王家梁,馬德軍,陳 偉,黃 勇,白盟亮
(1裝甲兵工程學(xué)院 機(jī)械工程系,北京 100072; 2總裝備部 西安軍事代表局,西安 710065)
?
陶瓷材料維氏壓痕形貌仿真與實(shí)驗(yàn)分析
王家梁1,馬德軍1,陳 偉1,黃 勇1,白盟亮2
(1裝甲兵工程學(xué)院 機(jī)械工程系,北京 100072; 2總裝備部 西安軍事代表局,西安 710065)
基于有限元數(shù)值分析模型對(duì)陶瓷材料維氏壓入過程中產(chǎn)生的壓痕形貌進(jìn)行仿真。以Si3N4和ZrO2兩種典型陶瓷材料為例,對(duì)其有限元仿真壓痕與實(shí)驗(yàn)測(cè)量壓痕的對(duì)角線半長(zhǎng)和維氏硬度進(jìn)行對(duì)比,結(jié)果表明,Si3N4和ZrO2的有限元仿真壓痕與實(shí)驗(yàn)測(cè)量壓痕對(duì)角線半長(zhǎng)分別相差0.39%和-0.53%,維氏硬度分別相差-2.7%和4.2%。隨著壓頭與材料間的摩擦因數(shù)由0變化至0.5,有限元仿真壓痕與實(shí)驗(yàn)測(cè)量壓痕的對(duì)角線半長(zhǎng)分別相差0.28%和0.27%,維氏硬度分別相差0.14%和0.21%。此外,應(yīng)用本方法對(duì)其他幾種典型陶瓷材料(Al2O3,ZTA,SiC,Silica)維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值進(jìn)行了對(duì)比,其壓痕對(duì)角線半長(zhǎng)分別相差1.14%,-0.57%,-0.89%,0.41%,維氏硬度分別相差-2.24%,1.12%,1.85%,-0.86%。據(jù)此可知,陶瓷材料維氏壓痕形貌可由有限元數(shù)值仿真方法獲得,從而解決了陶瓷材料維氏硬度測(cè)試過程中因壓痕不夠清晰導(dǎo)致的測(cè)量數(shù)據(jù)不準(zhǔn)問題,為下一步探索基于儀器化壓入響應(yīng)識(shí)別陶瓷材料維氏硬度以及其他各力學(xué)性能參數(shù)提供技術(shù)基礎(chǔ)。
陶瓷材料;有限元仿真;壓痕對(duì)角線半長(zhǎng);維氏硬度;摩擦因數(shù)
維氏硬度測(cè)試作為一種快速檢測(cè)材料力學(xué)性能的簡(jiǎn)便方法,其值能夠一定程度上反映出材料的彈塑性性能[1-5],一直以來受到國(guó)內(nèi)外研究學(xué)者的廣泛關(guān)注[6-10]。特別是對(duì)于陶瓷材料,斷裂韌性作為衡量陶瓷脆性或韌性的重要力學(xué)性能指標(biāo),其值的準(zhǔn)確測(cè)量一直以來是國(guó)內(nèi)外研究人員普遍關(guān)注的熱點(diǎn)和難點(diǎn)。然而,傳統(tǒng)壓痕法測(cè)試陶瓷材料斷裂韌性的諸多公式中(Evans公式[11]、Lawn公式[12]、Anstis公式[13]、Niihara公式[14]、JISR1607—1990公式[15]),普遍需要對(duì)維氏壓痕對(duì)角線半長(zhǎng)及維氏硬度進(jìn)行準(zhǔn)確測(cè)量,由于肉眼對(duì)壓痕形貌進(jìn)行觀測(cè)不可避免的會(huì)對(duì)測(cè)試結(jié)果引入因人為因素導(dǎo)致的誤差,特別是對(duì)壓痕形貌識(shí)別較困難的材料而言(如熔融硅材料,壓痕形貌如圖1所示),測(cè)量結(jié)果往往誤差較大。
為此,本工作以Si3N4和ZrO2兩種典型陶瓷材料為例,基于有限元數(shù)值分析模型對(duì)兩種材料維氏壓痕形貌進(jìn)行仿真,并與壓痕實(shí)驗(yàn)測(cè)量結(jié)果進(jìn)行比較。從而驗(yàn)證陶瓷材料維氏壓痕形貌仿真方法的有效性,解決陶瓷材料維氏硬度測(cè)試過程中因壓痕不夠清晰導(dǎo)致的測(cè)量數(shù)據(jù)不準(zhǔn)問題,為下一步探索基于儀器化壓入響應(yīng)識(shí)別陶瓷材料維氏硬度以及其他各力學(xué)性能參數(shù)提供技術(shù)基礎(chǔ)。
圖1 熔融硅維氏壓痕形貌Fig.1 Vickers impression morphology of fused silica
標(biāo)準(zhǔn)的四棱錐Vickers壓頭面角為136°,其對(duì)Si3N4和ZrO2兩種陶瓷材料進(jìn)行的維氏壓入產(chǎn)生的壓痕形貌如圖2所示。
圖2 兩種陶瓷材料維氏壓入壓痕形貌 (a)Si3N4壓痕形貌;(b)ZrO2壓痕形貌Fig.2 Vickers indentation impression morphology of two kinds of ceramic materials (a)impression morphology of Si3N4;(b)impression morphology of ZrO2
應(yīng)用商用有限元軟件Abaqus[16]建立維氏壓入三維有限元模型,為降低計(jì)算成本,根據(jù)模型對(duì)稱性可以取Vickers壓頭的八分之一建立模型進(jìn)行分析(如圖3所示),被壓材料也定義為與壓頭對(duì)稱性相符的八分之一模型。
圖3 Vickers壓頭建模示意圖Fig.3 Schematic diagram of Vickers indenter modeling
對(duì)于有限元模型的網(wǎng)格劃分,靠近壓頭尖端的局部網(wǎng)格劃分精細(xì),遠(yuǎn)離壓頭的區(qū)域劃分較為稀疏??紤]到本工作建立的有限元模型主要針對(duì)壓痕對(duì)角線進(jìn)行計(jì)算,特別對(duì)被壓材料的壓痕對(duì)角線區(qū)域網(wǎng)格進(jìn)行精細(xì)劃分,如圖4所示。通過網(wǎng)格收斂性分析和遠(yuǎn)場(chǎng)無關(guān)性分析,最終確定壓頭和被壓材料共劃分215382個(gè)四面體單元和54720個(gè)六面體單元。根據(jù)儀器化壓入方法[17,18]獲得的Si3N4和ZrO2兩種陶瓷材料的彈塑性參數(shù)作為有限元數(shù)值仿真的材料屬性進(jìn)行輸入,其中Si3N4的彈性模量E=304GPa,泊松比為v=0.2,屈服強(qiáng)度σy=7800MPa,硬化指數(shù)n=0;ZrO2的彈性模量E=228GPa,泊松比為v=0.2,屈服強(qiáng)度σy=5700MPa,硬化指數(shù)n=0。金剛石Vickers壓頭定義為彈性體,其中彈性模量E=1141GPa,泊松比v=0.07。壓頭和被壓材料的接觸摩擦因數(shù)分別取f=0,0.15,0.3,0.5。整個(gè)陶瓷材料維氏壓入仿真計(jì)算采用非線性大變形理論。
圖4 陶瓷材料維氏壓入三維有限元模型圖Fig.4 3D finite element model of Vickers indentation in ceramic materials
對(duì)于壓痕對(duì)角線半長(zhǎng)的仿真結(jié)果識(shí)別,關(guān)鍵在于確定壓頭卸載、材料回彈完全恢復(fù)后的壓痕邊緣有限元節(jié)點(diǎn)位置,該位置必然為各節(jié)點(diǎn)連線的曲率最大點(diǎn)。因此,本工作確定壓痕邊緣有限元節(jié)點(diǎn)位置主要分為兩步:第一步,當(dāng)壓頭以最大壓入載荷Pm壓入陶瓷材料至最大壓入深度hm時(shí),確定出此時(shí)八分之一模型沿壓痕對(duì)角線方向的對(duì)稱面處壓頭與被壓材料表面的接觸節(jié)點(diǎn)A(此節(jié)點(diǎn)位置可由接觸應(yīng)力值確定),如圖5所示;第二步,當(dāng)壓頭完全卸載后,識(shí)別接觸節(jié)點(diǎn)A的位置坐標(biāo),從而得到壓痕對(duì)角線半長(zhǎng)的有限元數(shù)值仿真結(jié)果。
圖5 最大壓入深度對(duì)應(yīng)的沿壓痕對(duì)角線方向壓頭與 被壓材料接觸節(jié)點(diǎn)(A)位置示意圖Fig.5 Schematic diagram of the maximum contact node position(A) between indenter and material of impression along the diagonal direction corresponding to the maximum indentation depth
基于上述有限元數(shù)值仿真方法,對(duì)兩種陶瓷材料進(jìn)行維氏壓痕形貌的有限元數(shù)值仿真,固定壓頭最大壓入深度hm=5μm,針對(duì)不同接觸面摩擦因數(shù)對(duì)應(yīng)的兩種陶瓷材料維氏壓痕對(duì)角線半長(zhǎng)a和維氏硬度HV的仿真計(jì)算值如表1,2所示。
由表1,2可以看出,不同接觸面摩擦因數(shù)(f=0,0.15,0.3,0.5)對(duì)兩種陶瓷材料壓痕對(duì)角線半長(zhǎng)和 維氏硬度的影響極小,其中,Si3N4和ZrO2的壓痕對(duì)角線半長(zhǎng)差別分別為0.28%和0.27%,維氏硬度差別分別為0.14%和0.21%。由此可知,本工作所采用的有限元數(shù)值仿真方法對(duì)陶瓷材料壓痕對(duì)角線半長(zhǎng)和維氏硬度的識(shí)別不受接觸摩擦因數(shù)的影響,具有一定的可靠性,從而有望解決陶瓷材料維氏硬度測(cè)試過程中因壓痕不夠清晰導(dǎo)致的測(cè)量數(shù)據(jù)不準(zhǔn)問題。
表1 不同接觸面摩擦因數(shù)對(duì)應(yīng)的Si3N4材料維氏壓痕對(duì) 角線半長(zhǎng)和維氏硬度有限元仿真結(jié)果
表2 不同接觸面摩擦因數(shù)對(duì)應(yīng)的ZrO2材料維氏壓痕對(duì)角線半長(zhǎng)和維氏硬度有限元仿真結(jié)果
按照國(guó)家標(biāo)準(zhǔn)GB/T 21838.1—2008[19]的要求委托中國(guó)建筑材料科學(xué)研究總院陶瓷科學(xué)研究院制備Si3N4和ZrO2兩種陶瓷材料的壓入標(biāo)準(zhǔn)試樣塊。其中,Si3N4和ZrO2試樣均采用高純(原料純度≥99.9%)超細(xì)粉料通過等靜壓成型方法制得,其試樣致密度分別大于99%和98%,密度分別為3.21g/cm3和6.02g/cm3。采用自主研制的具有完全自主知識(shí)產(chǎn)權(quán)的高精度宏觀儀器化壓入儀[20]對(duì)兩種材料進(jìn)行維氏壓入實(shí)驗(yàn),所用四棱錐Vickers壓頭的面角已經(jīng)過標(biāo)定。加載階段的加載速率為0.5N/s,在保證壓痕形貌能夠準(zhǔn)確識(shí)別的情況下,本實(shí)驗(yàn)取最大壓入載荷為100N;保載30s;卸載階段的卸載速率與加載速率保持一致,為0.5N/s。按照上述壓入要求,重復(fù)實(shí)驗(yàn)10次,壓痕之間保持適當(dāng)距離,避免實(shí)驗(yàn)結(jié)果相互干擾。利用光學(xué)顯微鏡,對(duì)兩種陶瓷材料維氏壓入實(shí)驗(yàn)獲得的壓痕形貌進(jìn)行觀測(cè),各壓痕參數(shù)量取數(shù)據(jù)分別見表3,4所示。
表3 Si3N4材料維氏壓入實(shí)驗(yàn)獲得的壓痕對(duì)角線半長(zhǎng)和維氏硬度測(cè)量值
由于維氏壓入過程中,Si3N4和ZrO2兩種陶瓷材料與金剛石壓頭的實(shí)際接觸摩擦因數(shù)f難以確定,且考慮到前文所述摩擦因數(shù)對(duì)壓痕對(duì)角線半長(zhǎng)的影響極小,本研究取接觸面摩擦因數(shù)f=0.15對(duì)應(yīng)的兩種陶瓷材料維氏壓入有限元仿真獲得的壓痕對(duì)角線半長(zhǎng)和維氏硬度與實(shí)驗(yàn)真實(shí)測(cè)量值進(jìn)行對(duì)比,結(jié)果分別見表5,6所示。其中,a,hm,HV分別為有限元仿真獲得的壓痕對(duì)角線半長(zhǎng)、最大壓入深度和維氏硬度,a′,hm′,HV′分別為實(shí)驗(yàn)所測(cè)真實(shí)壓痕對(duì)角線半長(zhǎng)、最大壓入深度和維氏硬度。
表4 ZrO2材料維氏壓入實(shí)驗(yàn)獲得的壓痕對(duì)角線半長(zhǎng)和維氏硬度測(cè)量值
由表5,6可知,本工作所采用的有限元仿真方法識(shí)別的Si3N4和ZrO2壓痕對(duì)角線半長(zhǎng)與實(shí)驗(yàn)真實(shí)測(cè)量值分別相差0.39%和-0.53%,維氏硬度分別相差-2.7%和4.2%。鑒于兩種材料的壓痕仿真識(shí)別結(jié)果與真實(shí)測(cè)量值偏差較小,且維氏硬度偏差值與維氏硬度測(cè)量最大允許誤差(±2%)[21]相當(dāng),從而說明利用有限元數(shù)值方法對(duì)陶瓷材料壓痕形貌的仿真計(jì)算具有一定的可靠性。
表7是應(yīng)用本方法對(duì)其他幾種典型陶瓷材料維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值的對(duì)比結(jié)果。其中,Al2O3(原料純度≥99.99%) 、ZTA(原料純度≥99.99%的25%ZrO2和75%的Al2O3)和SiC(原料純度≥98%)由中國(guó)建筑材料科學(xué)研究總院陶瓷科學(xué)研究院提供,其密度分別為3.95,4.28,3.10g/cm3,Silica試樣是由寶山鋼鐵股份有限公司提供的納米壓入儀用標(biāo)準(zhǔn)樣品(國(guó)標(biāo)編號(hào):GSB03-2496—2008),原料純度≥99.9%,密度為2.20 g/cm3。在保證壓痕形貌能夠準(zhǔn)確識(shí)別的情況下,本實(shí)驗(yàn)分別取Al2O3,ZTA,SiC,Silica的最大壓入載荷為100,100,100,0.25N。
表5 Si3N4材料維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值對(duì)比數(shù)據(jù)
表6 ZrO2材料維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值對(duì)比數(shù)據(jù)
表7 幾種典型陶瓷材料維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值對(duì)比數(shù)據(jù)[17,18]
由表7中數(shù)據(jù)可知,Al2O3,ZTA,SiC,Silica的仿真最大壓入深度hm分別為17.70,16.80,18.92,1.50μm時(shí),仿真壓痕對(duì)角線半長(zhǎng)與實(shí)驗(yàn)真實(shí)測(cè)量值分別相差1.14%,-0.57%,-0.89%,0.41%,維氏硬度分別相差-2.24%,1.12%,1.85%,-0.86%。據(jù)此充分說明本方法對(duì)不同彈性模量、不同硬度的陶瓷材料均具有一定的有效性。
(1)有限元數(shù)值方法對(duì)陶瓷材料壓痕對(duì)角線半長(zhǎng)和維氏硬度的識(shí)別不受接觸摩擦因數(shù)的影響。隨著壓頭與材料間的摩擦因數(shù)由0變化至0.5,有限元仿真壓痕與實(shí)驗(yàn)測(cè)量壓痕的對(duì)角線半長(zhǎng)差別分別為0.28%和0.27%,維氏硬度差別分別為0.14%和0.21%。
(2)應(yīng)用本方法所測(cè)材料的壓痕仿真識(shí)別結(jié)果與真實(shí)測(cè)量值偏差較小。其中,Si3N4和ZrO2的有限元仿真壓痕與實(shí)驗(yàn)測(cè)量壓痕對(duì)角線半長(zhǎng)差別分別為0.39%和-0.53%,維氏硬度差別分別為-2.7%和4.2%。其他幾種典型陶瓷材料(Al2O3,ZTA,SiC,Silica)維氏壓入有限元仿真計(jì)算值與實(shí)驗(yàn)真實(shí)測(cè)量值進(jìn)行了對(duì)比,其壓痕對(duì)角線半長(zhǎng)分別相差1.14%,-0.57%,-0.89%,0.41%,維氏硬度分別相差-2.24%,1.12%,1.85%,-0.86%。從而說明利用有限元數(shù)值方法對(duì)陶瓷材料壓痕形貌的仿真計(jì)算具有一定的可靠性。
(3)陶瓷材料維氏壓痕形貌仿真方法對(duì)解決陶瓷材料維氏硬度測(cè)試過程中因壓痕不夠清晰導(dǎo)致的測(cè)量數(shù)據(jù)不準(zhǔn)問題具有一定的可行性,為下一步探索基于儀器化壓入響應(yīng)識(shí)別陶瓷材料維氏硬度以及其他各力學(xué)性能參數(shù)提供技術(shù)基礎(chǔ)。
[1] TABOR D. The Hardness of Metals[M].Oxford: Clarendon Press,1952.
[2] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res, 1992, 7(6):1564-1583
[3] CHANG Y T, CHANG C M. Relationship between hardness, elastic modulus and the work of indentation[J]. Appl Phys Lett,1998, 73(5):614-616.
[4] FAN G J, JIANG W H, LIU F X, et al. The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation[J]. J Mater Res, 2007, 22(5):1235-1239.
[5] SUN Y, WANG Q M. Analysis of the elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus[J].Acad J XJTU,2008, 20(3):178-182.
[6] KENJI S, TSUYOSHI H, TAKAYUKI K. Elastic properties and Vickers hardness of optically transparent glass-ceramics with fresnoite Ba2TiSi2O8nanocrystals[J]. Mater Res Bull, 2011, 46(6):922-928.
[7] GONG J H, WU J J,GUANG Z D. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics[J]. J Eur Ceram Soc,1999, 19(15):2625-2631.
[8] SEUNG K K, JU Y K, CHAN P P, et al. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests[J]. J Mater Res, 2010, 25(2):337-343.
[9] SHABDAD S A, McCABE J F M, BULL S, et al. Hardness measured with traditional Vickers and Martens hardness methods[J]. Dent Mater,2007, 23(9):1079-1085.
[10] PAN X F, ZHANG H,ZHANG Z F, et al. Vickers hardness and compressive properties of bulk metallic glasses and nanostructure-dendrite composites[J]. J Mater Res,2005, 20(10):2632-2638.
[11] EVANS A G, CHARLES E A. Fracture toughness determination by indentation[J]. J Am Ceram Soc, 1976, 59(7-8): 371-376.
[12] LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system[J]. J Am Ceram Soc, 1980, 63(9-10): 574-581.
[13] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness I:direct crack measurements[J]. J Am Ceram Soc, 1981,64(9): 533-538.
[14] NIIHARA K, MORENA R HASSELMAN D P H. Evaluation ofKICof brittle solids by the indentation method with low crack-to-indent ratios[J]. J Mater Sci Lett, 1982,l(1): 13-16.
[15] Minister of International Trade and Industry. JISR1607—1995. Testing Methods for Fracture Toughness of High Performance Ceramics[S]. Tokyo: Japanese Standards Association,1990.
[16] ABAQUS 6.10/CAE User’s Manual[Z]. Dassault Systems Simulia Corp Providence, RI,USA, 2010.
[17] 馬德軍.材料力學(xué)性能儀器化壓入測(cè)試原理[M].北京:國(guó)防工業(yè)出版社,2010.
[18] 郭俊宏.材料彈塑性參數(shù)儀器化壓入識(shí)別方法與測(cè)試技術(shù)研究[D].北京:裝甲兵工程學(xué)院, 2013.
[19] 中國(guó)鋼鐵工業(yè)協(xié)會(huì).GB/T 21838.1—2008金屬材料硬度和材料參數(shù)的儀器化壓痕試驗(yàn)第1部分:試驗(yàn)方法[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2008.
[20] 馬德軍,宋仲康,郭俊宏,等.一種高精度壓入儀及金剛石壓頭壓入試樣深度的計(jì)算方法[P].CN Patent: CN102288500A, 2011-12-21.
[21] 國(guó)家冶金工業(yè)局.GB/T 4340.2—1999金屬維氏硬度試驗(yàn)第2部分:硬度計(jì)的檢驗(yàn)[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,1999.
Simulation and Experimental Analysis on Vickers Indentation Morphology of Ceramic Materials
WANG Jia-liang1,MA De-jun1,CHEN Wei1,HUANG Yong1,BAI Meng-liang2
(1 Department of Mechanical Engineering,Academy of Armored Force Engineering,Beijing 100072,China;2 Xi’an Military Representatives Bureau, the General Armaments Department,Xi’an 710065,China)
The indentation morphology of ceramic materials caused by the Vickers indentation process was simulated based on the finite element analysis model. Take two kinds of ceramic materials (Si3N4and ZrO2) for example, the indentation diagonal half-length and the Vickers hardness from finite element simulation and that from the experimental measurement were compared. The results show that the difference between Si3N4and ZrO2in indentation diagonal half-length from finite element simulation and experimental measurement is 0.39% and -0.53% respectively, the difference in Vickers hardness is -2.7% and 4.2%. With the friction coefficient between the indenter and the material changes from 0 to 0.5, the difference in indentation diagonal half-length from finite element simulation and experimental measurement is 0.28% and 0.27%, the difference in Vickers hardness is 0.14% and 0.21%. In addition, apply this method to compare the Vickers indentation finite element simulation values of other typical ceramics materials (Al2O3,ZTA,SiC and Silica) with the experimental measurement values, the difference of indentation diagonal half-length is 1.14%, -0.57%, -0.89% and 0.41% respectively, the difference in Vickers hardness is -2.24%, 1.12%, 1.85% and -0.86% respectively. It can be seen that the Vickers indentation morphology of ceramic materials can be derived by the finite element numerical simulation method, thereby this method can solve the problem of indentation measurement data inaccuracies, which caused by unclear indentation in the process of indentation method to measuring the Vickers hardness of ceramic materials. This method provides the technical foundation for further exploration based on the response of instrumented indentation to identify the Vickers hardness and any other mechanical properties of the ceramic materials.
ceramic material;finite element simulation;indentation diagonal half-length;Vickers hardness;friction coefficient
10.11868/j.issn.1001-4381.2015.11.012
TQ174.75
A
1001-4381(2015)11-0071-06
2014-07-30;
2015-04-30
王家梁(1986—),男,博士研究生,主要從事材料力學(xué)性能測(cè)試方法研究,聯(lián)系地址:北京市豐臺(tái)區(qū)長(zhǎng)辛店杜家坎21號(hào)裝甲兵工程學(xué)院機(jī)械工程系(100072),E-mail:wjllongman@126.com