薛富紅 張曉暉 鄧江夏 袁玲玲
XUE FuHong1,2,3,ZHANG XiaoHui1**,DENG JiangXia1,2 and YUAN LingLing1,2
1. 中國科學院地質與地球物理研究所,巖石圈演化國家重點實驗室,北京 100029
2. 中國科學院大學,北京 100049
3. 內蒙古有色地質礦業(yè)有限責任公司,呼和浩特 010010
1. State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,CAS,Beijing 100029,China
2. University of Chinese Academy of Sciences,Beijing 100049,China
3. Inner Mongolia Nonferrous Geological Mining Limited Liability Company,Hohhot 010010,China
2014-03-28 收稿,2014-12-12 改回.
自Loiselle and Wones(1979)以堿性(alkaline)、缺水(anhydrous)、非造山環(huán)境(anorogenic)的三A 屬性為依據(jù)提出A 型花崗巖的概念以來,A 型花崗巖一直是花崗巖領域最重要的研究主題之一(吳福元等,2007)。世界各地大量研究案例表明,A 型花崗巖構成地球上晚太古代以來幾乎所有大陸地體中體量雖少但構造意義至關重要的侵入巖組成。基于這些研究實踐,不同學者進一步提出了許多表征A 型花崗巖多樣性的巖石地球化學指標和分類方案(Whalen et al.,1987;Eby,1990,1992;King et al.,1997;Frost et al.,2001;Frost and Frost,2011),例如衍生自A 型花崗巖但內涵又較其豐富的鐵質花崗巖系列(Frost and Frost,2011)。一方面,A 型花崗巖繁雜多樣的巖石地球化學特征體現(xiàn)了其在潛在殼幔源區(qū)、巖漿形成條件和不同地殼層次演化過程等方面的迥異差別,代表性成因模式包括:多種地殼物質重熔(Clemens et al.,1986;Whalen et al.,1987;Creaser et al.,1991;Pati?o Douce,1997;Landenberger and Collins,1996;Frost and Frost,1997;King et al.,1997;Dall’Agonl and de Oliveira,2007);幔源玄武質巖漿結晶分異(Turner et al.,1992;Mushkin et al.,2003;Dall’Agonl et al.,2012)以及殼源和幔源巖漿的混合作用(Kemp et al.,2005;Yang et al.,2006;Zhang et al.,2012a)。另一方面,A 型花崗巖通常形成于俯沖后伸展或非造山板內伸展環(huán)境,這種親合性使其可以作為伸展構造背景指示器之用。因此,A 型花崗巖的成因涵蓋了重要的殼幔相互作用和獨特的地球動力學過程信息,傳統(tǒng)的地球化學手段和新型礦物原位同位素示蹤技術的綜合運用是揭示A 型花崗巖復雜成因的必要手段(Kemp et al.,2007;Collins et al.,2011;Zhang et al.,2012a)。
作為中亞造山帶的東部單元,內蒙古中部是顯生宙A 型花崗質巖漿活動發(fā)育最廣泛的地區(qū)之一,構成中亞造山帶多條顯生宙堿性巖漿巖帶的重要組成部分(Wu et al.,2002;Jahn et al.,2009)。但截至目前,這些A 型巖漿活動在時代上以晚古生代為主(Hong et al.,1994,1996;Shi et al.,2004;Zhang et al.,2014a),東北和華北克拉通北緣地區(qū)發(fā)育的中生代A 型花崗巖在本區(qū)鮮見報道。鑒于此,本研究擬以高精度SIMS 鋯石U-Pb 測年手段確定內蒙古中部達來地區(qū)鉀長花崗巖的形成時代,依據(jù)元素地球化學、全巖Sr-Nd 同位素和鋯石Hf-O 同位素示蹤其A 型巖漿屬性和巖石成因,進而討論晚侏羅世A 型巖漿活動發(fā)育的構造背景和地球動力學意義。
內蒙古中部西與蒙古國南戈壁省接壤,東與中國東北地區(qū)毗鄰,夾持于華北板塊與西伯利亞板塊之間(圖1a)。有關本區(qū)的大地構造屬性,板塊構造理論的早期倡導者就提出了其是由不同時代、不同性質的地塊沿多個縫合帶拼合而成的復合造山帶(李春昱和湯耀慶,1983;Tang,1990;邵濟安,1991),構成中亞巨型增生造山帶的東段(?eng?r et al.,1993)。Xiao et al. (2003)自北向南將內蒙古中部劃分為烏梁雅斯太活動大陸邊緣、賀根山蛇綠-島弧增生雜巖、寶力道島弧增生雜巖、索倫克爾縫合帶、溫都爾廟俯沖-增生雜巖帶和白乃廟島弧雜巖帶(圖1b)。Jian et al. (2010)則將其分為烏梁雅斯太活動大陸邊緣帶、二連-賀根山蛇綠混雜帶、北造山帶(早古生代)、索倫縫合帶(晚古生代)和南造山帶(早古生代)五個主要構造單元。它們記錄了古生代古亞洲洋構造域多島洋體制下的多塊體拼合和大陸地殼生長過程(Windley et al.,2007;張曉暉和翟明國,2010)。雖然有關其閉合的最后時限和位置尚無定論,存在中泥盆世(Tang,1990;Xu et al.,2013)、晚石炭世-早二疊世(邵濟安,1991;Hong et al.,1996)和晚二疊世-早三疊世(?eng?r et al.,1993;Chen et al.,2000;Xiao et al.,2003;Windley et al.,2007;Wu et al.,2011;Cocks and Torsvik,2013;Zhou and Wilde,2013)等諸多觀點,但內蒙中部-蒙古國早二疊世堿性巖漿巖帶與華北克拉通北緣早中三疊世堿性巖漿巖帶的發(fā)育暗示古亞洲洋的閉合可能自北而南進行,北部塊體的拼合在晚石炭世-早二疊世完成(Zhang et al.,2008a,2011,2014a;Blight et al.,2010),南部塊體的拼合則在晚二疊世末結束(Wu et al.,2011;Zhang et al.,2010,2012a,b)。之后華北-蒙古聯(lián)合板塊進入陸內演化階段,經(jīng)歷中亞造山帶造山后伸展、蒙古-鄂霍茨克構造域與古太平洋構造域等多種構造體系的強烈疊加和轉換影響,斷裂構造發(fā)育,巖漿活動頻繁。代表性的事件包括三疊紀的堿性巖漿巖帶(Li et al.,2013)和交其爾變質核雜巖(Davis et al.,2004),侏羅紀-白堊紀巨型火山巖帶(Fan et al.,2003;Wang et al.,2006),早白堊世的一系列變質核雜巖(Wang et al.,2011)和斷陷盆地群(Meng et al.,2003)。
白音烏拉-達來地區(qū)位于蘇尼特左旗西北約50km(圖1b),構造上位于烏梁雅斯太地體邊緣。地體基底主要由新元古代片麻巖、片巖和石英巖以及寒武紀灰?guī)r和硅質巖組成(Xu and Chen,1997;Xu et al.,2013)。依據(jù)區(qū)域地質資料(內蒙古自治區(qū)地質礦產(chǎn)局,1980①內蒙古自治區(qū)地質礦產(chǎn)局. 1980. 白音烏拉和白音吉日嘎啦1∶200000 區(qū)域地質調查報告,2007②內蒙古自治區(qū)地質礦產(chǎn)局. 2007. 白音烏拉1∶250000 地質礦產(chǎn)圖),區(qū)內火山沉積建造包括:(1)奧陶系變質粉砂巖、砂巖和灰?guī)r;(2)泥盆系變質粉砂巖、泥巖夾凝灰?guī)r和少量安山巖;(3)上石炭統(tǒng)-二疊系地層。上石炭統(tǒng)-二疊系地層可以劃分為兩個組(內蒙古自治區(qū)地質礦產(chǎn)局,1980),下部由火山沉積巖組成的寶力道組和上部以沉積巖為主的哲斯組。寶力道組可分為三個巖段,近期鋯石U-Pb 定年指示中段雙峰式火山巖噴發(fā)時間為早二疊世(Zhang et al.,2011);(4)上侏羅統(tǒng)火山沉積建造,自下而上包括查干諾爾組粗面巖-安山巖、道特諾爾組玄武巖和布拉根哈達組流紋質凝灰?guī)r;(5)下白堊統(tǒng)砂巖-細砂巖和上白堊統(tǒng)氣孔狀玄武巖。
圖1 研究區(qū)所在位置與巖體地質圖(a)中亞地區(qū)構造簡圖;(b)華北北部區(qū)域構造地質圖(據(jù)Xiao et al. ,2003,修改);(c)內蒙古達來廟鉀長花崗巖巖體地質圖(據(jù)內蒙古自治區(qū)地質礦產(chǎn)局,2007 修改)Fig.1 The tectonic location of the study area and the sketch pluton map(a)tectonic framework of Central Asia;(b)tectonic map of the northern North China tract (modified after Xiao et al. ,2003);(c)sketch geological map for the Dalaimiao K-feldspar granite from the central Inner Mongolia
該區(qū)還發(fā)育多期晚古生代-中生代侵入巖。依據(jù)巖體侵入關系和巖石學特征,結合早期的Rb-Sr 年齡和近期開展的一系列鋯石U-Pb 測年研究,大致分為四個期次:(1)石炭紀輝長巖-閃長巖-花崗巖(330 ~310Ma,內蒙古自治區(qū)地質礦產(chǎn)局,2007);(2)早二疊世堿性花崗巖(Hong et al.,1994;Zhang et al.,2014a);(3)晚二疊世花崗巖和(4)晚中生代黑云母花崗巖和鉀長花崗巖。
圖2 內蒙古達來地區(qū)達來廟鉀長花崗巖礦物組成顯微照片和鋯石U-Pb 年齡圖(a)似斑狀結構,條紋長石和鉀長石斑晶;(b)基質中的斜長石和黑云母,斜長石發(fā)育聚片雙晶;(c)鉀長花崗巖中鋯石的陰極發(fā)光照片;(d)SIMS 鋯石U-Pb 諧和年齡圖Fig.2 Representative thin-section photographs of mineral constituents and zircon U-Pb diagram for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)porphyritic texture with perthite and k-feldspar phenocrysts;(b)biotite and plagioclase with polysynthetic twinning in matrix;(c)cathodoluminescence (CL)images for the dated zircons;(d)concordia diagrams of SIMS zircon U-Pb dating
達來廟鉀長花崗巖大致呈北東-南西向展布于中蒙邊境一帶(圖1c),巖體呈不規(guī)則近橢圓形巖株狀產(chǎn)出,大部分被第三系覆蓋,出露部分也遭受強烈風化剝蝕。巖石具似斑狀結構(圖2a),斑晶主要為鉀長石、條紋長石、石英和少量斜長石。鉀長石粒徑約3 ~7mm,主要為自形-半自形結構,發(fā)育卡斯巴雙晶,礦物表面發(fā)生粘土化;條紋長石為正條紋長石,粒徑多為5 ~8mm 左右(圖2a);石英斑晶呈他形,粒度稍小于鉀長石,粒徑3 ~4mm,斜長斑晶被鉀長石交代?;|為細粒結構,主要礦物為石英,占基質的60%,粒度0.05 ~0.5mm;其次為鉀長石,含量15% ~20%,粒度0.075 ~1mm;黑云母呈片狀,含量為2% ~5%,大小為0.05 ~0.5mm(圖2b);斜長石約1% ~2%,呈自形-半自形結構,聚片雙晶發(fā)育(圖2b)。副礦物包括鋯石、鈦鐵礦和磷灰石。
采用磁選和重液分選出鋯石晶體,選擇晶型完整的鋯石樣品貼到環(huán)氧樹脂上,然后進行鋯石透射光、反射光及陰極發(fā)光圖像(CL)分析。鋯石單礦物挑選在河北省廊坊市礦產(chǎn)資源研究中心完成,制靶工作、反射光、透射光和CL 陰極發(fā)光照片采集分別在中國科學院地質與地球物理研究所離子探針實驗室和掃描電鏡實驗室完成。
鋯石SIMS U-Pb 定年在中國科學院地質與地球物理研究所離子探針實驗室Cameca IMS-1280 二次離子質譜儀上完成,U-Th-Pb 同位素比值采用標準鋯石Plésovice(337Ma)校正,標準樣品Qinghu(Li et al.,2009)作為未知樣品檢測數(shù)據(jù)精確度,實測204Pb 值用于普通Pb 校正,采用Isoplot 軟件進行數(shù)據(jù)處理(Ludwig,2001)。
全巖主量和微量元素分別在中國科學院地質與地球物理研究所巖礦制樣與分析實驗室和成礦年代學實驗室進行測試。主量元素采用X-熒光光譜法(XRF)方法,其精度為0.01%;微量元素采用電感耦合等離子質譜法(ICP-MS),將巖石粉末在高溫條件下用HF+HNO3混合酸進行溶解,然后用稀硝酸進行稀釋以備分析,測試分析采用ICP-MS ELEMENT 儀器。
表1 內蒙古中部達來廟鉀長花崗巖(DL10-8)的鋯石U-Pb 年齡Table 1 SIMS zircon U-Pb data for the Dalaimiao K-feldspar granite (DL10-8)from central Inner Mongolia
全巖Sm-Nd 同位素分析在中國科學院地質與地球物理研究所穩(wěn)定同位素實驗室完成,具體試驗分析流程見Li et al. (2012)。樣品中加入混合的87Rb-84Sr 和149Sm-150Nd 示蹤劑,并用HF +HNO3+HClO4混合酸在高溫條件下對樣品進行溶解,采用兩階段離子交換層析法分離樣品中Rb、Sr、Sm、Nd 元素,樣品測試使用儀器為Finnigan MAT262 多接收熱電離質譜儀。
鋯石Lu-Hf 在中國科學院地質與地球物理研究所多接收等離子質譜實驗室Thermo-Finnigan Nepturne MC-ICP-MS上測試完成,采用193nm ArF EXcimer Laster-ablation 系統(tǒng)對鋯石進行原位Lu-Hf 同位素分析,標樣MUD(176Hf/177Hf =0.282833 ±25,2σ)和GJ-1(176Hf/177Hf = 0.282020 ± 25,2σ)監(jiān)測實驗過程中的儀器穩(wěn)定性。
鋯石氧同位素亦在中國科學院地質與地球物理研究所離子探針實驗室CAMECA IMS-1280 上測試完成,采用Cs+作為離子源,Penglai 標準鋯石(δ18O =5.31 ±0.10‰)(Li et al.,2010)作為鋯石氧同位素測試標樣,Vienna-標準大洋水(V-SMOW,18O/16O = 0.0020052)對樣品18O/16O 進行標準化。
達來廟花崗巖中的鋯石為自形到半自形結構,30 ~150μm,長寬比值約為1.0 ~2.5,陰極發(fā)光圖像顯示鋯石具有典型的巖漿振蕩環(huán)帶(圖2c),指示其屬于巖漿結晶的產(chǎn)物。我們選擇了16 顆鋯石進行U-Pb 測試,SIMS 鋯石U-Pb分析結果見表1。單個鋯石Th、U 含量變化較大,其中U 為39 ×10-6~879 ×10-6,Th 介于26 ×10-6~737 ×10-6,Th/U值變化于0.50 ~0.99 之間,與典型的巖漿成因鋯石一致(Williams,1998)。206Pb/238U 年 齡 值 介 于153.4Ma 和164.6Ma 之間,在一致曲線圖上,16 顆鋯石點分布集中,得到的諧和年齡為160.1 ±1.8Ma(MSWD =0.45)(圖2d),代表了巖體的結晶年齡。
4 個比較新鮮花崗巖樣品的全巖主量與微量元素分析結果列于表2?;◢弾r的SiO2含量變化于69.8% ~73.9%,具有較高的Al2O3(13.7% ~15.2%)和K2O(4.59% ~4.88%)含量,貧CaO(0.82% ~1.36%)和MgO(0.33% ~0.67%)。在QAP 分類圖(Streckesen,1976)中,4 個樣品均落在鉀長花崗巖區(qū)域(圖3a);FeOT/(FeOT+MgO)值變化于
0.78 ~0.85 之間,在Frost et al. (2001)的SiO2-FeOT/(FeOT+MgO)圖中落在鐵質花崗巖區(qū)(圖3b);在(K2O + Na2OCaO)-SiO2圖中落入鈣堿性-堿性區(qū)域(圖3c);鋁飽和指數(shù)ASI(A/CNK)介于1.02 ~1.1 之間,在A/CNK-A/NK 圖上落入弱過鋁質區(qū)(圖3d)。
花崗巖具有相對較高的稀土元素含量(ΣREE =199.5 ×10-6~304.2 ×10-6),在稀土元素球粒隕石標準化配分圖上(圖4a),巖石呈現(xiàn)LREE 中等富集、重稀土元素分布平坦的配分模式((La/Yb)N=12.7 ~17.7),并具有明顯的負Eu 異常,Eu/Eu*介于0.20 ~0.68。
微量元素方面,花崗巖富集Rb(114 × 10-6~308 ×10-6)、Zr(281×10-6~328×10-6)、Hf(8.2×10-6~12.13×10-6)、Nb(28.6 ×10-6~52.1 ×10-6)、Ta(1.80 ×10-6~6.58 ×10-6)等。在微量元素原始地幔標準化蛛網(wǎng)圖(圖4b)上;巖石呈現(xiàn)富集大離子親石元素、REE 和高場強元素的特征,其中Rb、Th、U 的富集明顯,Ba、Sr、P、Ti 則顯示明顯的負異常。
表2 內蒙古中部達來廟鉀長花崗巖全巖元素地球化學成分(主量元素:wt%;稀土和微量元素:×10 -6)Table 2 Major and trace element composition for Dalaimiao K-feldspar granite from central Inner Mongolia (major elements:wt%;trace elements:×10 -6)
圖3 內蒙古達來地區(qū)達來廟鉀長花崗巖分類圖(a)QAP 巖石分類圖(據(jù)Streckesen,1976);(b)SiO2-FeOT/(FeOT +MgO)圖(據(jù)Frost et al. ,2001);(c)SiO2-(K2 O +Na2 O-CaO)圖(據(jù)Frost et al. ,2001);(d)A/NK-A/CNK 圖(據(jù)Peccerillo et al. ,1976). 圖(a)中的區(qū)域分別為:3a-鉀長花崗巖;3b-二長花崗巖;4-花崗閃長巖Fig.3 Classification diagrams for the Dalaimiao K-feldspar granites from the Dalai region of Inner Mongolia(a)QAP ternary diagram (Streckesen,1976);(b)plot of SiO2-FeOT/(FeOT +MgO);(c)plot of (Na2 O +K2 O-CaO)vs. SiO2(Frost et al. ,2001);(d)plot of A/NK vs. A/CNK (Peccerillo and Taylor,1976). In Fig.3a,3a-syenogranite;3b-monzogranite;4-granodiorite
圖4 內蒙古達來地區(qū)達來廟鉀長花崗巖球粒隕石標準化稀土元素配分曲線(a)和原始地幔標準化微量元素蛛網(wǎng)圖(b)(標準化值據(jù)Sun and McDonough,1989)Fig.4 Chondrite-normalized REE pattern (a)and PM-normalized trace element spiderdiagram (b)for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia (normalization values after Sun and McDonough,1989)
表3 內蒙古中部達來廟鉀長花崗巖全巖Rb-Sr 和Sm-Nd 同位素Table 3 Whole rock Sm-Nd and Rb-Sr isotopic data for Dalaimiao K-feldspar granite from central Inner Mongolia
2 個樣品的Rb-Sr 和Sm-Nd 同位素分析結果見表3。如圖所示,初始87Sr/86Sr 值為0.70504 ~0.70523;中度虧損的Nd 同位素(εNd(t)= +2.1 ~+2.3)(圖5a,b),兩階段模式年齡為795 ~761Ma,fSm/Nd變化于-0.41 ~-0.36,其值介于-0.60 ~0.20 之間,表明其模式年齡具地質意義(Jahn et al.,2000)。
DL10-8 中鋯石的Hf 及O 同位素分析結果見表4。鋯石分析點的176Yb/177Hf 和176Lu/177Hf 比值變化范圍分別為0.014935 ~0.073478 和0.000555 ~0.002534,初始176Hf/177Hf 比值介于0.282871 ~0.282997,εHf(t)值變化于+7.0~+11.5(圖5c),鋯石Hf 虧損地幔模式年齡(tHfDM)為359 ~537Ma,地殼模式年齡(tCDM)介于475 ~760Ma 之間。
鋯石δ18O 介于6.70 ±0.33‰~7.63 ±0.28‰,大于地幔鋯石氧δ18O 組成(地幔鋯石δ18O =5.3 ±0.3‰)(Valley et al.,1998)。依據(jù)全巖(WR)與鋯石(Zro)之間的分餾關系Δ(WR-Zro)= 0.0612 × SiO2(%)- 2.5‰(Lackey et al.,2008),計算得到全巖δ18O 的估計值為8.61‰~9.53‰。
在過去三十年間不同學者先后從不同角度提出的二十多種花崗巖成因分類方案之中,學界接受程度最高的莫過于基于巖漿源區(qū)性質而區(qū)分的MISA(即M、I、S 和A 型)花崗巖成因分類方案(Pitcher,1993;吳福元等,2007)。然而,由于不同源巖的部分熔融或不同的成巖過程可以形成成分相似的花崗巖,因此不同類型之間的區(qū)分在有些情況下并不十分顯豁(Frost et al.,2001),例如,A 型花崗巖和高分異I 型花崗巖的情形尤其如此。澳大利亞拉克蘭褶皺帶(Whalen et al.,1987;King et al.,1997)、中國東北(Jahn et al.,2000;Wu et al.,2002,2003)和華北克拉通(Zhang et al.,2008b;Jiang et al.,2009)等地的大量實例表明,判別A 型花崗巖的兩個重要地球化學標志即高Ga/Al 和高Zr+Nb+Y+Ce 值,一些高分異I 型和S 型花崗巖也可以滿足。另一個通常用來區(qū)分A 型和I 型花崗巖的高FeOT/MgO 比值,實際應用時也只有在SiO2<70%時才比較明顯(Frost et al.,2001)。顯然,許多地球化學判別圖并不能有效地區(qū)分A 型和高分異I型花崗巖(Jiang et al.,2009)。因此,在缺乏特征性堿性暗色礦物的情形下,A 型花崗巖的判別最好是選擇巖漿巖套中基本未分異的巖石單元來進行(King et al.,1997;Jiang et al.,2009)。
表4 內蒙古中部達來廟晚侏羅世鉀長花崗巖鋯石Lu-Hf 和O 同位素Table 4 In-situ zircon Lu-Hf and O isotopic data for Dalaimiao K-feldspar granite from central Inner Mongolia
對于達來廟鉀長花崗巖而言,其相對中等的SiO2含量(69.8% ~73.9%)、較高的Sr 豐度(82 ×10-6~136 ×10-6)以及中等Eu 負異常(Eu/Eu*=0.2 ~0.68)均與一些典型A型花崗巖套中的未分異巖石端元相當(Landenberger and Collins,1996;King et al.,1997);比如,東澳大利亞新英格蘭褶皺帶三疊紀A 型花崗巖套中未分異樣品的SiO2含量為66.5% ~71.5%、Sr 豐度為181 ×10-6~277 ×10-6、Eu/Eu*介于0.45 ~0.60(Landenberger and Collins,1996)。同時達來廟花崗巖的一些其他元素比值也與典型A 型原始酸性熔體的元素比值相當(Landenberger and Collins,1996;Liu et al.,2005),如Ca/Sr(48 ~71),Rb/Sr(0.91 ~1.87)和Rb/Ba(0.23 ~0.66),表明它們沒有經(jīng)歷明顯的分異過程。
此外,達來廟花崗巖較高的Zr 豐度(281 ×10-6~328 ×10-6)也是其有別于I 型花崗巖的重要特征。鑒于鋯石在巖漿演化過程中一般較早結晶且其Zr 元素的分配系數(shù)對溫度極為敏感,我們可以通過鋯石飽和溫度來估算花崗巖形成的溫度條件。根據(jù)Watson and Harrison (1983)基于鋯石溶解度模擬提出的計算公式TZr(℃)=[12900/(lnDZr(496000/熔體)+0.85M+2.96)]-273.15,計算得到的鋯石飽和溫度為833 ~847℃。由于達來廟花崗巖中沒有發(fā)現(xiàn)古老繼承鋯石,表明巖漿結晶前熔體中的Zr 不完全飽和,這種情況下的TZr代表源區(qū)原始巖漿的最低溫度(Miller et al.,2003),因此達來廟鉀長花崗巖屬于熱花崗巖。
因此,達來廟花崗巖具備接近于原始A 型花崗質巖漿的元素地球化學行為和高溫特征。其10000(Ga/Al 值的變化范圍為2.87 ~3.68,與中亞造山帶鋁質A 型花崗巖的值相當,在Whalen et al.(1987)分類圖(圖6a,b)上,樣品均落在A 型花崗巖范圍;在Y-Nb 圖中(Pearce et al.,1984),樣品落入板內花崗巖區(qū)(圖6c)。在Eby(1992)提出的Nb-Y-Ce 圖(圖6d)上,樣品落入A2型花崗巖區(qū),指示一種造山后的構造環(huán)境。
如前所述,A 型酸性巖漿可以源于多種成因過程,主要包括:(1)幔源拉斑玄武質巖漿或堿性巖漿的分離結晶與同化混染(Turner et al.,1992;Mushkin et al.,2003);(2)多種殼源物質的部分熔融(Clemens et al.,1986;Creaser et al.,1991;Pati?o Douce and Beard,1995;Pati?o Douce,1997;Landenberger and Collins,1996;Frost and Frost,1997;King et al.,1997;Dall’Agonl and de Oliveira,2007);(3)殼源酸性巖漿與幔源基性巖漿的混合作用(Kemp et al.,2005;Yang et al.,2006;Zhang et al.,2012a)。
達來廟鉀長花崗巖不大可能由幔源基性巖漿的分離結晶與同化混染過程而形成。首先,基性巖漿分異結晶形成的A 型花崗巖通常與大面積同期基性-超基性巖呈雙峰式產(chǎn)出(Turner et al.,1992),例如美國黃石公園A 型流紋巖(Hildreth et al.,1991),與地幔柱相關的峨眉山A 型花崗巖(鐘玉婷和徐義剛,2009),以色列Amram 地塊上出露的A型花崗巖(Mushkin et al.,2003),而達來廟花崗巖缺少與之伴生的同期中基性巖石。其次,實驗巖石學研究表明幔源基性母巖漿只有在極端情況下,才能分異形成具低硅流紋質組成(≤68% SiO2)的鉀質殘留熔體,其間伴有大量中間產(chǎn)物出現(xiàn)(Whitaker et al.,2008;Frost and Frost,2011),達來廟花崗巖相對單一的巖性組成明顯有悖于簡單的巖漿分異模型。再次,熱模擬實驗證明,即使在最適宜的條件下,同化程度最高幾乎不可能超過~25%,許多同化作用過程(包括機械混合與化學反應)都需要克服嚴峻的能量障礙(Glazner,2007)。
圖5 內蒙古達來地區(qū)達來廟鉀長花崗巖的元素地球化學圖解(a)εNd(t)-87Sr/86Sri;(b)εNd(t)-tDM;(c)鋯石εHf(t)-鋯石U-Pb 年齡;(d)鋯石εHf(t)-δ18Ozircon. (a)內蒙古中部地區(qū)中泥盆世拉斑質輝長巖、石炭紀島弧巖漿巖、早二疊世基性-酸性火山巖和早二疊世堿性花崗巖同位素數(shù)據(jù)分別來自Zhang et al. (2009);Chen et al. (2000);Zhang et al. (2011)和Zhang et al. (2014a);圖(c)中的石炭紀島弧巖漿巖和早二疊世堿性花崗巖鋯石Hf 同位素數(shù)據(jù)分別來自Chen et al.(2009)和Zhang et al. (2014a)Fig.5 Isotopic plots for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)εNd(t)vs. 87Sr/86Sri;(b)εNd(t)vs. tDM;(c)zircon εHf(t)vs. zircon U-Pb age;(d)zircon εHf(t)vs. δ18Ozircon. In Fig.5a,samples for Devonian tholeiitic gabbros,Carboniferous arc intrusions,Early Permian mafic and felsic volcanic rocks,Early Permian alkali granites from central Inner Mongolia are from Zhang et al. (2009);Chen et al. (2000),Zhang et al. (2011)and Zhang et al. (2014a),respectively. In Fig.5c,fields for Carboniferous arc intrusions and Early Permian alkali granites are from Chen et al. (2009)and Zhang et al. (2014a),respectively
巖漿混合作用形成的A 型花崗巖通常具有發(fā)育許多暗色基性顯微包體的野外地質特征和變化范圍較大的鋯石Hf-O 同位素組成(Yang et al.,2006;Kemp et al.,2007;Zhang et al.,2012a)。野外觀察表明,達來廟花崗巖缺少與之相關的暗色基性包體,其鋯石Hf-O 同位素組成變化范圍很小(圖5c,d)。因此,巖漿混合作用也無法解釋達來廟花崗巖的成因。
在諸多可能衍生A 型花崗質巖漿的殼源物質中,早期學者提出的長英質巖漿出熔之后的殘余麻粒巖質下地殼物質(Collins et al.,1982)已被后來的實驗巖石學證明其部分熔融不可能析出A 型花崗質巖漿(Creaser et al.,1991;Pati?o Douce and James,1995)。進一步的實驗巖石學研究(Skjerlie and Johnston,1993;Pati?o Douce,1997)指示,英云閃長質-花崗閃長質巖石在不同地殼深度的脫水熔融可以產(chǎn)生A 型花崗質熔體,即低壓時形成準鋁質巖漿,高壓時形成過鋁質巖漿(Frost and Frost,2011)。世界各地大量實例也陸續(xù)確證,中基性殼源巖石在高壓條件下的部分熔融是形成鈣堿性-堿性鋁質A 型花崗巖的重要機制(Frost and Frost,2011;Dall’Agonl et al.,2012)。例如,澳大利亞拉克蘭褶皺帶的泥盆紀鋁質A 型花崗巖(King et al.,1997)和巴西亞馬遜克拉通古元古代A 型花崗巖(Dall’Agonl and de Oliveira,2007)。另外,與英云閃長巖相當?shù)淖咸K花崗質中下地殼巖石也是可能析出A 型花崗質巖漿的重要源巖,例如,東澳大利亞新英格蘭褶皺帶三疊紀Chaelundi 雜巖中的A 型花崗巖(Landenberger and Collins,1996)和華南揚子克拉通新元古代復合巖套中的A 型花崗巖(Zhao et al.,2008)。
圖6 內蒙古達來地區(qū)達來廟鉀長花崗巖的元素地球化學屬性與環(huán)境判別圖(a)(FeOT/MgO)-10000Ga/Al 判別圖(Whalen et al. ,1987);(b)(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)圖(Whalen et al. ,1987);(c)Nb-Y 構造環(huán)境判別圖(Pearce et al. ,1984),VAG-火山島弧花崗巖,WPG-板內花崗巖,COLG-碰撞花崗巖,ORG-大洋中脊花崗巖;(d)Nb-Y-Ce判別圖(Eby,1992)Fig.6 The elemental affinity classification and tectonic discrimination plots for the Dalaimiao K-feldspar granite from the Dalai region of Inner Mongolia(a)FeOT/MgO vs. 10000Ga/Al discrimination diagram (Whalen et al. ,1987);(b)(K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y)discrimination diagram (Whalen et al. ,1987);(c)Y vs. Nb tectonic discrimination diagram (Pearce et al. ,1984),VAG=volcanic arc granites,WPG=within plate granites,COLG=collisional granites,ORG=oceanic ridge granites;(d)Nb-Y-Ce discrimination diagram (Eby,1992)
達來廟花崗巖的形成可能契合這一成因模式。其一,研究區(qū)在古生代經(jīng)歷了與古亞洲洋俯沖相關的多階段地殼增生過程,包括形成新生地殼的初始島弧巖漿作用(Jian et al.,2008;Zhang et al.,2009),導致地殼持續(xù)生長的成熟大洋島弧和大陸島弧巖漿作用(Chen et al.,2000)以及俯沖后伸展背景下幔源巖漿底侵引起的垂向增生(Zhang et al.,2008a,2011,2014a)。這些以中基性漿源巖石為主體的年輕增生物質是研究區(qū)中下地殼的基本組成要素,從而也構成可以析出低初始87Sr/86Sr、高εNd(t)和εHf(t)以及年輕模式年齡的A型酸性巖漿的可能源區(qū),達來廟花崗巖與研究區(qū)大量古生代島弧巖漿巖在Sr-Nd-Hf 同位素組成方面的類似性可以確證這種關聯(lián)性(圖5)。其二,支持這種關聯(lián)性的另一個證據(jù)是達來廟花崗巖中鋯石具有明顯高于地幔鋯石的氧同位素組成。一方面,該值與研究區(qū)石炭紀島弧巖漿建造中輝長巖-輝長閃長巖鋯石的δ18O 值大體一致(圖5d);另一方面,該特征也契合全球主要大陸古匯聚大陸邊緣基性下地殼普遍高δ18O 的趨勢(Valley et al.,1994;Peck and Valley,2000;Lackey et al.,2005)。由于氧在鋯石中的低擴散速率及高封閉溫度,后期的變質作用與熱液蝕變很難改變鋯石的氧同位素組成,因此鋯石保留了巖漿結晶時的氧同位素信息(Cherniak and Watson,2003)。對于曾經(jīng)見證過洋殼俯沖的古活動大陸邊緣而言,其中下地殼巖石的鋯石高氧同位素組成特征指示其巖漿源區(qū)經(jīng)歷過高δ18O 流體或含水硅酸鹽熔體的加入,這種高δ18O 流體或熔體通常來自遭受過低溫熱液蝕變的上部洋殼及其上覆沉積物的脫水熔融(King et al.,1998;Lackey et al.,2005)。例如,美國加州早白堊世Sierra Nevada 巖基中輝長巖和英云閃長巖中鋯石普遍呈現(xiàn)高δ18O(7.8 ±0.7‰)特征,質量平衡計算表明其由至少18‰的蝕變洋殼物質加入到原始巖漿源區(qū)所致(Lackey et al.,2005)。
因此,綜合考慮研究區(qū)年輕增生物質主導的地殼屬性和達來廟花崗巖獨特的地球化學特征,我們認為達來廟A 型花崗巖形成于中下地殼中基性漿源物質在高壓下的部分熔融及其后的分異作用。
東北亞顯生宙大陸演化研究近年來取得的最重要進展是,識別出一個西迄蒙古-鄂霍茨克縫合帶、東抵太平洋之濱、跨越2500km、覆蓋面積逾三百萬平方千米的早白堊世巨型地殼伸展省(Wang et al.,2011,2012)。其地質表征包括一系列早白堊世變質核雜巖(Wang et al.,2011;Mazukabzov et al.,2006;Donskaya et al.,2008;Davis et al.,1996;Webb et al.,1999;Darby et al.,2004;Zorin,1999)、斷陷盆地群(Meng et al.,2003;Ritts et al.,2001;Graham et al.,2001)以及大規(guī)模的火山噴發(fā)活動(Fan et al.,2003;Wang et al.,2006)。
相對于早白堊世大規(guī)模的上地殼伸展,蒙古-華北北部地塊中晚侏羅世一直被認為總體上處于地殼縮短和推覆加厚時期(Davis et al.,2001;Meng et al.,2003)。但最近針對一些典型變質核雜巖核部侵入巖的研究表明,這些地區(qū)中下地殼層次的伸展可能在中晚侏羅世就已經(jīng)啟動(Wang et al.,2012)。例如,南蒙古Zagan 變質核雜巖中堿性花崗巖的鋯石U-Pb 年齡介于161 ~152Ma(Donskaya et al.,2008);東蒙古Nartyn 地體中堿性巖的年齡為152 ~138Ma(Daoudene et al.,2011,2012);呼和浩特變質核雜巖中花崗巖的鋯石U-Pb 年齡介于148 ~140Ma(Guo et al.,2012);云蒙山變質核雜巖中核部巖漿巖的鋯石U-Pb 年齡大約為150~145Ma(Davis et al.,2001;Wang et al.,2012);遼西醫(yī)巫閭山變質核雜巖核部巖基大約在170 ~150Ma 侵位(吳福元等,2006;Zhang et al.,2008b,2012c,2014b);膠東玲瓏變質核雜巖核部巖漿巖的鋯石U-Pb 年齡大約為160 ~150Ma(Charles et al.,2011)。這些指示中下地殼流動的伸展巖漿穹隆,結合近年來在華北克拉通陸續(xù)厘定的一系列晚侏羅世A 型花崗巖,例如西拉木倫碾子溝二長花崗巖(陳志廣等,2008),白乃廟地區(qū)道郎呼都格鉀長花崗巖(解洪晶等,2012),表明蒙古-華北北部陸塊的中下地殼在中晚侏羅世普遍處于伸展流動狀態(tài)。內蒙古中部晚侏羅世A 型花崗巖的厘定進一步提供了中下地殼彌散狀區(qū)域伸展的巖石學證據(jù)。
事實上,南蒙古和華北北部典型盆地的沉積建造分析和控盆斷裂系統(tǒng)的構造解析表明,這種彌散狀中下地殼伸展與流動是形成獨立狀分布的中晚侏羅世夭折裂陷(failed rift)盆地的重要背景(Graham et al.,2001;Meng et al.,2003)。例如,南蒙古東戈壁盆地中火山巖夾層的40Ar/39Ar 年齡為155 ±1Ma(Graham et al.,2001);二連地區(qū)NE-SW 向展布的中晚侏羅世小型裂谷盆地群(肖安成等,2001;Meng et al.,2003),指示其裂陷作用的底部堿質中基性火山巖的40Ar/39Ar 年齡為156 ~148Ma(陳義賢和陳文寄,1997);Davis and Darby(2010)基于遼西地區(qū)控盆斷裂系統(tǒng)的研究識別出了可能影響整個燕山造山帶的中晚侏羅世伸展事件。
中晚侏羅世和早白堊世兩期迥異伸展事件的確定,為進一步探究蒙古-華北地塊晚中生代大陸地球動力學過程提供了全新視角。長期以來,有關這一東亞大陸演化驅動機制問題總體上表現(xiàn)為(1)古太平洋板塊的俯沖作用(Traynor and Sladen,1995;鄭亞東等,2000;Davis et al.,2001)和(2)蒙古-鄂霍茨克洋的閉合(Zorin,1999;Graham et al.,2001;Meng,2003;Wang et al.,2011)之爭。不同學者先后提出的具體動力學過程包括俯沖洋殼板片斷離(Van der Voo et al.,1999;Meng,2003)、弧后伸展與板片回退(Traynor and Sladen,1995;Chen et al.,2013)、巖石圈地幔拆沉(Wu et al.,2005)和重力垮塌(Zorin,1999;Graham et al.,2001;Meng et al.,2003)。
近年來的一系列研究表明,古太平洋板塊俯沖引起的遠程效應是引起華北克拉通早白堊世巨量巖漿作用和克拉通破壞高潮的主要機制(Wu et al.,2005;Chen et al.,2013;Zhu et al.,2012;Zhang et al.,2014c)。而對于中晚侏羅世局域性的巖漿作用和克拉通破壞事件,則可能受控于多重構造體制(Wang et al.,2011;Zhang et al.,2014c)。
從空間上看,研究區(qū)位于華北克拉通破壞焦點之外的內蒙古中北部,距離古太平洋俯沖帶上千千米之遙,而與蒙古-鄂霍茨克縫合帶僅距百余千米;從時間上來說,近期的一系列古地磁和古地理重建工作一致認為,蒙古-鄂霍茨克洋的最終閉合發(fā)生在中-晚侏羅世(Zorin,1999;Metelkin et al.,2010;Cocks and Torsvik,2013)?;谶@種空間契合和時間關聯(lián),蒙古-華北北部陸塊中晚侏羅世的巖漿活動可能主要受控于蒙古-鄂霍茨克構造域的地球動力學過程。
由于隨下落巖石圈焦點位移而轉移的緣故,俯沖巖石圈回退和巖石圈拆沉一般形成在時間上并不統(tǒng)一的區(qū)域伸展格局(Platt et al.,2003),板片斷離模式則一般造成線狀分布的伸展廊帶(von Blanckenburg and Davies,1995)。顯然,蒙古-華北地塊晚中生代經(jīng)歷的間隔明確的兩段式、各自比較統(tǒng)一的區(qū)域伸展格局有悖于上述模式,而與巖石圈地幔對流減薄通常預測的地殼增厚與減薄啟動之間經(jīng)歷的30 ~40Ma的時間間隔相一致(Platt et al.,2003),同時也契合造山后重力垮塌誘發(fā)的典型巖石圈和地殼響應(Rey et al.,2001,2011)。實際上,作為板塊聚合后造山帶在自身重力作用下向周緣的伸展流動行為,重力垮塌大多由巖石圈地幔對流減薄所誘發(fā)(Vanderhaeghe and Teyssier,2001),新生代造山帶因巖石圈地幔對流減薄誘發(fā)重力垮塌而引起兩段式地殼伸展的實例包括青藏高原(England and Houseman,1989;Houseman and Molnar,1997)和地中海Alboran 構造域(Platt et al.,2003),前者兩期伸展的時間間隔為20 ~30Myr(Rey et al.,2001;Vanderhaeghe and Teyssier,2001),后者早期巖漿穹隆與晚期變質核雜巖高應變伸展構造之間的間隔為30~40Myr (Vanderhaeghe and Teyssier,2001;Platt et al.,2003)。
綜合以上分析,我們認為,蒙古-華北北部地塊晚中生代兩段式的地殼伸展軌跡可能記錄了蒙古-鄂霍茨克構造域造山后的重力垮塌過程。
(1)內蒙古達來廟鉀長花崗巖形成時代為晚侏羅世(鋯石U-Pb 年齡為160Ma)。
(2)達來廟鉀長花崗巖呈似斑狀結構,斑晶主要為鉀長石、石英和少量斜長石,基質主要組成為石英、斜長石和少量黑云母;副礦物主要為鋯石、鈦鐵礦和磷灰石。
(3)達來廟鉀長花崗巖具有鋁質A 型花崗巖的元素地球化學屬性,并呈現(xiàn)低初始87Sr/86Sr、高εNd(t)、高的鋯石εHf(t)和δ18O 值。這些元素與同位素地球化學特征指示其可能形成于中基性中下地殼物質的部分熔融和其后的結晶分異作用。
(4)達來廟A 型花崗巖見證了華北陸塊中晚侏羅世啟動的彌散狀中下地殼伸展過程;蒙古-華北板塊晚中生代兩段式地殼伸展軌跡契合于蒙古-鄂霍茨克構造域造山后的重力垮塌過程。
致謝 感謝中國科學院地質與地球物理研究所凌瀟瀟、李文君、王紅月和李倩楠分別在SIMS 鋯石U-Pb 測年、微量元素、主量元素和全巖同位素測試過程中給予的熱心幫助。兩位審稿人提出的建設性意見使文章臻于完善,在此謹致衷心謝忱。
Blight JHS,Crowley QG,Petterson MG and Cunningham D. 2010.Granites of the southern Mongolia Carboniferous arc: New geochronological and geochemical constraints. Lithos,116(1 -2):35 -52
Charles N,Gumiaux C,Augier R,Chen Y,Zhu RX and Lin W. 2011.Metamorphic Core Complexes vs. synkinematic plutons in continental extension setting:Insights from key structures (Shandong Province,eastern China). Journal of Asian Earth Sciences,40(1):261 -278 Cherniak DJ and Watson EB. 2003. Diffusion in zircon. Reviews on Mineralogy and Geochemistry,53(1):113 -143
Chen B,Jahn BM,Wilde S and Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:Petrogenesis and tectonic implications. Tectonophysics,328(1 -2):157 -182
Chen B,Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages,Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collisionrelated magmas and forearc sediments. Journal of Asian Earth Science,34(3):245 -257
Chen B,Jahn BM and Suzuki K. 2013. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton:Tectonic implications. Geology,41(1):91-94
Chen YX and Chen WJ. 1997. Mesozoic Volcanic Rocks:Chronology,Geochemistry,and Tectonic Background. Beijing:Seismological Press,1 -279 (in Chinese)
Chen ZG,Zhang LC,Wu YH,Wan B and Zeng QD. 2008.Geochemistry study and tectonic background of A-style host granite in Nianzigou molybdenum deposit in Xilamulun molybdenum metallogenic belt,Inner Mongolia. Acta Petrologica Sinica,24(4):879 -889 (in Chinese with English abstract)
Cocks LRM and Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews,117:40 -79
Collins WJ,Beams SD,White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology,80(2):189 -200
Collins WJ,Belousova EA,Kemp AIS and Murphy B. 2011. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geosciences,4:333 -337
Clemens JD,Holloway JR and White AJR. 1986. Origin of an A-type granites:Experimental constraints. American Mineralogist,71:317-324
Creaser RA,Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology,19(2):163 -166 Dall’Agonl R and de Oliveira DC. 2007. Oxidized,magnetite-series,rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos,93(3 -4):215 -233
Dall’Agonl R,F(xiàn)rost CD and R?m? OT. 2012. IGCP Project 510“A-type Granites and Related Rocks through Time”:Project vita,results,and contribution to granite research. Lithos,151:1 -16
Davis GA,Qian X,Zheng YD,Tong H,Yu H,Gehrels G,Shafiqullah M and Fryxell J. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan:A metamorphic core complex north of Beijing,China,In:The Tectonic Evolution of Asia. Cambridge,UK:Cambridge Univ. Press,253 -28
Davis GA,Zheng YD,Wang C,Darby BJ,Zhang CH and Gehrels GE.2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt,with emphasis on Hebei and Liaoning provinces,northern China. In:Hendrix MS and Davis GA (eds.). Paleozoic and Mesozoic Tectonic Evolution of Central Asia:From Continental Assembly to Intracontinental Deformation. Geol. Soc. American Memoir,194:171 -198
Davis GA,Xu B,Zheng YD and Zhang WJ. 2004. Indonesian extension in the Solonker suture zone:The Sonid Zuoqi core complex,Inner Mongolia,China. Earth Science Frontiers,11:135 -144
Davis GA and Darby BJ. 2010. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex,Inner Mongolia,China. Geoscience Frontiers,1(1):1 -20
Daoudene Y,Ruffet G,Cocherie A,Ledru P and Gapais D. 2011.Timing of exhumation of the Ereendavaa metamorphic core complex(north-eastern Mongolia)U-Pb and40Ar/39Ar constraints. Journal of Asian Earth Sciences,62:98 -116
Daoudene Y,Gapais D,Ruffet G,Gloaguen E,Cocherie A and Ledru P. 2012. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia. Tectonics,31(3):TC3001,doi:10.1029/2011TC002926
Darby BJ,Davis GA and Zhang XH. 2004. The newly discovered Waziyu metamorphic core complex,Yiwulushan,western Liaoning Province,Northeast China. Earth Sci. Frontiers,11:145 -155
Donskaya V,Windley BF,Mazukabzov AM,Kroner A,Sklyarov E,Gladkochub DP,Ponomarchuk VA,Badarch G,Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society (London),165(1):405 -421
Eby GN. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations of their petrogenesis.Lithos,26(1 -2):115 -134
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20(7):641 -644
England PC and Houseman GA. 1989. Extension during continental convergence,with application to the Tibetan Plateau. Journal of Geophysical Research,94(B12):17561 -17579
Fan WM,Guo F,Wang YJ and Lin G. 2003. Late Mesozoic calcalkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains,northeastern China. Journal of Volcanology and Geothermal Research,121(1 -2):115 -135
Frost BR,Barnes CG,Collins WJ,Arculus RJ,Ellis DJ and Frost CD.2001. A geochemical classification for granitic rocks. Journal of Petrology,42(11):2033 -2048
Frost CD and Frost BR. 1997. Reduced rapakivi-type granites:The tholeiite connection. Geology,25(7):647 -650
Frost CD and Frost BR. 2011. On ferroan (A-type)granitoids:Their compositional variability and modes of origin. Journal of Petrology,52(1):39 -53
Glazner AF. 2007. Thermal limitations on incorporation of wall rock into magma. Geology,35(4):319 -322
Goldstein SL,O’Nions RK and Hamiton PJ. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems.Earth and Planetary Science Letters,70(2):221 -236
Graham SA,Hendrix MS,Johnson CL,Badamgarav D,Badarch G,Amory J,Porte M,Barsbold R,Webb LE and Hacker BR. 2001.Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. Geological Society of American Bulletin,113(12):1560 -1579
Guo L,Wang T,Castro A,Zhang JJ,Liu J and Li JB. 2012.Petrogenesis and evolution of late Mesozoic granitic magmatism in the Hohhot metamorphic core complex,Daqing Shan,North China.International Geology Review,54(16):1885 -1905
Hildreth W,Hallidaya N and Christiansen RL. 1991. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. Journal of Petrology,32(1):63 -138
Hong DW,Chang WJ,Huang HZ,Xiao YJ,Xu HM and Jin MY. 1994.The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance. Journal of SE Asian Earth Sciences,10(3-4):169 -176
Hong DW,Wang SG,Han BF and Jin MY. 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of SE Asian Earth Sciences,13(1):13-27
Houseman GA and Molnar P. 1997. Gravitational (Rayleigh-Taylor)instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International,128(1):125 -150
Jahn BM,Wu FY and Cheng B. 2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes,23(2):82 -92
Jahn BM,Litvinovsky BA,Zanvilevich AN and Reicho M. 2009.Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt:Evolution,petrogenesis and tectonic significance. Lithos,113(3 -4):521 -539
Jian P,Liu DY,Kr?ner A,Windley BF,Shi YR,Zhang FQ,Shi GH,Miao LC,Zhang W,Zhang Q,Zhang LQ and Ren JS. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic belt,Inner Mongolia of China:Implications for continental growth. Lithos,101(3 -4):233 -259
Jian P,Liu DY,Kr?ner A,Windley BF,Shi YR,Zhang W,Zhang FQ,Miao LC,Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic belt,China and Mongolia. Lithos,118(1 -2):169-190
Jiang N,Zhang S,Zhou W and Liu Y. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton:Highly fractionated from I-type magmas?Contributions to Mineralogy and Petrology 158:113 -130
Kemp AIS,Wormald RJ,Whitehouse MJ and Price RC. 2005. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora,southeastern Australia. Geology,33(10):797 -800
Kemp AIS,Hawkesworth CJ,F(xiàn)oste GL,Paterson BA,Woodhead JD,Hergt JM,Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science,315(5814):980 -983
King EM,Valley JW,Davis DW and Edwards GR. 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province:Indicator of magmatic source. Precambrian Research,92(4):365 -387
King PL, White AJR, Chappell BW and Allen CM. 1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,Southeastern Australian. Journal of Petrology,38(3):371 -391
Lackey JD,Valley JW and Saleeby JB. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith:Evidence from high δ18O zircon. Earth and Planetary Science Letters,235(1 -2):315 -330
Lackey JS,Valley JW,Chen JH and Stockli DF. 2008. Dynamic magma systems,crustal recycling,and alteration in the central Sierra Nevada batholith:The oxygen isotope record. Journal of Petrology,49(7):1397 -1426
Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi complex,Eastern Australia. Journal of Petrology,37(1):145 -170
Li CY and Tang YQ. 1983. Some problems on subdividion of Palaeoplates in Asia. Acta Geologica Sinica,57(1):1 -10 (in Chinese with English abstract)
Li S,Wang T,Wilde SA and Tong Y. 2013. Evolution,source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth Science Reviews,126:206 -234
Li XH,Liu Y,Li QL,Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry,Geophysics,Geosystems,10(4):Q04010,doi:10.1029/2009GC002400
Li XH,Long WG,Li QL,Liu Y,Zheng F,Yang YH,Chamberlain KR,Wan DF,Guo CH,Wang XC and Tao H. 2010. Penglai zircon megacryst:A potential new working reference for microbeam analysis of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research,34(2):117 -134
Liu W,Siebel W,Li X and Pan X. 2005. Petrogenesis of the Linxi granitoids,northern Inner Mongolia of China:Constraints on basaltic underplating. Chemical Geology 219:3 -35
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs,11(7):468
Ludwig K. 2001. Users manual for Isoplot/Ex (rev. 2. 49):A geochronological toolkit for Microsoft Excel Berkeley. Berkeley Geochronology Center,Special Publication:No.1a
Mazukabzov AM, Donskaya TV, Gladkochub DP, Sklyarov EV,Ponomarchuk VA and Sal’nikova EB. 2006. Structure and age of the metamorphic core complex of the Burgutui Ridge (southwestern Transbaikal region). Doklady Earth Sciences,407(1):179 -183
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?Tectonophysics,389(3 -4):155 -174
Meng QR,Hu JM,Jin JQ,Zhang Y and Xu DF. 2003. Tectonics of the Late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research,15(3):397 -415
Metelkin DV,Vernikovsky VA,Kazansky AY and Wingate MTD. 2010.Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Research,18(2 -3):400 -419
Miller FM,McDowell SM and Mapes RW. 2003. Hot and cold granite?Implication of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Mushkin A,Navon O,Halicz L,Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif,southern Israel. Journal of Petrology,44(5):815 -832
Nelson BK and Depaolo DJ. 1985. Rapid production of continental crust 1.7 to 1.9 by ago:Nd isotopic evidence from the basement of the North American mid-continent. Geological Society of America Bulletin,96(6):746 -754
Pati?o Douce AE and James BS. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. Journal of Petrology,36(3):707 -738
Pati?o Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology,25(8):743 -746
Pearce RR,Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956 -983
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamou area, Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63 -81
Peck WH and Valley JW. 2000. Large crustal input to high δ18O anorthosite massifs of the southern Grenville Province:New evidence from the Morin Complex,Quebec. Contributions to Mineralogy and Petrology,139(4):402 -417
Pitcher WS. 1993. The Nature and origin of Granite. Blackie Academic and Professional,London,1 -321
Platt JP,Whitehouse MJ,Kelley SP,Carter A and Hollick L. 2003.Simultaneous extensional exhumation across the Alboran basin:Implications for the causes of late orogenic extension. Geology,31(3):251 -254
Rey PF,Vanderhaeghe O and Teyssier C. 2001. Gravitational collapse of continental crust:Definition,regimes,and modes. Tectonophysics,342(3 -4):435 -449
Rey PF,Teyssier C,Kruckenberg SC and Whitney DL. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology,39(4):387 -390
Ritts BD,Darby BJ and Cope T. 2001. Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt,northern North China,Inner Mongolia. Tectonophysics,339(3 - 4):239-258
?eng?r AMC,Natal’in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia.Nature,364(6435):299 -307
Shao JA. 1991. Crustal Evolution in the Middle Part of Northern Margin of Sino-Korean Plate. Beijing:Peking University Press,1 -134 (in Chinese with English abstract)
Shi GH,Miao LC,Zhang FQ,Jian P,F(xiàn)an WM and Liu DY. 2004. The age and its regional tectonic implications of the Xilinhaote A-type granites,Inner Mongolia. Chinese Science Bulletin,49:384 -389
Skjerlie KP and Johnston AD. 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures:Implications for the generation of anorogenic granites. Journal of Petrology,34(4):785-815
Streckesen A. 1976. To each plutonic rock its proper name. Earth Science Reviews,12(1):1 -33
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins:Geological Society of London Special Publication,42(1):312 -345
Tang KD. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics,9(2):249 -260
Traynor JJ and Sladen C. 1995. Tectonic and stratigraphic evolution of the Mongolian People’s Republic and its influence on hydrocarbon geology and potential. Marine and Petroleum Geology,12(1):35 -52
Turner SP,F(xiàn)oden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway ridge,South Australia. Lithos,28(2):151 -179
Valley JW,Chiarenzelli JR and McLelland JM. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters,126(4):187 -206
Valley JW,Kinny PD,Schulze DJ and Spicuzza MJ. 1998. Zircon megacrysts from kimberlite:Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology,133(1 -2):1-11
Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics,342(3 -4):451 -472
von Blanckenburg F and Davies JH. 1995. Slab breakoff:A model for syncollisional magmatism and tectonics in the Alps. Tectonics,14(1):120 -131
Wang F,Zhou XH,Zhang LC,Ying JF,Zhang YT,Wu FY and Zhu RX. 2006. Late Mesozoic volcanism in the Great Xing’an Range(NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters,251(1 -2):179 -198 Wang T,Zheng YD,Zhang JJ,Zeng LS,Donskaya TV,Guo L and Li JB. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics,30(6),doi:10.1029/2011TC002896
Wang T,Guo L,Zheng YD,Donskaya T,Gladkochub G,Zeng LS,Li J,Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos,154:315 -345
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Whalen JB,Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407 -419
Windley BF,Alexeiev D,Xiao WJ,Kroner A and Badarch G. 2007.Tectonic models for accretion of the Central Asian Orogenic belt.Journal of the Geological Society (London),164(1):31 -47
Webb LE,Graham SA,Johnson CL,Badarch G and Hendrix MS. 1999.Occurrence,age,and implications of the Yagan-Onch Hayrhan metamorphic core complex,southern Mongolia. Geology,27(2):143 -146
Whitaker ML,Nekvasil H,Lindsley DH and McCurry M. 2008. Can crystallization of olivine tholeiite give rise to potassic rhyolites?An experimental investigation. Bulletin of Volcanology,70(3):417-434
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology,7:1 -35
Wu FY,Sun DY,Li HM,Jahn BM and Wilde SA. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis. Chemical Geology,187(1 -2):143 -173
Wu FY,Jahn BM,Wilde SA,Lo CH,Yui TF,Lin Q,Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67:191 -204
Wu FY,Lin JQ,Wilde SA,Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,233(1 -2):103 -119
Wu FY,Yang JH,Zhang YB and Liu XM. 2006. Emplacement ages of the Mesozoic granites in southeastern part of the western Liaoning Province. Acta Petrologica Sinica,22(2):315 -325 (in Chinese with English abstract)
Wu FY,Li XH,Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica,23(6):1217 -1238 (in Chinese with English abstract)
Wu FY,Sun DY,Ge WC,Zhang YB,Grant ML,Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41:1 -30
Xiao AC,Yang SF and Chen HL. 2001. Geodynamic background on formation of Erlian Basin. Oil and Gas Geology,22(2):137 -145(in Chinese with English abstract)
Xiao WJ,Windley BF,Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture,Inner Mongolia,China:Termination of the central Asian orogenic belt. Tectonics,22(6):1069,doi:10.1029 /2002TC001484
Xie HJ,Wu G,Zhu MT,Liu J and Zhang LC. 2012. Geochronology and geochemistry of the Daolanghuduge A-type granite in Inner Mongolia,and its geological significance. Acta Petrologica Sinica,28(2):483-494 (in Chinese with English abstract)
Xu B and Chen B. 1997. Framework and evolution of the Middle Paleozoic orogenic belt between Siberian and North China plate in northern Inner Mongolia. Science in China (Series D),40(5):463-469
Xu B,Charvet J,Chen Y,Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework,kinematics,geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research,23(4):1342 -1364
Yang JH,Wu FY,Chung SL,Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,89(1 -2):89 -106
Zhang BL,Zhu G,Jiang DZ,Li CC and Chen Y. 2012c. Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications. Tectonics,31(4):TC4018,doi:10.1029/2012TC003104
Zhang SH,Zhao Y,Davis GA,Ye H and Wu F. 2014c. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization. Earth-Science Reviews,131:49 -87
Zhang XH,Zhang HF,Tang YJ,Wilde SA and Hu ZC. 2008a.Geochemistry of Permian bimodal volcanic rocks from Central Inner Mongolia,North China: Implication for Tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt.Chemical Geology,249(3 -4):261 -281
Zhang XH,Mao Q,Zhang HF and Wilde SA. 2008b. A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning,North China Craton: Age, origin and tectonic significance.Geological Magazine,145(3):305 -320
Zhang XH,Wilde SA,Zhang HF,Tang YJ and Zhai MG. 2009.Geochemistry of hornblende gabbros from Sonidzuoqi, Inner Mongolia,North China:Implication for magmatism during the final stage of suprasubduction zone ophiolite formation. International Geology Review,51(4):345 -373
Zhang XH and Zhai MG. 2010. Magmatism and its metallogenetic effects during the Paleozoic continental crustal construction in northern North China:An overview. Acta Petrologica Sinica,26(5):1329 -1341 (in Chinese with English abstract)
Zhang XH,Zhang HF,Wilde SA,Yang YH and Chen HH. 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning,North China:Petrogenesis and implication for Phanerozoic continental growth. Lithos,117(1 -4):283 -306
Zhang XH,Wilde SA,Zhang HF and Zhai MG. 2011. Early Permian high-K calc-alkaline volcanic rocks from Northwest Inner Mongolia,North China: Geochemistry, origin and tectonic implications.Journal of the Geological Society (London),168(2):525 -543
Zhang XH,Yuan LL,Xue FH and Zhang YB. 2012a. Contrasting Triassic ferroan granitoids from northwestern Liaoning,North China:Magmatic monitor of Mesozoic decratonization and craton-orogen.Lithos,144 -145:12 -23
Zhang XH,Xue FH,Yuan LL,Ma YG and Wilde SA. 2012b. Late Permian appinite-granite complex from northwestern Liaoning,North China craton:Petrogenesis and tectonic implications. Lithos,155:201 -217
Zhang XH,Yuan LL,Xue FH,Yan X and Qian M. 2014a. Early Permian A-type granites from central Inner Mongolia,North China:Magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research,doi:10.1016/j.gr.2014.02.011
Zhang XH,Yuan LL and Wilde SA. 2014b. Crust/mantle interaction during the construction of an extensional magmatic dome:Middle to Late Jurassic plutonic complex from western Liaoning,North China Craton. Lithos,205:185 -207
Zhao XF,Zhou MF,Li JW and Wu FY. 2008. Association of Neoproterozoic A-and I-type granites in South China:Implications for generation of A-type granites in a subduction-related environment. Chemical Geology,257(1 -2):1 -15
Zheng YD,Davis GA,Wang C,Darby BJ and Zhang CH. 2000. Major Mesozoic tectonic events in the Yanshan Belt and the plate tectonic setting. Acta Geologica Sinica,74(4):289 -302 (in Chinese with English abstract)
Zhong YT and Xu YG. 2009. Characteristics of plume-related A-type granites:An example from the Emeishan Large Igneous Province.Journal of Jilin University (Earth Science Edition),39(5):828 -838 (in Chinese with English abstract)
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research,23(4):1365 -1377
Zhu RX,Yang JH and Wu FY. 2012. Timing of destruction of the North China craton. Lithos 149:51 -60
Zorin YA. 1999. Geodynamics of the western part of the Mongolo-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics,306(1):33 -56
附中文參考文獻
陳義賢,陳文寄. 1997. 遼西及鄰區(qū)中生代火山巖:年代學、地球化學和構造背景. 北京:地震出版社,1 -279
陳志廣,張連昌,吳英華,萬博,曾慶棟. 2008. 內蒙古西拉木倫成礦帶碾子溝鉬礦區(qū)A 型花崗巖地球化學和構造背景. 巖石學報,24(4):879 -889
李春昱,湯耀慶. 1983. 亞洲古板塊劃分以及有關問題. 地質學報,57(1):1 -10
邵濟安. 1991. 中朝板塊北緣中段地殼演化. 北京:北京大學出版社,1 -134
吳福元,楊進輝,張艷斌,柳小明. 2006. 遼西東南部中生代花崗巖的時代. 巖石學報,22(2):315 -325
吳福元,李獻華,楊進輝,鄭永飛. 2007. 花崗巖成因研究的若干問題. 巖石學報,23(6):1217 -1238
肖安成,楊樹峰,陳漢林. 2001. 二連盆地的形成的地球動力學背景. 石油與天然氣地質,22(2):137 -145
解洪晶,武廣,朱明田,劉軍,張連昌. 2012. 內蒙古道郎呼都格地區(qū)A 型花崗巖年代學、地球化學及地質意義. 巖石學報,28(2):483 -494
張曉暉,翟明國. 2010. 華北北部古生代大陸地殼增生過程中的巖漿作用與成礦效應. 巖石學報,26(5):1329 -1341
鄭亞東,Davis GA,王琮,Darby BJ,張長厚. 2000. 燕山帶中生代主要構造事件與板塊構造背景問題. 地質學報,74(1):289 -302
鐘玉婷,徐義剛. 2009. 與地幔柱有關的A 型花崗巖的特點——以峨眉山大火成巖省為例. 吉林大學學報(地球科學版),39(5):828 -838