牙庫(kù)甫江·阿西木,阿斯古麗·伊斯馬伊力,王韻婧,劉玉樂(lè)
病毒是重要的植物病原,至今發(fā)現(xiàn)的致病性植物病毒約有450種[1]。它們通過(guò)多種傳播途徑感染農(nóng)作物。植物病毒病被稱作植物的“癌癥”,一旦流行就可能造成較大的農(nóng)作物損失,嚴(yán)重時(shí)甚至造成絕產(chǎn)。長(zhǎng)期以來(lái)人們利用多種防治策略來(lái)控制病毒,例如培育抗病毒品種、使用化學(xué)殺菌劑、切斷病毒的感染途徑、組織脫毒、傳統(tǒng)農(nóng)業(yè)防治等,但都無(wú)法從根本上防治病毒病的危害。隨著分子生物學(xué)理論和技術(shù)的不斷發(fā)展完善,20世紀(jì)80年代初人們提出了利用基因工程手段提高植物抗病毒的設(shè)想。自Abel等[2]成功地將煙草花葉病毒 (Tobacco mosaic virus,TMV) 的外殼蛋白基因轉(zhuǎn)化到煙草植物中獲得穩(wěn)定遺傳的抗病毒煙草植株以來(lái),植物基因工程技術(shù)已經(jīng)取得了突飛猛進(jìn)的發(fā)展。本文綜述了植物抗病毒機(jī)制及目前比較常用的植物抗病毒基因工程策略。
病毒在適當(dāng)?shù)沫h(huán)境下可以成功侵染植物,而植物也對(duì)病毒的侵染有防御反應(yīng);如果病毒能夠戰(zhàn)勝植物防御機(jī)制,就會(huì)引發(fā)植物病毒病。植物主要通過(guò)兩種方式響應(yīng)具體病原體[3-6],一種是主要利用植物葉片表面的角質(zhì)層、蠟質(zhì)層、植物細(xì)胞壁、酶抑制劑以及部分抗微生物化合物等阻止病原體的侵入;另一種是主要通過(guò)激活寄主植物免疫反應(yīng)抑制病原的侵染。那么寄主植物如何與病毒之間進(jìn)行相互作用從而激活對(duì)病毒的抗性呢?一般來(lái)說(shuō),植物的抗病毒功能是通過(guò)植物先天免疫系統(tǒng)和植物體內(nèi)的基因沉默兩套機(jī)制來(lái)實(shí)現(xiàn)的。
與動(dòng)物等多細(xì)胞生物一樣,植物也有先天免疫系統(tǒng),它通過(guò)植物細(xì)胞生產(chǎn)特定物質(zhì)來(lái)應(yīng)答病原的侵入[7]。根據(jù)從植物與細(xì)菌、真菌相互作用獲得的知識(shí),植物先天免疫可分為兩個(gè)層次。一是通過(guò)細(xì)胞表面的模式識(shí)別受體(Pattern-recognition receptors,PRRs) 識(shí)別病原體相關(guān)分子模式 (Pathogen-associated molecular patterns,PAMPs) 產(chǎn)生的免疫反應(yīng),稱為病原體相關(guān)分子激發(fā)的免疫反應(yīng) (PAMP-triggered immunity,PTI)[8]。盡管目前對(duì)于植物是否存在針對(duì)病毒的 PTI一直存在爭(zhēng)議,但病毒學(xué)家通常認(rèn)為RNA沉默是植物針對(duì)病毒的PTI。另一種是指植物通過(guò)自身的抗性基因 (Resistance gene,R基因) 特異地識(shí)別病原物效應(yīng)因子所產(chǎn)生的免疫反應(yīng),也稱為效應(yīng)因子激發(fā)的免疫反應(yīng) (Effector-triggered immunity,ETI)[9-10]。所謂的效應(yīng)因子 (Effectors) 是指病原體為了克服植物PTI而產(chǎn)生的物質(zhì),被植物R基因識(shí)別后可誘發(fā)植物抗病反應(yīng)。
在與病原體相互作用的長(zhǎng)期進(jìn)化過(guò)程中,植物逐漸產(chǎn)生了抗病基因 (Resistance genes,R基因) 系統(tǒng),使植物對(duì)病原體的侵染表現(xiàn)出了一系列的防御反應(yīng)。上個(gè)世紀(jì)初 Biffen[11]開(kāi)始關(guān)注單基因?qū)χ参锟共⌒缘挠绊懀?971年Flor[12]首次報(bào)道植物具有顯性 R基因,提出植物的抗性取決于病原體的無(wú)毒基因 (Avirulence gene,Avr基因) 和植物相應(yīng)的R基因之間的親和性。植物的R基因編碼的蛋白 (R蛋白) 直接或者間接地識(shí)別病原物編碼的無(wú)毒蛋白效應(yīng)子 (Avr),激活下游級(jí)聯(lián)信號(hào)網(wǎng)絡(luò),誘導(dǎo)植物產(chǎn)生一系列抗性反應(yīng),并最終限制病原在入侵寄主上的擴(kuò)散和不同寄主間的傳播[13-14]。R蛋白稱為受體,而相應(yīng)的Avr蛋白稱為激發(fā)子[15-16]。當(dāng)avr基因丟失或突變后,R蛋白無(wú)法識(shí)別Avr蛋白,二者無(wú)法互作,下游網(wǎng)絡(luò)信號(hào)無(wú)法激活,植物也因此不能產(chǎn)生有效的防御反應(yīng),導(dǎo)致植物病害發(fā)生。
植物R蛋白具有抵抗真菌、細(xì)菌、病毒以及線蟲等病原體的功能[17]。根據(jù)結(jié)構(gòu)特征,植物R蛋白可分為兩大類:一是NBS-LRRs結(jié)構(gòu)型蛋白,二是非 NBS-LRRs結(jié)構(gòu)型蛋白。R蛋白中絕大多數(shù)是屬于 NBS-LRRs結(jié)構(gòu)型蛋白,主要負(fù)責(zé)識(shí)別胞內(nèi)的信號(hào)。NBS-LRRs結(jié)構(gòu)型蛋白由 3個(gè)結(jié)構(gòu)域組成,即含有核苷酸結(jié)合結(jié)構(gòu)域 NBS (Nucleotide-Binding site)、亮氨酸重復(fù)序列結(jié)構(gòu)域LRRs (Leucine-rich repeats) 以及N末端的卷曲螺旋CC (Coiled-coil) 結(jié)構(gòu)或Toll和白介素1受體結(jié)構(gòu)域TIR (Toll and interleukin-1 receptor)[7]。非NBS-LRRs結(jié)構(gòu)型蛋白包括胞內(nèi)激酶類R蛋白、含有LRRs的受體激酶類R蛋白、跨膜并具有胞外 LRRs結(jié)構(gòu)域的R蛋白、跨膜但僅有胞內(nèi)CC結(jié)構(gòu)域的R蛋白。這種R蛋白主要負(fù)責(zé)識(shí)別胞外的信號(hào)[18-21]。至今在植物體內(nèi)已經(jīng)克隆獲得了100多種R基因[22],其中具有病毒抗性的R基因約有40多種 (表1)。
R基因介導(dǎo)的抗病反應(yīng)過(guò)程實(shí)際上是一個(gè)信號(hào)轉(zhuǎn)導(dǎo)的過(guò)程:當(dāng)無(wú)毒因子存在時(shí),無(wú)毒因子可以通過(guò)某種機(jī)制活化原本處于失活狀態(tài)的R蛋白,有活性的R蛋白再通過(guò)一系列信號(hào)轉(zhuǎn)導(dǎo)過(guò)程激活各種抗病反應(yīng),抵御病原物的侵害。R 基因介導(dǎo)的植物抗性常表現(xiàn)為超敏反應(yīng)(Hypersensitive response,HR) 和系統(tǒng)性抗性(Systemic resistance,SR)。HR是植物抵抗病原物入侵的一種主動(dòng)、快速的應(yīng)答反應(yīng),以程序性細(xì)胞死亡形式表現(xiàn)。最初病毒侵染位點(diǎn)周圍的細(xì)胞由于快速誘導(dǎo)的細(xì)胞程序化死亡形成了肉眼可見(jiàn)的局部壞死斑,病毒通常會(huì)被局限在損害的局部而不能擴(kuò)散到周圍健康的組織。發(fā)生HR的細(xì)胞會(huì)產(chǎn)生信號(hào)分子,傳遞給周圍的細(xì)胞,然后通過(guò)植物韌皮部擴(kuò)散到整個(gè)植株,使植物能夠產(chǎn)生對(duì)更多種類的病原物的抗性[24],即誘導(dǎo)產(chǎn)生系統(tǒng)抗性。
表1 已克隆的植物R基因[23]Table 1 Plant R genes conferring resistance to viruses[23]
RNA 沉默 (RNA silencing) 或基因沉默(Gene silencing) 是植物抵抗外來(lái)核酸 (轉(zhuǎn)座子、轉(zhuǎn)基因或病毒) 入侵并保護(hù)自身基因組完整性的一種防御機(jī)制,它最顯著的特征就是能產(chǎn)生具有序列特異性調(diào)控功能的小 RNA。小RNA(Small RNA,sRNA) 是長(zhǎng)度為21?24 nt的非編碼蛋白的小RNA分子,在真核生物中參與生長(zhǎng)發(fā)育、基因表達(dá)調(diào)控、染色體修飾、抗病毒以及保護(hù)宿主細(xì)胞基因組穩(wěn)定性等多種生物學(xué)過(guò)程[25]。有一類 sRNA稱為小干擾 RNA (Small interfering RNA,siRNA),是由雙鏈 RNA(Double-stranded RNA,dsRNA) 產(chǎn)生的片段。siRNA一般來(lái)源于基因組上的重復(fù)序列(Repeated sequences)、反向重復(fù)序列 (Inverted repeats)、轉(zhuǎn)座子 (Transposons) 或反轉(zhuǎn)錄子(Retroelements)[26-27]。除此之外,siRNA還可以由病毒和含有發(fā)卡結(jié)構(gòu)的外源性基因產(chǎn)生[28]。siRNA主要通過(guò)指導(dǎo)與其互補(bǔ)的mRNA或病毒RNA的降解、翻譯抑制或組蛋白修飾等過(guò)程抑制靶基因的表達(dá)或翻譯。RNA沉默在植物抗病毒機(jī)制中都具有重要意義。
RNA沉默介導(dǎo)的植物抗病毒反應(yīng)是植物抵抗病毒侵染的有效手段。大多數(shù)植物病毒是RNA病毒,在病毒成功入侵植物后,病毒RNA復(fù)制成雙鏈RNA (dsRNA)。dsRNA會(huì)被植物體內(nèi)的Dicer (一種RNA酶) 降解成21?25 nt的小的干擾 siRNA。這些 siRNA再與植物體內(nèi)的AGO蛋白結(jié)合,形成具 RNA誘導(dǎo)的沉默復(fù)合體 (RNA-induced silencing complex,RISC)。RISC按照堿基互補(bǔ)配對(duì)的原則,與外源 RNA特異結(jié)合后,在結(jié)合部位切割RNA,從而降解外源RNA[29-31],抵抗病毒的侵入。病毒在與植物漫長(zhǎng)的競(jìng)賽中進(jìn)化出 RNA 沉默抑制子抑制宿主RNA沉默系統(tǒng),從而逃避植物的防御,增強(qiáng)致病能力。
1984年首次報(bào)道將細(xì)菌抗抗生素基因通過(guò)農(nóng)桿菌轉(zhuǎn)入到煙草體內(nèi)并表達(dá)成功[32],開(kāi)創(chuàng)了植物轉(zhuǎn)基因之路,為植物抗病毒基因工程領(lǐng)域奠定了基礎(chǔ)。1986年,Abel等[2]通過(guò)植物基因工程技術(shù)首次將煙草花葉病毒 (TMV) 外殼蛋白基因轉(zhuǎn)人煙草,培育出能穩(wěn)定遺傳的抗病毒工程植株,由此開(kāi)啟了抗病毒植物基因工程這一新的領(lǐng)域。自此以后,人們利用不同的策略來(lái)獲得抗病毒工程植株。
2.1.1 病毒外殼蛋白介導(dǎo)的策略
1985年Sanford和Johnston[33]首次提出通過(guò)病毒來(lái)源的抗性 (Pathogen derived resistance,PDR) 抑制病毒的設(shè)想,即把病毒的某一個(gè)基因或基因組的一部分序列導(dǎo)入宿主植物來(lái)誘導(dǎo)植物產(chǎn)生抗性從而抑制病毒。1986年Abel等[2]將TMV的外殼蛋白 (Coat protein, CP) 基因轉(zhuǎn)入煙草中進(jìn)行表達(dá)而使煙草獲得一定程度的對(duì)TMV的抗性,證明了病毒蛋白可以誘導(dǎo)植物產(chǎn)生對(duì)相應(yīng)病毒的抗性。自此之后,對(duì)PDR方法的研究一直成為抗病毒的研究熱點(diǎn)。
外殼蛋白是形成病毒顆粒的結(jié)構(gòu)蛋白,其功能是包被并保護(hù)病毒基因組核酸,參與病毒的長(zhǎng)距離運(yùn)輸?shù)?。外殼蛋白介?dǎo)的抗性是研究最早,也是到目前為止比較成功的抗病毒手段。外殼蛋白介導(dǎo)的抗性 (Coat protein mediated resistance,CPMR) 策略是將病毒的外殼蛋白基因轉(zhuǎn)化到植物細(xì)胞內(nèi),從而使得轉(zhuǎn)基因植物獲得抗病毒的能力[34]。此種方法產(chǎn)生的病毒抗性有些是廣泛的,有些是比較局限的[35],抗性范圍可能因病毒種類不同而不同,如轉(zhuǎn)馬鈴薯花葉病毒 (Potato mosaic virus,PMV) CP基因的馬鈴薯對(duì)PMV和其他的同組病毒均有抗性[36],但是轉(zhuǎn)化木瓜環(huán)斑病毒 (Papaya ringspot virus,PRSV) HA株系CP基因的木瓜只能對(duì)PRSV HA株系產(chǎn)生抗性[37]。后來(lái)發(fā)現(xiàn),株系專一的抗性常是由于RNA沉默導(dǎo)致的。至今通過(guò)CPMR策略獲得抗約35種病毒的轉(zhuǎn)基因植物,如有轉(zhuǎn)番茄花葉病毒 (Tomato mosaic virus, ToMV),黃化葉病毒 (Yellow mosaic virus),黃瓜花葉病毒(Cucumber mosaic virus,CMV) 以及番茄黃化曲葉病毒 (Tomato yellow leaf curling virus,TYLCV) 外殼蛋白基因的番茄[38],其中抗CMV的番茄等經(jīng)濟(jì)作物已經(jīng)通過(guò)認(rèn)證商業(yè)化[39]。此外,劉小紅等還將玉米矮花葉病毒 (Maize dwarf mosaic virus, MDMV) 外殼蛋白基因轉(zhuǎn)入玉米,獲得了對(duì)MDMV有抗性的玉米[40]。
2.1.2 病毒復(fù)制酶介導(dǎo)的策略
除了病毒外殼蛋白提供有效的植物病毒抗性外,用其他病毒蛋白,如復(fù)制酶和運(yùn)動(dòng)蛋白轉(zhuǎn)基因也可獲得病毒抗性[41-44]。復(fù)制酶是指由病毒編碼的能特異合成病毒正、負(fù)鏈 RNA的RNA聚合酶。1990年Golemboski等[45]報(bào)道將TMV復(fù)制酶的一段核酸序列轉(zhuǎn)入煙草后產(chǎn)生對(duì)TMV的抗性。隨后的研究顯示轉(zhuǎn)病毒復(fù)制酶基因的部分,全長(zhǎng)以及突變序列的植物均有病毒抗性,但是抗性的程度和范圍不盡相同[46]。研究顯示不同病毒復(fù)制酶轉(zhuǎn)基因介導(dǎo)的抗性機(jī)制不同,一些在蛋白質(zhì)水平上介導(dǎo)抗性,但許多是RNA介導(dǎo)的病毒抗性[47]。在蛋白水平上,轉(zhuǎn)基因植物表達(dá)的復(fù)制酶在病毒的侵染過(guò)程中作為一種調(diào)節(jié)蛋白發(fā)揮功能,從而打破了病毒復(fù)制的平衡,或者是干擾了催化產(chǎn)生復(fù)制酶的酶活性的反饋抑制途徑[48]。復(fù)制酶介導(dǎo)的抗性對(duì)于植物病毒的種類具有很高的特異性,因此其應(yīng)用范圍可能會(huì)受到一定的限制。李華平等利用番木瓜環(huán)斑病毒 (Papaya ringspot virus,PRSV) 的復(fù)制酶基因轉(zhuǎn)化番木瓜獲得抗 PRSV的轉(zhuǎn)基因植株,并且此種抗病番木瓜已經(jīng)獲得生產(chǎn)應(yīng)用的安全證書[49]。
2.1.3 病毒運(yùn)動(dòng)蛋白介導(dǎo)的策略
植物病毒侵染植物后在體內(nèi)的運(yùn)轉(zhuǎn)方式主要有兩種,一是通過(guò)胞間連絲在細(xì)胞之間的移動(dòng),二是通過(guò)植物維管組織進(jìn)行的系統(tǒng)轉(zhuǎn)移。病毒在細(xì)胞間的移動(dòng)是一個(gè)主動(dòng)的過(guò)程,需要病毒的運(yùn)動(dòng)蛋白 (Movement protein, MP) 的參與。N末端3個(gè)氨基酸缺失導(dǎo)致功能缺陷的TMV MP的基因轉(zhuǎn)入煙草后,TMV的侵染受到抑制,癥狀出現(xiàn)延遲[50]。許多病毒的基因組有 1個(gè)三基因重疊區(qū) (Triple gene block, TGB),編碼3個(gè)不同的運(yùn)動(dòng)蛋白,白三葉草花葉病毒 (White clover mosaic virus,WCIMV) 為馬鈴薯X病毒屬的病毒,其運(yùn)動(dòng)蛋白 13a中一段序列在所有具有TGB的病毒中保守,在該保守區(qū)將13a蛋白突變獲得的突變體轉(zhuǎn)基因后不僅抗 WCIMV多個(gè)株系,而且抗同病毒屬的馬鈴薯病毒 X(Potato virus X,PVX) 和水仙花葉病毒(Narcissus mosaic virus),甚至抗香石竹潛病毒組的馬鈴薯病毒S (Potato virus S)[51]。利用MP介導(dǎo)的病毒抗性策略常獲得較廣泛的病毒抗性,目前大多應(yīng)用于馬鈴薯和番茄這兩種作物上。
2.1.4 其他病毒蛋白介導(dǎo)的抗性策略
植物抗病毒基因工程往往需要以病毒外殼蛋白/復(fù)制酶/運(yùn)動(dòng)蛋白及病毒基因組作為靶向[52]。除此之外,人們還利用病毒的其他蛋白轉(zhuǎn)基因獲得病毒抗性。雙生病毒 (Geminiviruses)是DNA病毒,其復(fù)制不同于RNA病毒,主要是以滾環(huán)復(fù)制的方式進(jìn)行復(fù)制[53]。雙生病毒編碼的復(fù)制起始蛋白 (Replication initiation protein, Rep) 具有核酸內(nèi)切酶和連接酶活性,是雙生病毒復(fù)制過(guò)程中的關(guān)鍵因子。研究報(bào)道部分雙生病毒 Rep全長(zhǎng)基因轉(zhuǎn)化的植株對(duì)相應(yīng)的病毒產(chǎn)生抗性,這些病毒包括TYLCV[54],棉花曲葉病毒 (Cotton leaf curl virus, CLCuV)[55],臺(tái)灣番茄曲葉病毒 (Tomato leaf curl Taiwan virus,ToLCTWV)[56]等。
除了雙生病毒 Rep之外,還有利用煙草脈斑駁病毒 (Tobacco vein mottling virus, TVMV)NIa蛋白酶[57],馬鈴薯病毒Y (Potato virus Y, PVY)編碼的P1蛋白[58-59]等都能產(chǎn)生病毒抗性。
2.1.5 衛(wèi)星RNA介導(dǎo)的抗性策略
某些植物病毒有衛(wèi)星RNA (Satellite RNA,satRNA)。衛(wèi)星 RNA是一類依賴于輔助病毒才能復(fù)制的低分子量RNA,它不能編碼外殼蛋白,只裝配于輔助病毒的外殼蛋白中,其復(fù)制、運(yùn)動(dòng)必須依靠輔助病毒進(jìn)行[60]。satRNA及輔助病毒在同一植物內(nèi)的共同存在導(dǎo)致兩種截然不同的結(jié)果,或加重癥狀,或抑制輔助病毒的復(fù)制。satRNA抑制病毒復(fù)制的功能被用于植物病毒抗性研究中。20世紀(jì)世紀(jì)80年代初,我國(guó)田波院士研究組[61]首次在國(guó)際上開(kāi)展了利用 satRNA防治病毒病害的研究工作,結(jié)果表明黃瓜花葉病毒 (CMV) satRNA作為生物防治因子能有效地防治由強(qiáng)毒株系 CMV引起的嚴(yán)重病害。1986年 Baulcombe等[62]首次成功地將 CMV的satRNA導(dǎo)入煙草,接種 CMV后,植株體內(nèi)satRNA增加,CMV基因組RNA水平大幅下降,植株不表現(xiàn)癥狀。后來(lái)類似抗性在矮牽牛和辣椒中報(bào)道[63-64]。1992年田波院士研究組報(bào)道,將表達(dá)CMV的satRNA和CP嵌合蛋白的序列轉(zhuǎn)化煙草,進(jìn)一步提高了轉(zhuǎn)基因植株的抗性效率[65]。
一般認(rèn)為 satRNA介導(dǎo)的病毒抗性的機(jī)理是 satRNA與病毒基因組 RNA 爭(zhēng)奪病毒復(fù)制酶位置,最終以數(shù)量?jī)?yōu)勢(shì)抑制了病毒基因組的復(fù)制。但是最近研究報(bào)道,這種抗性中還會(huì)存在RNA沉默途徑[66-67]。衛(wèi)星 RNA 介導(dǎo)的抗性只需很低的表達(dá),就能使植株獲得高抗作用,而且這種抗性并不產(chǎn)生特異蛋白,這樣提高了轉(zhuǎn)基因植物的生物安全性等優(yōu)點(diǎn)。但是也存在一些缺點(diǎn):含有衛(wèi)星RNA的病毒種類少,應(yīng)用范圍不廣。另外衛(wèi)星RNA轉(zhuǎn)基因植株只在農(nóng)作物生長(zhǎng)的晚期抗病,對(duì)早期的初侵染沒(méi)有抗性。BaMV的衛(wèi)星RNA轉(zhuǎn)基因的煙草和擬南芥也有很強(qiáng)的抗性[68]。
2.1.6 核酶介導(dǎo)抗性策略
20世紀(jì)80年代初,Cech等[69]研究原生動(dòng)物四膜蟲rRNA時(shí),首次發(fā)現(xiàn)RNA基因轉(zhuǎn)錄產(chǎn)物的Ⅰ型內(nèi)含子剪切和外顯子拼接過(guò)程可在無(wú)任何蛋白質(zhì)存在的情況下發(fā)生,證明了RNA具有催化功能。后來(lái)這種RNA被稱為核酶[70]。核酶是一類具有特殊二級(jí)結(jié)構(gòu)、能特異性催化切割自身以及其他RNA分子的小分子RNA。
根據(jù)核酶的功能人們預(yù)測(cè)了當(dāng)核酶序列嵌入到病毒RNA互補(bǔ)序列中時(shí),核酶能夠序列特異性地降解病毒RNA從而抑制病毒。有關(guān)研究報(bào)道,利用核酶能控制病毒,即依據(jù)已知的病毒基因組的特定區(qū)域序列設(shè)計(jì)核酶序列,使它能特異識(shí)別切割病毒的特定區(qū)域,從而切斷病毒基因組,破壞其生物功能。在植物抗病毒方面,Kwon等[71]成功設(shè)計(jì)能切割CMV RNA1和RNA2的核酶后在煙草體內(nèi)表達(dá)獲得對(duì)CMV的抗性。此外,Yang等[72]用能切割馬鈴薯紡綞塊莖類病毒 (Potato spindle tuber viroid,PSTV)的核酶基因,并轉(zhuǎn)化馬鈴薯后成功地控制了PSTV感染。Huttner等[73]報(bào)道,通過(guò)多核酶序列同時(shí)靶向WMV和ZYMV病毒,提供新的方法。核酶基因介導(dǎo)的抗性雖已取得一定的成效,但仍然存在核酶的切割效率低、表達(dá)量不高、穩(wěn)定性差和依賴高濃度的表達(dá)量等問(wèn)題。
2.1.7 RNA沉默介導(dǎo)的策略
正義RNA介導(dǎo)的策略:NaPoli等[74]將與成花色素合成有關(guān)的CHS基因轉(zhuǎn)入矮牽牛,期望獲得花色加深的轉(zhuǎn)基因植株,結(jié)果原本開(kāi)紫花的矮牽牛不但花色沒(méi)有加深反而出現(xiàn)了白花。研究表明導(dǎo)入的CHS基因與同源的內(nèi)源CHS基因的mRNA水平同時(shí)降低,稱為共抑制或正義RNA介導(dǎo)的基因沉默。當(dāng)外源基因在植物中高效表達(dá)或受到病毒侵染時(shí)在植物中積累大量病毒RNA并達(dá)到一定閾值時(shí)會(huì)激活細(xì)胞內(nèi)的一種監(jiān)視機(jī)制,用以排除過(guò)量的 RNA[75]。 后來(lái)知道這種監(jiān)視機(jī)制是RNA沉默。通過(guò)表達(dá)病毒正義 RNA片段有時(shí)可以獲得抗病毒植物,如:Dougherty等[76]將 Tobacco etch virus (TEV) 的一段不能編碼病毒外殼蛋白的病毒基因序列轉(zhuǎn)化煙草過(guò)量表達(dá)后,轉(zhuǎn)基因植株產(chǎn)生對(duì)TEV的抗性。最近研究報(bào)道利用類似的方法也能夠得到對(duì)Papaya ringspot virus (PRSV)[77-78]等其他許多病毒抗性的植物。
反義RNA介導(dǎo)的策略:反義RNA是一類與mRNA互補(bǔ)配對(duì)的單鏈RNA,它能通過(guò)與靶向mRNA互補(bǔ)配對(duì)從而產(chǎn)生相應(yīng)的dsRNA或降解目的mRNA來(lái)抑制目的基因表達(dá)。Bird等[79]首次利用這門技術(shù),成功抑制了番茄類胡蘿卜素合成。從此該技術(shù)開(kāi)始運(yùn)用于植物抗病毒領(lǐng)域,至今已在許多中植物中獲得成功。Day等[80]將TGMV (Tomato golden mosaic virus) 的AL1基因的反義 RNA轉(zhuǎn)入煙草后煙草會(huì)產(chǎn)生對(duì)TGMV的抗性。此后人們通過(guò)這種方法成功地抑制了MYMV (Mungbean yellow mosaic virus)[81]、ACMV (African cassava mosaic virus)[82]、PVY[83]等對(duì)植物的侵染。
反向重復(fù)序列介導(dǎo)的策略:1998年Waterhouse等[84]首次報(bào)道,將正義和反義的GUS基因序列相互串聯(lián)重組構(gòu)成的反向重復(fù)(Inverted repeat,IR) 序列轉(zhuǎn)入水稻 (轉(zhuǎn)GUS基因的植物) 后產(chǎn)生 dsRNA,使體內(nèi)穩(wěn)定表達(dá)的GUS基因沉默。人們也通過(guò)此種方式將病毒蛋白編碼的基因進(jìn)行沉默達(dá)到控制病毒的目的。Tougou等[85]報(bào)道,Soybean dwarf virus (SDV)的外殼蛋白 (CP) 基因通過(guò) IR介導(dǎo) RNA沉默方法對(duì)相應(yīng)的病毒進(jìn)行控制。周雪平研究組將TMV運(yùn)動(dòng)蛋白基因和CMV復(fù)制酶基因片段融合的反向重復(fù)序列轉(zhuǎn)化煙草獲得對(duì) TMV和CMV抗性[86]。與正義和反義RNA介導(dǎo)的抗性策略相比,IR介導(dǎo)的抗性策略至少具有兩種優(yōu)勢(shì):一是由于 IR序列的轉(zhuǎn)錄不依賴于 RdRp(RNA dependent RNA polymerase)[87],抗病毒效率高[88-89];二是通過(guò)一種重組序列能夠防御多種植物病毒。最近的研究顯示,將來(lái)自于 3種不同的大豆病毒的反向重復(fù)序列重組導(dǎo)入大豆后,這種轉(zhuǎn)基因大豆能夠抗御 AIMV、BPMV和SMV等多種病毒[90]。
miRNA介導(dǎo)的植物病毒策略:miRNA(MicroRNAs) 是最早在秀麗隱桿線蟲Caenorhabditis elegance[91]中發(fā)現(xiàn)的一類內(nèi)源性的具有調(diào)控功能的非編碼 RNA,其大小長(zhǎng)約20?25個(gè)核苷酸。miRNA在序列同源性基礎(chǔ)上與相應(yīng)的mRNA特異結(jié)合,從而抑制轉(zhuǎn)錄后基因表達(dá),在調(diào)控基因表達(dá)、細(xì)胞周期、生物體發(fā)育時(shí)序等方面起重要作 用[92-93]。Niu等[94]首次報(bào)道人工改造的miRNA在擬南芥體內(nèi)穩(wěn)定表達(dá)后能夠跟 TYMV (Turnip yellow mosaic virus) 和TuMV病毒的HC-Pro基因轉(zhuǎn)錄的RNA結(jié)合使其沉默,從而抑制病毒產(chǎn)生抗性。Ai等[95]報(bào)道在煙草中利用人工 miRNA可以有效地沉默 PVX病毒的 HcPro基因和 PVY 病毒的TGB1/p25基因從而抑制病毒感染。Zhang等[96]也利用類似的方法有效地抑制 CMV病毒對(duì)番茄的感染。方榮祥和郭惠珊研究組用此方法利用針對(duì)CMV mRNA的人工miRNA在煙草體內(nèi)取得對(duì)CMV的抗性[97-98]。近年來(lái)發(fā)現(xiàn),病毒會(huì)通過(guò)在靶向位點(diǎn)突變來(lái)降低人工miRNA和病毒mRNA的結(jié)合,逃避人工miRNA的降解,從而導(dǎo)致植物病毒抗性喪失[99-100]。所以為了解決這個(gè)問(wèn)題人們靶向病毒基因的不同保守區(qū)構(gòu)建了多種人工miRNA的載體。但這種措施只有對(duì)部分病毒很有效[97],這可能是由于靶向mRNA的結(jié)構(gòu)不同時(shí)人工miRNA的有效性也不同。
2.2.1 顯性R基因介導(dǎo)的策略
目前已克隆多個(gè)抗病毒的 R基因,人們利用植物 R基因來(lái)控制病毒。R基因介導(dǎo)的抗性策略中最典型的例子是煙草 N基因轉(zhuǎn)入番茄,轉(zhuǎn)基因的番茄有效抵抗 TMV[101]。此外馬鈴薯Rx抗PVX,轉(zhuǎn)化煙草后仍對(duì)Potexviruses有抗性[102],番茄 Tm-22基因抗 ToMV和 TMV,轉(zhuǎn)化煙草對(duì)TMV和ToMV也有相同的抗性[103]等。多數(shù) R基因的抗性不僅具有特異性,而且有可能隨著病菌群體組成的變化和快速進(jìn)化而喪失。在植物 R基因的利用上可以從以下幾方面考慮:1) 根據(jù)已有的R基因結(jié)構(gòu)特征設(shè)計(jì)新的基因;2) 進(jìn)行異源表達(dá);3) 可以向一株植物中導(dǎo)入多個(gè)R基因。在同一品種中導(dǎo)入多個(gè)R基因或過(guò)表達(dá)一個(gè) R基因可能使植物可以對(duì)抗多種病原且抗性持久。
2.2.2 隱性R基因介導(dǎo)的策略
植物易感基因能夠編碼病毒侵入所必需的蛋白,幫助病毒侵染。但是它的等位基因突變時(shí)不但不能幫助病原體入侵而且會(huì)使宿主形成病毒抗性,即隱性抗性。至今許多隱性抗性基因 (隱性R基因) 已被克隆,大部分編碼與真核翻譯起始復(fù)合體 (Eukaryotic translation initiation complex) 相關(guān)的蛋白。真核翻譯起始因子 (Eukaryotic translation initiation factors,eIFs),尤其eIF4E和eIF4G蛋白家族是部分RNA病毒 (例如potyviruses) 侵染的決定因子[104-106]。通過(guò)表達(dá)突變的與病毒蛋白不能互作的植物蛋白可以使植物抗病毒,如:辣椒 pvr12基因(eIF4E基因的等位基因) 在馬鈴薯過(guò)量表達(dá)時(shí),轉(zhuǎn)基因植株能夠抵抗多種PVY病毒[107]。
通過(guò)沉默eIFs也可以產(chǎn)生病毒抗性。如:李痘病毒 (Plum pox virus, PPV) 侵入李子Prunus domestica植物需要eIF(iso)4E (eIF4E的異構(gòu)體) 的協(xié)助,用 RNA沉默技術(shù)設(shè)計(jì)靶向eIF(iso)4E時(shí),李子對(duì)PPV產(chǎn)生抗性,但是eIF4E基因沉默的植株不能產(chǎn)生對(duì)PPV的抗性,說(shuō)明potyvirus侵入宿主時(shí)需要跟eIFs異構(gòu)體的特異性互作[108]。
2.2.3 其他寄主蛋白介導(dǎo)的抗性策略
參與植物防御反應(yīng)的主要有乙烯應(yīng)答元件結(jié)合因子 (Ethylene response factors,ERF)、MYB、WRKY、bZIP (Basic leucine zipper) 家族和 homeodomain蛋白。過(guò)表達(dá)一些含ERF元件的基因可以使植物顯示對(duì)病毒的抗性,如抗煙草花葉病毒組 (Tobamoviruses) 和 PMMoV[109-112]。許多編碼防御反應(yīng)相關(guān)蛋白的基因可以使植物對(duì)病毒產(chǎn)生一定抗性。如來(lái)自黃燈籠辣椒編碼類萌蛋白的基因 (CchGLP) 在煙草體內(nèi)過(guò)量表達(dá)后減輕或延遲 Pepper huasteco yellow vein virus(PHYVV) 和 Pepper golden mosaic virus(PepGMV) 的感染[113]。
植物凝集素基因JAX1在煙草體內(nèi)過(guò)量表達(dá)后特異性地抑制potexviruses[114];編碼RdRp的基因Ty1、Ty3的番茄通過(guò)超甲基化TYLCV的CP基因啟動(dòng)子區(qū)來(lái)抑制TYLCV[115-116]。水稻基因 STV11編碼磺基轉(zhuǎn)移酶,能夠調(diào)節(jié)水楊酸途徑對(duì)Rice stripe virus (RSV) 產(chǎn)生抗性[117]。后二者轉(zhuǎn)化入敏感植物或其他植物極可能可以抗相應(yīng)的雙生病毒或RSV。
2.3.1 核糖體失活蛋白介導(dǎo)的策略
核糖體失活蛋白 (Ribosome-inactivating proteins, rIPs) 是一種N糖苷酶,能夠特異性地水解28S核糖體RNA在A4324處的腺嘌呤糖苷鍵,從而阻止EF2/GTP復(fù)合物與核糖體60S大亞基的結(jié)合,抑制蛋白質(zhì)的合成。目前用于植物抗病毒基因工程的植物來(lái)源性RIPs有:美洲商陸抗病毒蛋白 (Pokeweed antiviral protein,PAP) 和天花粉蛋白 (Trichosanthin, TCS)。PAP是從美洲商陸 (Phytolacca americanai L.) 植物中分離出的一種堿性蛋白,分子量約30 kDa,屬于廣譜抗植物病毒蛋白。Lodge等[118]將 pap基因?qū)氲綗煵莺婉R鈴薯后,成功表達(dá)PAP的轉(zhuǎn)基因煙草馬鈴薯都表現(xiàn)出了對(duì)多種病毒的抗性。這種PAP蛋白合成后會(huì)運(yùn)輸?shù)郊?xì)胞質(zhì)中,在正常情況下不會(huì)影響核糖體功能,只是在病毒侵染細(xì)胞后使核糖體失活,從而抑制病毒RNA翻譯。值得注意的是許多植物PAP蛋白是多核苷酸N糖苷酶,不僅能夠水解核糖體上的腺嘌呤糖苷鍵還能夠水解DNA和RNA中的腺嘌呤[119],在清除病毒基因組方面起到一定作用。據(jù)報(bào)道,C末端缺失的PAP蛋白不能水解宿主細(xì)胞中的核糖體RNA中的腺嘌呤,但是仍能夠抑制病毒感染[120]。
TCS是從藥用植物栝樓(Trichosanthes kirilowii Maxim.) 塊根中提取出來(lái)的分子量約26 kDa的堿性蛋白。TCS原本作為中草藥天花粉的有效成分應(yīng)用于妊娠引產(chǎn)、治療絨毛膜皮上癌等。近年來(lái)發(fā)現(xiàn),TCS對(duì)艾滋病毒 (HIV)及乙肝病毒等 7種病毒均有廣譜抗性。Lam等[121]研究發(fā)現(xiàn),將重組后的TCS轉(zhuǎn)化煙草和菜心,能限制TuMV (Turnip mosaic virus) 侵染煙草后局部壞死斑的形成,并且延遲 TuMV侵染菜心后花葉癥狀的出現(xiàn)。
2.3.2 植物抗體介導(dǎo)的抗性策略
1989年Hiatt等[122]獲得了能夠表達(dá)完整抗體的轉(zhuǎn)基因煙草,這種植物表達(dá)出來(lái)的抗體具有與抗原結(jié)合的活性,開(kāi)創(chuàng)了植物抗體的先河。隨后研究證明,植物能產(chǎn)生從小分子抗體到全抗體等各種工程抗體??共《镜鞍椎目贵w基因在植物中的表達(dá),有可能使植物抗病毒。Tavladoraki等[123]在煙草中表達(dá)抗菊芋花斑皺葉病毒 (Artichoke mottled crinkle virus,AMCV)外殼蛋白的單鏈抗體的可變區(qū)片段 (Singlechain variable fragment, scFv),使轉(zhuǎn)基因植株產(chǎn)生了對(duì)AMCV的抗性。在這種抗性策略中,scFv表達(dá)水平和穩(wěn)定性不太理想,轉(zhuǎn)基因植物不能產(chǎn)生較強(qiáng)的抗性,只能延遲病毒感染時(shí)間及降低感染水平,因此當(dāng)時(shí)這種策略不太受歡迎。后來(lái)的研究取得了scFv的穩(wěn)定性表達(dá)[124],也拓寬了對(duì)靶向蛋白的選擇,除病毒外殼蛋白之外還增加了病毒復(fù)制蛋白[125]和一些非結(jié)構(gòu)性病毒蛋白[126-127]等作為靶向蛋白。
2.3.3 核酸酶介導(dǎo)的抗性策略
動(dòng)植物細(xì)胞都有識(shí)別PAMPs的能力,并且通過(guò)結(jié)合PRRs激發(fā)免疫反應(yīng)。2′-5′寡聚腺苷酸合成酶 (2′-5′ Oligoadenylates synthesis, OAS)是在動(dòng)物細(xì)胞中發(fā)現(xiàn)的一種干擾素誘導(dǎo)產(chǎn)生的抗病毒蛋白,在機(jī)體的抗病毒免疫過(guò)程中發(fā)揮著重要作用。當(dāng)細(xì)胞受到病毒侵染后,機(jī)體產(chǎn)生干擾素,干擾素刺激細(xì)胞產(chǎn)生OAS。OAS只有在dsRNA存在下才具有活性,病毒基因組的dsRNA、RNA病毒復(fù)制、DNA病毒轉(zhuǎn)錄過(guò)程中產(chǎn)生的短暫存在的dsRNA都能夠激活OAS[128]。在被dsRNA激活后,OAS家族中的蛋白將ATP聚合成 pppA(2′p5′A)n (n=1 或 n>1) 寡聚體,進(jìn)而激活潛在的核糖核酸酶 L (RNaseL),被激活的RNaseL使病毒的mRNA降解,起到抗病毒的作用[129]。
雖然在植物中未發(fā)現(xiàn)OAS/RNase L系統(tǒng),但是通過(guò)轉(zhuǎn)基因在煙草體內(nèi)引入OAS系統(tǒng)后,轉(zhuǎn)基因煙草在病毒感染后產(chǎn)生類似于 HR的反應(yīng),植物表現(xiàn)較廣泛的病毒抗性[130-131]。此外,在轉(zhuǎn)基因的煙草中還發(fā)現(xiàn),TMV感染后 OAS系統(tǒng)能夠激活 SAR[132]。單獨(dú)轉(zhuǎn) OAS基因的轉(zhuǎn)基因植物沒(méi)有表現(xiàn)出病毒抗性,只有與RNase L基因同時(shí)轉(zhuǎn)基因時(shí)才能產(chǎn)生病毒抗性。李大偉研究組[133]將大腸桿菌中編碼特異識(shí)別 dsRNA的核糖核酸內(nèi)切酶基因轉(zhuǎn)化玉米后發(fā)現(xiàn)轉(zhuǎn)基因植株對(duì)RBSDV (Rice black-streaked dwarf virus)產(chǎn)生抗性。
2.3.4 其他抗性策略
除了上述抗病毒策略之外,人們還發(fā)展其他抗性策略。如:項(xiàng)瑜等[134]構(gòu)建了PVY Nib基因和解淀粉芽胞桿菌Bacillus amyloliquefaciens的 RNase基因 (Barnase) 的融合基因,該融合基因的轉(zhuǎn)基因植株對(duì)PVY侵染表現(xiàn)局部抗性。其原理是該融合基因編碼的融合蛋白沒(méi)有Barnase活性,但在 PVY侵染后,融合蛋白被病毒蛋白酶加工,有活性的 Barnase被釋放出來(lái),殺死被病毒侵染的細(xì)胞,使病毒不能進(jìn)一步擴(kuò)散[134]。此外王志華等將來(lái)源于苜蓿銀紋夜蛾核多角體病毒的 p35基因轉(zhuǎn)化煙草,轉(zhuǎn)基因植株也表現(xiàn)對(duì)TMV產(chǎn)生抗性[135]。
基因工程是植物抗病育種工作中十分有效和有用的手段。自1986年人們首次獲得抗病毒工程植株以來(lái),經(jīng)過(guò)近30年的探索和完善,植物抗病毒基因工程研究不論在深度上還是廣度上都已經(jīng)得到了很大的發(fā)展,相關(guān)技術(shù)和方法不斷發(fā)展和更新?;蚬こ碳夹g(shù)最大的優(yōu)點(diǎn)是可以將人們所感興趣的外源目的基因特異性地導(dǎo)入植物體內(nèi),使其產(chǎn)生人們需要的表型和特征。一些病毒來(lái)源的抗性策略,尤其是小RNA介導(dǎo)的策略已經(jīng)能使植物產(chǎn)生免疫的抗性[137],該策略也適用于控制多種植物病毒;植物和其他來(lái)源的基因也可產(chǎn)生強(qiáng)且安全的病毒抗性。此外,一些抗病毒轉(zhuǎn)基因作物已經(jīng)廣泛種植并證明了很好的效果,可以相信抗病毒轉(zhuǎn)基因作物會(huì)得到更廣泛的應(yīng)用。
[1] Soosaar JLM, Burch-Smith TM, Dinesh-Kumar SP. Mechanisms of plant resistance to viruses. Nat Rev Microbiol, 2005, 3(10): 789–798.
[2] Abel PP, Nelson RS, De B, et al. Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science,1986, 232(4751): 738–743.
[3] Vergne E, Grand X, Ballini E, et al. Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae. BMC Plant Biol, 2010, 10:1471–2229.
[4] Pieterse CM, van Wees SC, Hoffland E, et al.Systemic resistance in Arabidopsis induced by bio control bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 1996, 8(8): 1225–1237.
[5] Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol, 1998, 36: 453–483.
[6] Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Environ Microbiol, 2005, 71(9):4951–4959.
[7] Moffett P. Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res, 2009,75: 1–33, 228–229.
[8] Nicaise, Roux M, Zipfel C. Recent advances in pAMP-triggered immunity against bacteria:pattern recognition receptors watch over and raise the alarm. Plant Physiol, 2009, 150(4):1638–1647.
[9] Dang JL, Jones JD. Plant pathogens and integrated defense responses to infection. Nature, 2001,411(6839): 826–833.
[10] Zipfel C, Felix G. Plants and animals: a different taste for microbes?. Curr Opin plant biol, 2005,8(4): 353–360.
[11] Biffen RH. Mendel’s laws of inheritance and wheat breeding. J Agric Sci, 1905, 1(1): 4–48.
[12] Flor HH. Current status of gene-for-gene concept.Annu Rev Phytopathol, 1971, 9: 275–296.
[13] Heath MC. Non host resistance and nonspecific plant defenses. Curr Opin Plant Biol, 2000, 3(4):315–319.
[14] Shirasu K, Schulze-Lefert P. Complex formation,promiscuity and multi-functionality: protein interactions in disease-resistance pathways.Trends Plant Sci, 2003, 8(6): 252–258.
[15] Gabriel DW, Rolfe BG. Working models of specific recognition in plant-microbe interactions.Annu Rev Phytopathol, 1990, 28: 365–391.
[16] Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol, 2000, 3(4): 278–284.
[17] Martin GB, Bogdanove AJ, Sessa G.Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol, 2003,54: 23–61.
[18] Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243):1804–1806.
[19] Riely BK, Martin GB. Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc Natl Acad Sci USA, 2001, 98(4): 2059–2064.
[20] Vleeshouwers VGAA, Martens A, van Dooijeweert W, et al. Ancient diversification of the Pto kinase family preceded speciation in Solanum. Mol Plant Microbe Interact, 2001, 14(8):996–1005.
[21] Sun XL, Cao YL, Yang ZF, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37(4): 517–527.
[22] Sanseverino W, Ercolano MR. In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes, 2012, 5:678.
[23] Galvez LC, Banerjee J, Pinar H, et al. Engineered plant virus resistance. Plant Sci, 2014, 228: 11–25.
[24] Conrath U, Pieterse CMJ, Mauch-Mani B. Priming in plant-pathogen interactions. Trends Plant Sci,2002, 7(5): 210–216.
[25] Mello CC, Conte DJr. Revealing the world of RNA interference. Nature, 2004, 431(7006):338–342.
[26] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004,431(7006): 343–349.
[27] Finnegan EJ, Matzke MA. The small RNA world.J Cell Sci, 2003, 116(23): 4689–4693.
[28] Hamilton AJ, Baulcombe DC. A species of small antisense RNA in post transcriptional gene silencing in plants. Science, 1999, 286(5441):950–952.
[29] Voinnet O. Origin Biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669–687.[30] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009,136(4): 642–655.
[31] Ding SW. RNA-based antiviral immunity. Nat Rev Immunol, 2010, 10(9): 632–644.
[32] De Block M, Herrera-Estrella L, van Montagu M,et al. Expression of foreign genes in regenerated plants and in their progeny. EMBO J, 1984, 3(8):1681–1689.
[33] Sanford JC, Johnston SA. The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. J Theor Biol, 1985, 113(2): 395–405.
[34] Beachy RN, Loesch-Fries S, Tumer NE. Coat protein-mediated resistance against virus infection. Ann Rhthol, 1990, 28: 451–472.
[35] Tepfer M. Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol, 2002,40: 467–491.
[36] Malno? P, Farinelli L, Collet GF, et al. Small-scale field tests with transgenic potato, cv. Bintje, to test resistance to primary and secondary infections with Potato virus Y. Plant Mol Biol, 1994, 25(6):963–975.
[37] Tennant PF, Gonsalves C, Ling KS, et al.Differential protection against Papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya.Phytopathology, 1994, 84: 1359–1366.
[38] Dasgupta I, Malathi VG, Mukherjee SK. Genetic engineering for virus resistance. Curr Sci, 2003,84: 341–354.
[39] James C. GM events with viral disease resistance(2014) [EB/OL]. http://www.isaaa.org/gmapprovaldatabase/gmtrait/default.asp?TraitID=7&GMTrait=Viral disease resistance.
[40] Liu XH, Zhang HW, Liu X, et al. Isolation of the capsid protein gene of maize dwarf mosaic virus and its transformation in maize. Chin J Biotech,2005, 21(1): 144–148 (in Chinese).
劉小紅, 張紅偉, 劉昕, 等. MDMV CP基因的克隆及其轉(zhuǎn)基因玉米的研究. 生物工程學(xué)報(bào),2005, 21(1): 144–148.
[41] Beachy RN. Coat-protein-mediated resistance to Tobacco mosaic virus: discovery mechanisms and exploitation Philos. Trans R Soc Lond Biol Sci,1999, 354(1383): 659–664.
[42] Yoshikawa N, Saitou Y, Kitajima A, et al.Interference of long-distance movement of Grapevine berry inner necrosis virus in transgenic plants expressing a defective movement protein of Apple chlorotic leaf spot virus. Phytopathology,2006, 96(4): 378–385.
[43] Morroni M, Thompson JR, Tepfer M. Twenty years of transgenic plants resistant to Cucumber mosaic virus. Mol Plant Microb Interact, 2008,21(6): 675–684.
[44] Cooper B, Lapidot M, Heick JA, et al. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility.Virology, 1995, 206(1): 307–313.
[45] Golemboski DB, Lomonossoff G P, Zaitlin M.Plants transformed with a Tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA, 1990, 87(16):6311–6315.
[46] Palukaitis P, Zaitlin M. Replicase-mediated resistance to plant virus disease. Adv Virus Res,1997, 48: 349–377.
[47] Lomonossoff GP. Pathogen-derived resistance to plant viruses. Ann Rev Phytopathol, 1995, 33:323–343.
[48] Carr J P, Gal-On A, Palukaitis P, et al. Replicasemediated resistance to Cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long distance movement. Virology, 1994, 199(2):439–447.
[49] 李華平, 張曙光, 饒雪琴, 等. 抗病毒轉(zhuǎn)基因番木瓜華農(nóng) 1號(hào)的安全性評(píng)價(jià)// 彭友良. 中國(guó)植物病理學(xué)會(huì) 2007年學(xué)術(shù)年會(huì)論文集-病毒及病毒病害. 楊凌: 西北農(nóng)林科技大學(xué)出版社, 2007:209–212.
[50] Lapidot M, Gafny R, Ding B, et al. A dysfunctional movement protein of Tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J, 1993, 4(6): 959–970.
[51] Beck DL, van Dolleweerd CJ, Lough TJ, et al.Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block.Proc Natl Acad Sci USA, 1994, 91(22):10310–10314.
[52] Collinge DB, J?rgensen HJL, Lund OS, et al.Engineering pathogen resistance in crop plants:current trends and future prospects. Ann Rev Phytopathol, 2010, 48: 269–291.
[53] Hanley-Bowdoin L, Settlage SB, Orozco BM, et al. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol, 2000,35(2): 105–140.
[54] Yang Y, Sherwood TA, Patte CP, et al. Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology, 2004, 94(5): 490–496.
[55] Hashmi JA, Zafar Y, Arshad M, et al. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes, 2011, 42(2):286–296.
[56] Lin CY, Tsai WS, Ku HS, et al. Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing.Transgenic Res, 2012, 21(2): 231–241.
[57] Maiti IB, Murphy JF, Shaw JG, et al. Plants that express a potyvirus proteinase are resistant to virus infection. Proc Natl Acad Sci USA, 993,90(13): 6110–6114.
[58] M?ki-Valkama T, Valkonen JPT, Lehtinen A, et al.Protection against Potato virus Y (PVY) in the field in potatoes transformed with the PVY P1 gene. Am J Potato Res, 2001, 78(3): 209–214.
[59] Pehu TM, M?ki-Valkama TK, Valkonen JPT, et al.Potato plants transformed with a potato virus Y P1 gene sequence are resistance to PVY-O. Am J Potato Res, 1995, 72(9): 523–532.
[60] Simon AE, Roossinck MJ, Havelda Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Ann Rev Phytopathol, 2004, 42: 415–437.
[61] Tien P, Zhang X. Control of two plant viruses by protetion inoculation in China. Seed Sci Technol,1983, 11: 969–972.
[62] Baulcombe DC, Saunders GR, Bevan MW, et al.Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature, 1986, 321(6068): 446–449.
[63] Kim SJ, Kim BD, Paek KH. In vitro translation inhibition and in vivo viral symptom development attenuation by cucumber mosaic-virus RNA3 cDNA fragments. Mol Cells, 1995, 5(1): 65–71.
[64] Kim SJ, Lee SJ, Kimet BD, et al.Satellite-RNA-mediated resistance to Cucumber mosaic virus in transgenic plants of hot pepper(Capsicum annuum cv. Golden Tower). Plant Cell Rep, 1997, 16(12): 825–830.
[65] Yie Y, Zhao F, Zhao SZ, et al. High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgenic commercial tobacco cultivar G-140. Mol Plant Microb Interact, 1992,5(6): 460–465.
[66] Cillo F, Finetti-Sialer MM, Papanice MA, et al.Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Mol Plant Microbe Interact, 2004, 17(1): 98–108.
[67] Taliansky ME, Ryabov EV, Robinson DJ. Two distinct mechanisms of transgenic resistance mediated by groundnut rosette virus satellite RNA sequences. Mol Plant Microbe Interact, 1998,11(5): 367–374.
[68] Lin KY, Hsu YH, Chen HC, et al. Transgenic resistance to Bamboo mosaic virus by expression of interfering satellite RNA. Mol Plant Pathol,2013, 14(7): 693–707.
[69] Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena:involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 1981,27(3 Pt 2): 487–496.
[70] Kruger K, Grabowski PJ, Zaug AJ, et al.Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 1982, 31(1):147–157.
[71] Kwon CS, Chung WI, Paek KH. Ribozyme mediated targeting of Cucumber mosaic virus RNA 1 and 2 in transgenic tobacco plants. Mol Cells, 1997, 7(3): 326–334.
[72] Yang XC, Ye Y, Zhu F, et al. Ribozyme 2 mediated high resistance against Potato spindle tuber viroid in transgenic potatoes. Proc Natl Acad Sci USA,1997, 94(10): 4861–4865.
[73] Huttner E, Tucker W, Vermeulen A, et al.Ribo-zyme genes protecting transgenic melon plants against potyviruses. Curr Issues Mol Biol,2001, 3(2): 27–34.
[74] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2(4):279–289.
[75] Stam M, Mol JNM, Kooter JM. The silence of genes in transgenic plants. Ann Bot, 1997, 79(1):3–12.
[76] Dougherty WG, Lindbo JA, Smith HA, et al.RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant Microb Interact, 1994, 7(5): 544–552.
[77] Lines RE, Persley D, Dale JL, et al. Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Mol Breed, 2002,10(3): 119–129.
[78] Souza MT, Nickel O, Gonsalves D. Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus. Fitopatologia Brasileira,2005, 30(4): 357–365.
[79] Bird CR, Ray JA, Fletcher JD, et al. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes.Nat Biotechnol, 1991, 9(7): 635–639.
[80] Day AG, Bejarano ER, Buck KW, et al. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus Tomato golden mosaic virus. Proc Natl Acad Sci USA,1991, 88(15): 6721–6725.
[81] Haq QMI, Ali A, Malathi VG. Engineering resistance against Mungbean yellow mosaic India virus using antisense RNA. Indian J Virol, 2010,21(1): 82–85.
[82] Zhang P, Vanderschuren H, Fütterer J, et al.Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J, 2005, 3(4):385–97.
[83] Xiang Y, Yang LY, Peng XX, et al. High virus-resistance of transgenic tobacoo plants mediated by expression of modified NIb gene of potato virus Y. Chin J Biotech, 1996, 12(3):258–265 (in Chinese)
項(xiàng)瑜, 楊蘭英, 彭學(xué)賢, 等. 改造的馬鈴薯Y病毒復(fù)制酶基因介導(dǎo)高度抗病性. 生物工程學(xué)報(bào),1996, 12(3): 258–265.
[84] Waterhouse PM, Graham MW, Wang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA, 1998,95(23): 13959–13964.
[85] Tougou M, Furutani N, Yamagishi N, et al.Development of resistant transgenic soybeans with inverted repeat-coat protein genes of Soybean dwarf virus. Plant Cell Rep, 2006, 25(11):1213–1218.
[86] Hu Q, Niu YB, Zhang K, et al. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virol J, 2011, 8(1): 41.
[87] Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet, 2006,22(5): 268–280.
[88] Smith NA, Singh SP, Wang MB, et al. Total silencing by intron-spliced hairpin RNAs. Nature,2000, 407(6802): 319–320.
[89] Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2003, 4(1): 29–38.
[90] Zhang XC, Sato S, Ye XH, et al. Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene.Phytopathology, 2011, 101(11): 1264–1269.
[91] Lee RC, Feinbaum RL, Ambros V, et al. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell, 1993, 75(5): 843–854.
[92] Bartel DP. MicroRNAs: genomics, biogenesis,mechanism, and function. Cell, 2004, 116(2):281–297.
[93] Ambros V. The functions of animal microRNAs.Nature, 2006, 431(7006): 350–355.
[94] Niu QW, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol,2006, 24(11): 1420–1428.
[95] Ai T, Zhang L, Gao Z, et al. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.Plant Biol, 2011, 13(2): 304–316.
[96] Zhang XH, Li HX, Zhang JH, et al. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res, 2011, 20(3): 569–581.
[97] Qu J, Ye J, Fang RX. Artif i cial microRNA-mediated virus resistance in plants. J Virol, 2007, 81(12): 6690–6699.
[98] Duan CG, Wang CH, Fang RX, et al. Artif i cial microRNAs highly accessible to targets confer eff i cient virus resistance in plants. J Virol, 2008,82(22): 11084–11095.
[99] Simón-Mateo C, Garcia JA. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol, 2006, 80(5): 2429–2436.
[100] Lin SS, Wu HW, Elena SF, et al. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog, 2009, 5(2): e1000312.
[101] Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to Tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA, 1996, 93(16): 8776–8781.
[102] Baurès I, Candresse T, Leveau A, et al. The Rx gene confers resistance to a range of Potexviruses in transgenic Nicotiana plants. Mol Plant Microbe Interact, 2008, 21(9): 1154–1164.
[103] Zhang HL, Zhao JP, Liu SS, et al. Tm-22confers different resistance responses against Tobacco mosaic virus dependent on its expression level,Molec Plant, 2013, 6(3): 971–974.
[104] Kang BC, Yeam I, Jahn MM. Genetics of plant virus resistance. Ann Rev Phytopathol, 2005, 43:581–621.
[105] Maule AJ, Caranta C, Boulton MI. Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol, 2007, 8(2): 223–231.
[106] Palukaitis P, Carr JP. Plant resistance responses to viruses. J Plant Pathol, 2008, 90: 153–171.
[107] Cavatorta J, Perez KW, Gray SM, et al.Engineering virus resistance using a modified potato gene. Plant Biotechnol J, 2011, 9(9):1014–1021.
[108] Wang XH, Kohalmi SE, Svircev A, et al. Silencing of the host factor eIF(iso)4E gene confers Plum pox virus resistance in plum. PLoS ONE, 2013,8(1): e50627.
[109] Cao YF, Wu YF, Zheng Z, et al. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol, 2005, 67(3/5):202–211.
[110] Fischer U, Dr?ge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Mol Plant Microbe Interact, 2004, 17(10): 1162–1171.
[111] Shin R, Han JH, Lee GJ, et al. The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance in pepper plants coexpressing coat proteins of Cucumber mosaic virus and Tomato mosaic virus. Transgenic Res, 2002, 11(2): 215–219.
[112] Zhang G, Chen M, Li L, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60(13): 3781–3796.
[113] Guevara-Olvera L, Ruíz-Nito ML, Rangel-Cano RM, et al. Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper (Capsicum chinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiol Mol Plant P, 2012, 78: 45–50.
[114] Yamaji Y, Maejima K, Komatsu K, et al.Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell, 2012,24(2): 778–793.
[115] Butterbach P, Verlaan M G, Dullemans A, et al.Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci USA, 2014,111(35): 12942–12947.
[116] Verlaan MG, Hutton SF, Ibrahem RM, et al. The Tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases. PLoS Genetics, 2013, 9(3):e1003399.
[117] Wang Q, Liu YQ, He J, et al. STV11 encodes a sulphotransferase and confers durable resistance to Rice stripe virus. Nat Commun, 2014, 5: 4768.
[118] Lodge JK, Kaniewski WK, Tumer NE.Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA, 1993, 90(15): 7089–7093.
[119] Hudak KA, Bauman JD, Tumer NE. Pokeweed antiviral protein binds to the cap structure of eukaryotic mRNA and depurinates the mRNA down-stream of the cap. RNA, 2002, 8(9):1148–1159.
[120] Tumer NE, Hwang DJ, Bonness M. C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci USA, 1997,94(8): 3866–3871.
[121] Lam YH, Wong YS, Wang B, et al. Use of trichosanthin to reduce infection by Turnip mosaic virus. Plant Sci, 1996, 114(1): 111–117.
[122] Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature, 1989,342(6245): 76–78.
[123] Tavladoraki P, Benvenuto E, Trinca S, et al.Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature, 1993, 366(6454):469–472.
[124] Conrad U, Fiedler U. Compartment-specif i c accumulation of recombinant immunoglobulin in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity.Plant Mol Biol, 1998, 38(1/2): 101–109.
[125] Boonrod K, Galetzka D, Nagy PD, et al.Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol, 2004, 22(7): 856–862.
[126] Gargouri-Bouzid R, Jaoua L, Rouis S, et al.PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol Biotechnol, 2006, 33(2): 133–140 nol.
[127] Nickel H, Kawchuk L, Twyman RM, et al.Plantibody-mediated inhibition of the Potato leaf roll virus P1 protein reduces virus accumulation.Virus Res, 2008, 36(1/2): 140–145.
[128] Ucci JW, Kobayashi Y, Choi G, et al. Mechanism of interaction of the double-stranded RNA(dsRNA) binding domain of protein kinase R with short dsRNA sequences. Biochemistry, 2007,46(1): 55–65.
[129] Shimazu M, Kawai G, Okutsu T, et al.Conformational properties of 2', 5' linked Rp- and Sp-phosphorothioate oligoadenylates studied by circular dichroism and NMR. Biopolymers, 2003,72(1): 48–58.
[130] MitraA, Higgins DW, Langenberg WG, et al.Silverman A mammalian 2–5A system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci USA, 1996, 93(13): 6780–6785.
[131] Ogawa T, Hori T, Ishida I. Virus-induced cell death in plants expressing the mammalian 2′,5′oligoadenylate system. Nat Biotechnol, 1996,14(11): 1566–1569.
[132] Honda A, Takahashi H, Toguri T, et al. Activation of defense-related gene expression and systemic acquired resistance in Cucumber mosaic virus-infected tobacco plants expressing the mammalian 2′,5′ oligoadenylate system. Arch Virol, 2003, 148(5): 1017–1026.
[133] Cao X, Lu Y, Di D, et al. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E.coli. PLoS ONE, 2013, 8(4): e60829.
[134] Xiang Y, Liu JJ, Yang LY, et al. A new strategy derived from plant hypersensitivity against the infection of potato virus Y. Chin J Biotech, 1996,12(4): 422–428 (in Chinese).
項(xiàng)瑜, 劉俊君, 楊蘭英, 等. 一種基于過(guò)敏性反應(yīng)機(jī)制的抗植物病毒侵染策略. 生物工程學(xué)報(bào),1996, 12(4): 422–428.
[135] Wang ZH, Song JH, Zhang Y, et al. Mechanism analysis of broad-spectrum disease resistance induced by expression of anti-apoptotic p35 gene in tobacco. Chin J Biotech, 2008, 24(10):1707–1713 (in Chinese).
王志華, 宋建華, 張勇, 等. 桿狀病毒 p35基因誘導(dǎo)煙草產(chǎn)生廣譜抗病機(jī)理分析. 生物工程學(xué)報(bào), 2008, 24(10): 1707–1713.
[136] Cillo F, Palukaitis P. Transgenic resistance. Adv Virus Res, 2014, 90: 135–146.