluminium, and Manganese on P-sorption in Flooded Acid Sulfate Soils[J]. Biology and Fertility of Soils, 1995, 20(2): 118-124.
[54]王桂風, 劉 凌, 田 娟. 淹水過程不同土層磷的釋放研究[J]. 環(huán)境科學與技術(shù), 2008, 31(12): 21-23. (WANG Gui-feng, LIU Ling, TIAN Juan. Phosphorus Release in Different Layers of Flooded Soils[J]. Environmental Science & Technology, 2008, 31(12): 21-23.(in Chinese))
[55]張 靜. 扎龍濕地草甸土壤微生物與土壤昆蟲群落及其相關(guān)性研究[D].哈爾濱:東北林業(yè)大學, 2013. (ZHANG Jing. Soil Insect Community and Soil Microorganism and Their Relativity in Meadow of Zhalong Wetland[D]. Harbin: Northeast Forestry University, 2013. (in Chinese))
[56]易 祎. 東北黑土區(qū)典型流域農(nóng)耕地土壤微生物指標的空間變化特征研究[D].西安:西北農(nóng)林科技大學, 2013. (YI Yi. A Study on the Spatial Distribution of Soil Microbial Indicators at the Typical Watershed of Black Soil Region[D]. Xi’an: Northwest Agriculture and Forestry University, 2013. (in Chinese))
[57]TURNER B L, DRIESSEN J P, HAYGARTH P M,etal. Potential Contribution of Lysed Bacterial Cells to Phosphorus Solubilisation in Two Rewetted Australian Pasture Soils[J]. Soil Biology and Biochemistry, 2003, 35(1): 187-189.
[58]BUTTERLY C, BüNEMANN E, MCNEILL A M,etal. Carbon Pulses But Not Phosphorus Pulses are Related to Decreases in Microbial Biomass During Repeated Drying and Rewetting of Soils[J]. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.
[59]MITCHELL A, BALDWIN D S. Effects of Desiccation/oxidation on the Potential for Bacterially Mediated P Release from sediments[J]. Limnology and Oceanography, 1998, 43(3): 481-487.
[60]QIU S, MCCOMB A. Planktonic and Microbial Contributions to Phosphorus Release from Fresh and Air-dried Sediments[J]. Marine and Freshwater Research, 1995, 46(7): 1039-1045.
[61]GRIERSON P, COMERFORD N, JOKELA E. Phosphorus Mineralization Kinetics and Response of Microbial Phosphorus to Drying and Rewetting in a Florida Spodosol[J]. Soil Biology and Biochemistry, 1998, 30(10): 1323-1331.
[62]TURNER B L, HAYGARTH P M. Changes in Bicarbonate-extractable Inorganic and Organic Phosphorus by Drying Pasture Soils[J]. Soil Science Society of America Journal, 2003, 67(1): 344-350.
[63]TURNER B L, HAYGARTH P M. Biogeochemistry: Phosphorus Solubilization in Rewetted Soils[J]. Nature, 2001, 411(6835): 258.
[64]VAN GESTEL M, MERCKX R, VLASSAK K. Microbial Biomass Responses to Soil Drying and Rewetting: The Fate of Fast-and Slow-growing Microorganisms in Soils from Different Climates[J]. Soil Biology and Biochemistry, 1993, 25(1): 109-123.
[65]BUSHBY H, MARSHALL K. Desiccation-induced Damage to the Cell Envelope of Root-nodule Bacteria[J]. Soil Biology and Biochemistry, 1977, 9(3): 149-152.
[66]FIERER N, SCHIMEL J, HOLDEN P. Influence of Drying-rewetting Frequency on Soil Bacterial Community Structure[J]. Microbial Ecology, 2003, 45(1): 63-71.
[67]BüNEMANN E, MARSCHNER P, SMERNIK R J,etal. Soil Organic Phosphorus and Microbial Community Composition as Affected by 26 Years of Different Management Strategies[J]. Biology and Fertility of Soils, 2008, 44(5): 717-726.
[68]HALVERSON L J, JONES T M, FIRESTONE M K. Release of Intracellular Solutes by Four Soil Bacteria Exposed to Dilution Stress[J]. Soil Science Society of America Journal, 2000, 64(5): 1630-1637.
[69]BIRCH H. The Effect of Soil Drying on Humus Decomposition and Nitrogen Availability[J]. Plant and Soil, 1958, 10(1): 9-31.
(編輯:姜小蘭)
Review of the Effect of Drying-rewetting Alternation onthe Transportation and Transformation of Soil Phosphorus
REN Wen-chang1, WANG Pei-fang1,2, QIAN Jin1,2, REN Ling-xiao1
(1.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China ; 2.College of Environment, Hohai University, Nanjing 210098, China)
The abundance of soil phosphorus controls the development of primary productivity of ecosystems. The structure and the physical-chemical properties of soil have been long-time affected by the periodical drying-rewetting alternation which has a significant impact on the transportation and transformation of soil phosphorus. In this review, we summarize recent researches on the process of phosphorus transport and transformation due to soil moisture content, soil adsorption characteristics and soil microbes in the presence of drying-rewetting alternations. The main results are: (1) moisture content changes soil porosity and its transmission path, stimulates the mineralization of organic matter and redox intensity to different extents, thus affecting the transportation and transformation of soil phosphorus; (2) drying-rewetting alternation changes soil particle size, adsorption sites and the forms of metallic compounds, thus affecting the soil adsorption properties of phosphorus; (3) microbiological phosphorus becomes a main source of soil phosphorus in the process of drying-rewetting alternations, and the physiology response of microorganisms is a key factor affecting the soil phosphorus. Further research prospects are also put forward in this review.
soil; phosphorus; drying-rewetting alternation; transportation and transformation; ecosystem
2014-05-28;
2014-07-30
國家自然科學基金項目(51379062);國家水體污染控制與治理科技重大專項(2012ZX07101)
任文暢(1989-),男,浙江寧波人,碩士研究生,主要從事水環(huán)境保護與生態(tài)修復研究,(電話)18751958627(電子信箱)hhurwc@sina.cn。
王沛芳(1973-),女,河北保定人,教授,主要從事水環(huán)境保護與生態(tài)修復研究,(電話)13701475568(電子信箱)pfwang2005@hhu.edu.cn。
10.3969/j.issn.1001-5485.2015.05.008
2015,32(05):41-47
X53
A
1001-5485(2015)05-0041-07