黃方, 何麗娟, 吳慶舉
1 中國地震局地球物理研究所, 北京 100081 2 中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室, 北京 100029
?
鄂爾多斯盆地深部熱結(jié)構(gòu)特征及其對華北克拉通破壞的啟示
黃方1,2, 何麗娟2*, 吳慶舉1
1 中國地震局地球物理研究所, 北京 100081 2 中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室, 北京 100029
基于二維穩(wěn)態(tài)熱傳導(dǎo)方程,利用有限元數(shù)值模擬方法,選取東西向橫穿鄂爾多斯盆地地質(zhì)與地球物理解釋大剖面進行了深部溫度場數(shù)值模擬研究,得到了華北克拉通西部的鄂爾多斯盆地下伏巖石圈熱結(jié)構(gòu)特征.地幔熱流變化范圍:21.2~24.5 mW·m-2,體現(xiàn)為東高西低特征.殼幔熱流比(Qc/Qm)介于1.51~1.84之間,為“熱殼冷幔”.與華北東部地幔熱流對比表明,西部的鄂爾多斯盆地相對處于穩(wěn)定的深部動力學(xué)環(huán)境.在巖石圈熱結(jié)構(gòu)研究基礎(chǔ)上,對克拉通地震巖石圈與熱巖石圈厚度差異進行了對比,研究表明:鄂爾多斯盆地西部地震巖石圈與熱巖石圈厚度差異約達140 km,而東部的汾渭地塹,渤海灣盆地二者差異逐漸減小.華北克拉通自西向東,地震巖石圈厚度與熱巖石圈厚度差異不斷減小,意味著華北克拉通巖石圈下部的軟流圈地幔黏性系數(shù)自西向東逐漸降低,本文從地?zé)釋W(xué)角度可能印證了太平洋俯沖脫水作用對華北克拉通的影響.
溫度場; 熱結(jié)構(gòu); 熱巖石圈; 華北克拉通破壞; 鄂爾多斯盆地
晚中生代是整個東亞地區(qū)構(gòu)造體制轉(zhuǎn)折的關(guān)鍵期,最突出的地質(zhì)事件莫過于“華北克拉通破壞”.華北克拉通破壞研究毋庸置疑已經(jīng)成為國際地球科學(xué)領(lǐng)域的熱點.有關(guān)華北克拉通破壞及其地球動力學(xué)研究已涌現(xiàn)了大量成果.華北巖石圈減薄已從構(gòu)造地質(zhì)學(xué)、地幔包體和巖漿巖巖石學(xué)和地球化學(xué)以及地球物理觀測等方面得到了證實(Chen et al., 2009; Gao et al., 2004; Wu et al., 2006; Xu, 2007; Zhang et al., 2005; Zheng et al., 2007; 朱日祥等, 2011,2012),但對于巖石圈減薄發(fā)生的時間、機制等依舊存在爭議(吳福元等, 2003, 2008).然而,對華北克拉通破壞的研究來自地?zé)釋W(xué)方面的貢獻相對較少.事實上,地?zé)嵩诖箨懣死ㄑ莼?、破壞研究中具有重要的地位和意義(Grove and Parman, 2004; Jaupart and Mareschal, 1999; Michaut et al., 2009; Pollack, 1986; Sleep, 2003),大陸巖石圈的熱結(jié)構(gòu)及流變結(jié)構(gòu)對巖石圈動力學(xué)過程有很大的影響.巖石圈熱狀態(tài)以及熱巖石圈厚度的變化是克拉通破壞的重要表現(xiàn)或證據(jù)之一.目前關(guān)于華北克拉通破壞機制很多,如拆沉、熱侵蝕、橄欖巖-熔體相互作用等模型,其中這些模型大多都與熱作用密切相關(guān).尤其是沉積盆地作為巖石圈上部局限分布的薄層狀地質(zhì)單元,其形成和演化是深部地球動力學(xué)過程的淺部響應(yīng)(McKenzie, 1978; Wernicke, 1981; Ziegler and Cloetingh, 2004).渤海灣盆地是分布在華北克拉通東部主要沉積盆地,并且其深部作為華北克拉通破壞的典型,在各學(xué)科以及地?zé)釋W(xué)方面等已經(jīng)進行了重點研究.而位于其西部的鄂爾多斯盆地,關(guān)于其地?zé)釋W(xué)研究,前人對鄂爾多斯盆地古地溫研究相對較多(任戰(zhàn)利等, 1994),大部分研究主要集中在古溫標(biāo)Ro和磷灰石裂變徑跡(趙孟為 and Behr, 1996),有的還利用流體包裹體來研究古地溫,以及其熱演化史與油氣成藏、成礦關(guān)系等研究(任戰(zhàn)利等,1996,2006,2007),而對鄂爾多斯盆地構(gòu)造熱演化或二維巖石圈熱結(jié)構(gòu)研究相當(dāng)欠缺,鄂爾多斯盆地的二維巖石圈熱結(jié)構(gòu)與華北克拉通破壞相關(guān)的地球動力學(xué)研究幾乎為空白.
熱巖石圈是地球最外面的熱傳導(dǎo)層(Morgan, 1984);地震巖石圈則指的是位于低速軟流圈之上的高速蓋層(Anderson, 1995).在眾多定義的巖石圈中,熱巖石圈與地震巖石圈常常用來互相對比.就全球范圍而言,二者在某些地區(qū)吻合得較好,譬如南非Kalahari克拉通;而在某些地區(qū)則差異較大,如東歐地臺和北美的Wabigoom.盡管許多學(xué)者試圖將二者統(tǒng)一起來,但比較困難.這種差異蘊含著何種豐富的地球動力學(xué)信息值得我們深入探討.其次,關(guān)于華北克拉通熱結(jié)構(gòu)研究,主要集中在華北克拉通破壞中心區(qū)的渤海灣盆地以及華北東部地區(qū)(龔育齡等, 2005; 何麗娟等, 2001; 劉紹文等, 2005; 汪洋和程素華, 2011; 左銀輝等, 2013),而對其西部的鄂爾多斯盆地深部熱結(jié)構(gòu)研究較少.再次,前人對鄂爾多斯盆地現(xiàn)今巖石圈厚度的認識仍然存在有較大的分歧,一些學(xué)者認為其現(xiàn)今仍保持著200 km;巨厚的“巖石圈根”(朱日祥等, 2011);也有一些學(xué)者認為鄂爾多斯盆地現(xiàn)今“熱”巖石圈的厚度為78~140 km(Wang et al., 1996; 任戰(zhàn)利, 1998),這與東部渤海灣盆地的60~100 km(付明希等, 2004; 朱日祥等, 2011)的巖石圈厚度相差并不大.焦亞先等(2013)通過鏡質(zhì)體反射率古溫標(biāo)模擬了鄂爾多斯盆地7口典型井的熱歷史,并計算了其深部一維溫度場,認為鄂爾多斯盆地現(xiàn)今“熱”巖石圈厚度為125 km,也與東部渤海灣盆地相近.
故本文將把位于華北克拉通西部在鄂爾多斯地塊基礎(chǔ)上發(fā)育的大型沉積盆地-鄂爾多斯盆地,作為本文的研究對象,主要基于精選的東西向橫跨鄂爾多斯盆地的二維大剖面,通過收集的最新大地?zé)崃鲾?shù)據(jù),擬采用有限元數(shù)值模擬方法,對橫跨鄂爾多斯盆地的東西向AB地質(zhì)地球物理解釋剖面(其平面位置見圖1,圖2),結(jié)合實測的熱物性參數(shù)及前人研究成果,對該剖面進行了二維溫度場數(shù)值模擬研究,獲得其深部巖石圈熱結(jié)構(gòu)特征;本文作者也進一步探討地震巖石圈厚度與熱巖石圈厚度差異所蘊含的地球動力學(xué)意義,試圖從地?zé)釋W(xué)角度,對華北克拉通破壞研究補充來自地?zé)釋W(xué)的認識.
鄂爾多斯盆地是一個多構(gòu)造體制、多演化階段、多沉積體系、古生代地臺與中-新生代臺內(nèi)坳陷疊合的克拉通盆地,位于華北克拉通的西段(楊俊杰, 2002).其北部為興蒙造山帶,南部為秦嶺大別造山帶,西界為賀蘭山—六盤山,東臨呂梁山.陰山—燕山造山帶橫亙?nèi)A北克拉通北緣,在近東西向綿延千余公里,該造山帶東部以呂梁山、太行山為界,將華北克拉通分隔為西部鄂爾多斯盆地,東部渤海灣盆地和中部造山帶三大部分(見圖1),共同構(gòu)成了華北克拉通 (滕吉文等,2010).鄂爾多斯(陸塊)盆地沉積演化-改造主要經(jīng)歷了3個階段,早古生代-晚古生代陸表海-濱淺海沉積沉降階段、中生代三疊紀(jì)-早白堊世的內(nèi)陸河湖相沉積沉降階段、晚白堊世以來盆地整體抬升-剝蝕改造階段(楊俊杰, 2002).其中,中生代三疊紀(jì)之前的華北陸表海-濱淺海沉積主體受控于古生代板塊構(gòu)造環(huán)境下,并作為華北克拉通陸塊的一部分.而它成為獨立的沉積盆地主要發(fā)生在中生代-新生代大陸動力學(xué)構(gòu)造-演化背景下,經(jīng)歷了多階段沉積沉降與多旋回抬升改造,并與之相應(yīng)伴生了多種礦產(chǎn)耦合成藏(礦)與最終定位.因此,鄂爾多斯盆地中-新生代的多旋回沉積與改造最終形成了現(xiàn)今盆地的6個一級構(gòu)造單元, 根據(jù)地質(zhì)演化歷史及其中生界地質(zhì)構(gòu)造特征的差異性,盆地內(nèi)部可劃為: 伊盟隆起、渭北隆起、晉西撓褶帶、陜北斜坡、天環(huán)坳陷、西緣掩沖構(gòu)造帶等6個區(qū)域構(gòu)造單元(見圖2).
華北克拉通大地?zé)崃鳒y點及熱流值大小分布特征顯示(見圖1),大地?zé)崃鞲咧抵饕性谌A北克拉通東部,特別是大于85 mW·m-2大地?zé)崃髦祹缀跞考性谌A北克拉通中東部,且東部最多,其次為中間過渡帶,而華北克拉通西部僅在汾渭地塹有一個大于85 mW·m-2熱流高值;而熱流低值則主要集中在華北克拉通西部的鄂爾多斯盆地以及中間過渡帶地區(qū).75~85 mW·m-2的熱流值也主要集中在華北克拉通中東部.華北克拉通地表熱流高值分布自東向西不斷減少,從某種程度上,此熱流分布特征可能是受到西太平洋板塊俯沖作用的影響.而由鄂爾多斯盆地?zé)崃鼽c的分布知(見圖2),鄂爾多斯盆地?zé)崃鳀|高西低,南高北低.橫向上,自東向西分布的晉西撓褶帶熱流平均值:68.2±3.5 mW·m-2;陜北斜坡熱流平均值:61.2±8.2 mW·m-2;天環(huán)拗陷平均值:55.4±5.5 mW·m-2;西緣逆沖帶平均值:54.7±12 mW·m-2.縱向上也即南北向,盆地南部的渭北隆起平均值:64.9±3.6 mW·m-2;盆地北部的伊盟隆起平均值:70±10.2 mW·m-2.為了從地?zé)釋W(xué)角度探討關(guān)于華北克拉通破壞問題,此次我們更關(guān)注鄂爾多斯盆地東西向熱流或者相關(guān)熱狀態(tài)的變化,而且驚奇地發(fā)現(xiàn)此次統(tǒng)計的鄂爾多斯盆地東部地表熱流較高65 mW·m-2左右,西部熱流相對較低55 mW·m-2,僅根據(jù)這些大地?zé)崃髻Y料,可能會讓我們思考華北克拉通西部的鄂爾多斯是否也像華北東部一樣遭受了破壞?對于此困惑,作者于此暫不急于作答,需要后續(xù)對鄂爾多斯盆地進行進一步的巖石圈熱結(jié)構(gòu)等研究后,我們再給出來自地?zé)釋W(xué)的相關(guān)認識.總之,這些大地?zé)崃骰A(chǔ)數(shù)據(jù)是我們后續(xù)進行巖石圈熱結(jié)構(gòu)研究的基礎(chǔ).
如果二維區(qū)域內(nèi)達到熱平衡,溫度分布服從以下控制方程:
(1)
式中:T為溫度(℃);A為生熱率(μW·m-3) ;k為熱導(dǎo)率(W/(m·K)) ;且T、A和k均為坐標(biāo)(x,z)的函數(shù),其中x代表橫向距離(km),z代表縱向深度(km).該模型邊界條件:
T(x,z0)=T0(x),
(2)
(3)
(4)
式中:T0是地表平均溫度(℃);Qb是基底熱流.且0=z0≤z≤zb=180 km,0=x0≤x≤xl=653.17 km,xl為剖面的橫向?qū)挾?即以AB地質(zhì)地球物理解釋剖面作為數(shù)值模擬模型上部的沉積層(見圖3),下部再加地殼和上地幔,從而構(gòu)建一個橫向?qū)挒閤lkm,縱向深為180 km的巖石圈尺度地質(zhì)-地球物理數(shù)值模擬模型,分別從圖3、圖4可見其詳細的沉積層和巖石圈分層結(jié)構(gòu)信息.其中模擬模型的地殼底界為該剖面的Moho面底界深度,AB剖面的Moho面深度參考自中國及鄰區(qū)地殼厚度分布(蔡學(xué)林等, 2007),其結(jié)果與前人對中國地殼厚度的研究(曾融生等, 1995; 嘉世旭和張先康, 2005;朱介壽等, 2006)較吻合但更為細致.其次,模擬計算采用的邊界條件為:上邊界取溫度邊界T0=10 ℃,下邊界為熱流邊界Qb;左右邊界為絕熱條件.有限元數(shù)值模擬過程中,網(wǎng)格剖分中選擇三角形剖分網(wǎng)格,模型由淺層到深層,網(wǎng)格剖分由細到粗.重點說明該模型底部熱流邊界需進行不斷地試算擬合,當(dāng)計算的地表熱流與實測熱流值擬合好后,試算可結(jié)束.此時即可得到地幔熱流Qm.對構(gòu)建的2-D巖石圈尺度地質(zhì)-地球物理模型,在同時滿足給定初始條件,邊界條件及剖面各層熱物性參數(shù)條件下(見表1、表2),根據(jù)2-D穩(wěn)態(tài)熱傳導(dǎo)方程的基本原理,基于Comsol Multiphysics軟件進行二維有限元數(shù)值模擬計算,并以實測地表熱流進行模擬約束,最終得到二維深部溫度場及相關(guān)熱狀態(tài)分布特征.
穩(wěn)定大陸地區(qū)的地表熱流主要由來自上地幔的地幔熱流和地殼內(nèi)放射性生熱所產(chǎn)生的地殼熱流這兩部分熱流構(gòu)成.地幔熱流是一個能從本質(zhì)上表征某一地區(qū)構(gòu)造活動性的重要物理量(左銀輝等, 2013),它能反映該地區(qū)深部的區(qū)域熱背景.由以上模擬計算知,當(dāng)計算的地表熱流與實測熱流值擬合好后,試算可結(jié)束時,此時可得到深部地幔熱流Qm,然后由Qc=Q0-Qm即可計算地殼熱流Qc(Hu and Wang, 2000; 胡圣標(biāo)等,1994),其中Q0為地表熱流.
表1 沉積層中各地層熱物性參數(shù)Table 1 Thermal parameters of each layer in deposition layer
注:本文模擬計算中U、Th、K含量來自孫少華等(1996a),熱導(dǎo)率取自孫少華等(1996b).沉積層中各地層生熱率是根據(jù)Rybach (1976)提出的經(jīng)典公式重新計算而得.
圖3 東西向AB剖面地質(zhì)地球物理解釋剖面(李國玉和呂鳴崗, 2002)Fig.3 Geological and geophysical interpretation section of east-westward profile (Li and Lü,2002)
圖4 二維巖石圈結(jié)構(gòu)圖(該模型從上至下依次為:沉積層(Sedimentary layer)、上地殼(Upper crust )、中地殼(Middle crust)、下地殼(Lower crust) 、地幔(Mantle);其中點劃線為沉積層底界:沉積 層內(nèi)分層則依據(jù)圖3劃分)Fig.4 Two-dimensional profile of lithospheric structure
表2 剖面各構(gòu)造層熱物性參數(shù)Table 2 Thermal parameters of each structural layer under the deposition layer
注:沉積蓋層各層密度均取為2600 kg·m-3;本文上、中地殼深度參考自滕吉文等(2010);焦亞先等(2013);蔡學(xué)林等(2007);鄧晉福等(2006);Moho面深度來自蔡學(xué)林等(2007); 曾融生等(1995); 嘉世旭和張先康(2005); 朱介壽等(2006),地殼及地幔生熱率、熱導(dǎo)率等熱物性參數(shù)參考自焦亞先等(2013);遲清華和鄢明才(1998);孫少華及長慶油田內(nèi)部資料;He等(2009);其中地殼、地幔生熱率主要是前人遲清華和鄢明才(1998);He et al.(2009),通過經(jīng)驗公式Lanchenbruch(1968)換算而來.
4.1 AB剖面熱流及溫度場分布特征
該東西向AB剖面自西向東依次穿越鄂爾多斯盆地的西緣逆沖帶、天環(huán)拗陷、陜北斜坡和晉西撓褶帶等構(gòu)造單元,且這些構(gòu)造單元的平均地表熱流分別為:54.7 mW·m-2、55.4 mW·m-2、61.2 mW·m-2、68.2 mW·m-2,熱流具有東高西低分布特征.在鄂爾多斯盆地大地?zé)崃髅芏确植嫉幕A(chǔ)上,本文基于二維穩(wěn)態(tài)熱傳導(dǎo)方程,根據(jù)研究區(qū)熱導(dǎo)率、生熱率等熱物性參數(shù),對橫穿鄂爾多斯盆地西緣逆沖帶、天環(huán)拗陷、陜北斜坡和晉西撓褶帶等幾個構(gòu)造單元的AB剖面進行了二維溫度場數(shù)值模擬研究,獲得了關(guān)于其深部熱結(jié)構(gòu)認識.
結(jié)合鄂爾多斯盆地實測大地?zé)崃鼽c分布(見圖2),AB剖面附近有13個實測熱流值,以該實測熱流值作為溫度場數(shù)值模擬計算的地表約束條件(圖5中實測熱流值以“+”表示),當(dāng)計算的地表熱流與實測的地表熱流(Q0)擬合好后,此時試算結(jié)束.模擬結(jié)果顯示(見圖5a):地幔熱流(Qm)整體變化趨勢比較平穩(wěn),自西向東熱流值先有升高后稍微有降低,變化范圍為:20.5~24.5 mW·m-2(占盆地平均地表熱流小于40%),低于全球地幔熱流的平均值28 mW·m-2(Turcotte and Schubert, 1982),與Rudnick和Nyblade(1999)獲得的太古代地質(zhì)體的地幔熱流17~25 mW·m-2相近,比中晚元古代穩(wěn)定陸塊的地幔熱流25~35 mW·m-2較低(Artemiva and Mooney, 2001).且剖面的殼幔熱流比(Qc/Qm)介于1.51~1.84之間,表明來自盆地淺部地殼的熱貢獻作用較大,而來自深部的地幔熱流貢獻較少,盆地深部處于相對比較穩(wěn)定的構(gòu)造環(huán)境.地幔熱流最高為陜北斜坡東部,而地幔熱流最低為西緣逆沖帶(見圖5a),即處于構(gòu)造穩(wěn)定的鄂爾多斯盆地深部在橫向上也存在橫向熱作用不均勻性,東部地區(qū)相對西部構(gòu)造熱活動強烈.
由AB剖面深部溫度場分布特征可知,深部溫度自西向東先升高后稍微有降低(見圖6).由圖5b中Moho面溫度分布知,該剖面Moho溫度變化范圍為610~700 ℃.圖6深部的溫度場也是東部較高,西部較低.由圖6得知,假如將T=1300 ℃等溫線作為約束來求取熱巖石圈底界厚度,根據(jù)模擬計算所得的深部溫度場分布特征可得出1300 ℃等溫線所對應(yīng)的熱巖石圈厚度變化范圍128.4~162 km,且熱巖石圈厚度西部較厚,東部相對較??;橫跨鄂爾多斯盆地的AB剖面其西部熱巖石圈平均厚度大約160 km左右,而該剖面東部熱巖石圈平均厚度約140 km.造成熱巖石圈厚度東西部差異,可能是受到西太平洋板塊俯沖遠程效應(yīng)的影響.
4.2 深部熱結(jié)構(gòu)特征
根據(jù)上述二維溫度場模擬計算結(jié)果,歸納總結(jié)了盆地西緣逆沖帶、天環(huán)拗陷、陜北斜坡和晉西撓褶帶的深部熱結(jié)構(gòu)特征(見表3).
圖5 (a) AB剖面實測熱流、地表熱流和莫霍面熱流分布特征; (b) AB剖面莫霍面溫度分布特征Fig.5 (a) Heat flow distribution features of AB profile(Actual heat flow,Calculated surface heat flow and Moho heat flow); (b) Calculated 2-D Moho temperature distribution along AB profile
圖6 AB剖面二維深部溫度場分布特征Fig.6 Calculated 2-D deep temperature distribution along AB profile
表3 AB剖面各構(gòu)造單元熱結(jié)構(gòu)特征Table 3 Thermal structure of each tectonic unit along AB profile
注:Zm為莫霍面深度,Q0為地表熱流,Qc為地殼熱流,Qm為地幔熱流,Zt為熱巖石圈厚度,(先以T=1300 ℃絕熱等溫線約束求取),Tm為地幔溫度.
一個地區(qū)的深部熱狀態(tài)不僅與其深部構(gòu)造運動密切相關(guān),而且還是決定該區(qū)地表熱流的重要參數(shù) (邱楠生等, 2004).上述熱結(jié)構(gòu)結(jié)果顯示(見表3),鄂爾多斯盆地各構(gòu)造單元地幔熱流(Qm)變化范圍為21.2~24.5 mW·m-2,表現(xiàn)為鄂爾多斯盆地東部深部地幔熱流較高,西部相對較低,但整體處于華北克拉通西部較為平緩穩(wěn)定的深部熱背景.鄂爾多斯盆地主體比較穩(wěn)定,盡管長期受到加里東期、海西期洋盆發(fā)育到俯沖閉合形成造山帶的影響和印支期后東部濱太平洋構(gòu)造域和其西南的特提斯-喜馬拉雅構(gòu)造域的影響,但它仍然是一個穩(wěn)定沉降、坳陷遷移的多旋回演化的克拉通內(nèi)盆地.由于處于穩(wěn)定的克拉通構(gòu)造動力學(xué)背景下,故其深部地幔熱流相對不高.鄂爾多斯盆地自西向東各構(gòu)造單元的地表熱流變化范圍為54.1~68.3 mW·m-2.對于鄂爾多斯盆地東部熱流較高的原因,并非來自地幔深部的熱活動,因為該區(qū)地幔熱流變化范圍為20.5~24.5 mW·m-2(占盆地平均地表熱流小于40%),低于全球地幔熱流的平均值28 mW·m-2(Turcotte and Schubert, 1982).從殼幔熱流比(Qc/Qm):1.51~1.84,表明地殼熱流對地表熱流的貢獻作用相對較大.且鄂爾多斯盆地東部的地殼熱流相對較鄂爾多斯盆地西部高.汪洋等(2000)利用熱流和氦同位素比值(N(3He)/N(4He)比值)之間的關(guān)系得出的鄂爾多斯盆地殼幔熱流比(1.9)也支持本文的“熱殼冷?!苯Y(jié)果.趙孟為(1996)對鄂爾多斯盆地磷灰石裂變徑跡資料進行了深入分析表明,最遲23 Ma以來盆地發(fā)生了一期由于快速抬升剝蝕事件盆地,且東部以95 m/Ma的速率抬升,造成約2000 m的剝蝕量;而盆地西部則以56 m/Ma的速率抬升, 導(dǎo)致了約1000 m的剝蝕量.東西部的差異抬升剝蝕作用是造成東部熱流較高的另一原因.若暫以T=1300 ℃(Artemieva and Mooney, 2001; Jaupart and Mareschal, 1999)等溫線得到了鄂爾多斯盆地各構(gòu)造單元熱巖石圈厚度變化范圍:128.5~161 km,巖石圈厚度正常偏厚.后文將重點討論熱巖石圈厚度相關(guān)內(nèi)容,此處不再贅述.
從上述鄂爾多斯盆地深部熱結(jié)構(gòu)特征,我們發(fā)現(xiàn)鄂爾多斯盆地各構(gòu)造單元深部地幔熱流變化范圍:21.2~24.5 mW·m-2,比邱楠生(1998)早期對鄂爾多斯盆地研究的地幔熱流Qm=33 mW·m-2明顯偏低.我們的研究結(jié)果相對邱楠生的結(jié)果(1998)增加了熱流數(shù)據(jù)和熱物性參數(shù),并采用二維溫度場數(shù)值模擬研究,考慮了橫向的不均勻性的影響.通過我們的研究表明鄂爾多斯盆地整體地幔熱流相對較低.此時,我們不僅關(guān)注鄂爾多斯盆地較高的地表熱流,更重要的是我們將把注意力轉(zhuǎn)移到鄂爾多斯盆地深部的地幔熱流,它相對影響因素較多的地表熱流而言更能反映該區(qū)深部區(qū)域的熱背景和深部的動力學(xué)環(huán)境.我們將鄂爾多斯盆地剖面熱結(jié)構(gòu)與中國大陸地區(qū)東西部其他盆地?zé)峤Y(jié)構(gòu)特征進行了對比,得到中國大陸地區(qū)東西向剖面熱結(jié)構(gòu)特征,并對邱楠生(1998)早期研究進行了一定的修正(見圖7).中國大陸地區(qū)巖石圈熱結(jié)構(gòu)從東到西表現(xiàn)出有規(guī)律的變化:東部遼河盆地往西直到塔里木盆地,地幔熱流所占的部分明顯減小(見圖7),鄂爾多斯盆地東西部地幔熱流比塔里木盆地較高,但比其西部的柴達木盆地稍微較低.總的來說,構(gòu)造活動區(qū)來自深部的熱流分量(即地幔熱流)很大,如東部中新生代裂谷盆地;而構(gòu)造穩(wěn)定區(qū)來自深部的熱流分量較少,如西部穩(wěn)定區(qū).剖面自東向西地幔熱流幾乎是逐漸降低的,遼河盆地為41 mW·m-2到塔里木盆地則降為20 mW·m-2.綜上所述,我國東部裂谷盆地來自深部的地幔熱流很大,約占盆地地表熱流的63%(如遼河盆地);向西經(jīng)華北盆地、鄂爾多斯盆地、柴達木盆地和塔里木盆地不斷減小,且鄂爾多斯盆地尤其明顯.對于穩(wěn)定的塔里木盆地,地幔熱流僅為20 mW·m-2(占盆地地表熱流的45%),低于全球地幔熱流的平均值28 mW·m-2(Turcotte and Schubert,1982).說明了構(gòu)造活動區(qū)來自深部地幔的熱量很大,而構(gòu)造穩(wěn)定區(qū)則來自深部地幔的熱量較少.地幔熱流是一個能從本質(zhì)上表征某一地區(qū)構(gòu)造活動性的重要物理量(左銀輝等, 2013),它能反映該地區(qū)深部的區(qū)域熱背景.對于鄂爾多斯盆地,地幔熱流20.5~24.5 mW·m-2(占盆地平均地表熱流小于40%),也低于全球地幔熱流的平均值28 mW·m-2(Turcotte and Schubert, 1982),且與Rudnick和Nyblade(1999)獲得的太古代地質(zhì)體的地幔熱流17~25 mW·m-2相近,比中晚元古代穩(wěn)定陸塊的地幔熱流25~35 mW·m-2較低(Artemiva and Mooney, 2001),說明鄂爾多斯盆地深部處于相對穩(wěn)定的熱狀態(tài).汪洋(2000)利用該公式以及熱流值估算了中國主要盆地的殼幔熱流值; 其中,鄂爾多斯盆地qc/qm=1.9,濟陽凹陷的qc/qm=0.66.根據(jù)現(xiàn)有的大陸地區(qū)地下流體3He/4He值(Polyak and Tolstikhin,1985; Oxburgh et al.,1986; Matthews et al.,1987; Oxburgh and O′Nions, 1987; M?ller et al., 1997) , 前人發(fā)現(xiàn)構(gòu)造相對穩(wěn)定地區(qū)的殼幔熱流比值介于1.0~2.4, 即地殼熱流占地表熱流值的50%~70%, 地幔熱流30%~50%; 而新生代以來活動的伸展盆地和火山帶等地的殼幔熱流比值一般介于0.4~1.0之間.汪洋(2000)的結(jié)果再次支持了本文中的鄂爾多斯地區(qū)qc/qm表現(xiàn)為“熱殼冷?!?,表明該區(qū)處于構(gòu)造相對穩(wěn)定的地區(qū).綜上,來自鄂爾多斯盆地地幔熱流和“熱殼冷?!钡慕Y(jié)果可以作為華北克拉通西部未破壞的地?zé)釋W(xué)證據(jù).
4.3 熱巖石圈厚度及其與地震巖石圈厚度對比
1914年巖石圈的概念被提出,至今它一直是相對軟流圈提出和討論的.最初Barrell(1914)從力學(xué)強度(流變性)角度給出了兩者的定義:巖石圈是具有高強度(高黏滯度,低流變性)的地球外殼,而其下的軟流圈則強度較低且能夠流動,可提供重力均衡補償.隨著20世紀(jì)60年代末板塊構(gòu)造理論的提出,巖石圈被賦予了新的含義.在板塊構(gòu)造理論框架下,巖石圈代表若干漂浮于軟流圈之上的,在較長的地質(zhì)時間尺度上保持剛性的塊體(即板塊).巖石圈厚度是巖石圈動力學(xué)中的一個基本問題,不同學(xué)者對巖石圈厚度的定義不同(Anderson,1995).目前有熱巖石圈厚度、地震波速巖石圈厚度、幔源捕虜體巖石圈厚度、彈性巖石圈厚度、流變巖石圈厚度和電導(dǎo)率巖石圈厚度等(嵇少丞等, 2008).其中,熱巖石圈是指具有熱傳導(dǎo)溫度梯度的地球外殼(White,1988),是地球最外面的熱傳導(dǎo)層,除淺部孔隙流體的對流作用外不存在熱對流,其下部由于長時間尺度和高溫的影響而表現(xiàn)出對流等流動性質(zhì).
盡管巖石圈定義很多,但熱巖石圈與地震巖石圈常常用來互相對比.地震巖石圈指的是位于低速軟流圈之上的高速蓋層(Anderson,1995).就全球來看,兩者在某些地區(qū)吻合得較好,而在另一些地區(qū)差異較大.事實上,純傳導(dǎo)的固體巖石圈與純對流的流體軟流圈之間存在一過渡層,即流變邊界層(Sleep, 2003;2006),其間傳導(dǎo)與對流共同作用來傳遞熱量.何麗娟等(2014)二維熱傳導(dǎo)/對流數(shù)值模擬研究指出正是熱流變邊界層的存在是導(dǎo)致熱巖石圈和地震巖石圈差異的原因,并進一步指出流變邊界層對巖石圈本身的結(jié)構(gòu)特征并不敏感,而主要受軟流圈黏性系數(shù)控制.隨著η從1×1021Pa·s降低至1×1019Pa·s,流變邊界層從130 km減薄至50 km,流變邊界層的厚度與lg(η)成正比.流變邊界層的存在是造成熱巖石圈與地震巖石圈厚度差異的重要因素.
圖7 中國大陸地區(qū)沉積盆地東西向熱剖面圖(修改自邱楠生,1998;其中q:地表熱流,qm:地幔熱流)Fig.7 East-westward thermal status profile of sedimentary basins in China (Modified from Qiu,1998; q: Surface heat flow, qm: Mantle heat flow)
圖8 鄂爾多斯盆地(a)西緣熱巖石圈厚度(b)東緣熱巖石圈厚度Fig.8 Thickness of thermal lithosphere in Western part and (b) eastern part of Ordos Basin
圖9 華北克拉通熱巖石圈與地震巖石圈底界對比(修改自何麗娟(2014),渤海灣至鄂爾多斯東地震結(jié)果來自Chen (2010),鄂爾多斯西地震結(jié)果來自 Li and Van Der Hilst (2010))Fig.9 Comparision between the thermal and seismic lithospheric bases for North China Craton (Modified from He(2014); The seismic results of Bohai Bay to east of Ordos basin from Chen (2010), while west of Ordos Basin from Li and Van Der Hilst (2010))
華北克拉通的地震結(jié)果表明,巖石圈厚度自西部鄂爾多斯的220 km向東逐漸減薄,至渤海灣盆地約80 km厚的巖石圈被視為華北克拉通遭受破壞的重要證據(jù)(Chen, 2010; 朱日祥等, 2011),熱巖石圈同樣也顯示出西厚東薄的特征(圖9).通過前述研究知,關(guān)于熱巖石圈厚度的定義方法盡管不少.但上文中以1300 ℃絕熱等溫線得到的鄂爾多斯盆地東西部平均熱巖石圈厚度,與以地溫線與地幔絕熱曲線交點得到熱巖石圈厚度上下限平均值結(jié)果相近.即鄂爾多斯盆地東部熱巖石圈厚度底界平均為140 km,西部的底界厚度平均為160 km.來自地震的結(jié)果顯示鄂爾多斯地塊西部下方存在約300 km厚的前寒武紀(jì)大陸根(Li and Van Der Hilst, 2010),上地幔以高速異常為特征.也有學(xué)者指出鄂爾多斯盆地下方自東向西的高速根超過了200~250 km(Lebedev and Nolet, 2003).根據(jù)上述計算知鄂爾多斯盆地西部的熱巖石圈厚度底界深度平均約為160 km,再根據(jù)Li(2010)的地震結(jié)果,鄂爾多斯盆地西部地震巖石圈厚度與熱巖石圈厚度差異最高將達到約為140 km(見圖9),若以Lebedev and Nolet(2003)的地震厚度結(jié)果,二者西部的差異也達約60~90 km.在鄂爾多斯盆地東部,本文以上述兩種方法約束的熱巖石圈厚度平均約為140 km,與前人研究結(jié)果較為接近,如以地溫線與地幔絕熱曲線交點定義的巖石圈底界面為140~157 km (劉紹文等,2005),以1350 ℃等溫面計算出來的鄂爾多斯熱巖石圈厚度為130~140 km(汪洋和程素華, 2011),此時與地震巖石圈厚度相差70~90 km,與國際上其他克拉通的情況類似,相對鄂爾多斯盆地西部二者差異逐漸減小.并且兩者之間的差異在汾渭地塹繼續(xù)有所減小,熱巖石圈厚度約為76 km(汪洋等, 2001),地震巖石圈厚度約為140 km(Chen,2010).然而,在華北克拉通東部的渤海灣盆地,熱巖石圈厚度約為70~80 km,與地震巖石圈厚度相當(dāng)接近(何麗娟等,2001;汪洋等,2001;劉紹文等,2005). 在大興安嶺、太行山、雪峰山以東區(qū)域的東亞裂谷帶,如渤海灣盆地、松遼盆地,熱巖石圈厚度在60~80 km(何麗娟等,2001;汪洋等,2001),而地震學(xué)巖石圈厚度在80~100 km(朱介壽等,2006; Chen et al., 2009).下?lián)P子地區(qū)蘇北盆地的熱巖石圈厚度<80 km(李成等,1996),地震學(xué)巖石圈厚度為75~100 km(陳滬生和張永鴻,1999).華北克拉通自西向東,地震巖石圈厚度與熱巖石圈厚度差異不斷減小(圖9).根據(jù)對鄂爾多斯盆地深部熱結(jié)構(gòu)特別是熱巖石圈厚度與地震巖石圈厚度差異對比,結(jié)合何麗娟等(2014)進行的二維熱傳導(dǎo)/對流數(shù)值模擬研究,指出熱流變邊界層的存在是導(dǎo)致熱巖石圈和地震巖石圈差異的原因,通過模擬計算并進一步指出流變邊界層對巖石圈本身的結(jié)構(gòu)特征(包括巖石圈熱狀態(tài)和固體巖石圈厚度)并不敏感,而主要受軟流圈黏性系數(shù)控制.軟流圈黏性系數(shù)越大,流變邊界層越厚.當(dāng)軟流圈黏性系數(shù)從1×1021Pa·s降低至1×1019Pa·s時,流變邊界層厚度也隨之減薄,流變邊界層的厚度與lg(η)成正比.且軟流圈黏性系數(shù)特別容易受到水的影響,即水的加入會大大降低軟流圈黏性系數(shù).太平洋板塊在中生代向歐亞板塊下方快速俯沖,并停滯于660 km的地幔轉(zhuǎn)換帶,形成大約寬1000 km的大地幔楔(Lei and Zhao, 2005; Zhao et al., 2007).該俯沖下去的太平洋板塊通過脫水作用在不同深度不斷地釋放富水流體,從而導(dǎo)致大地幔楔內(nèi)地幔對流變得更加劇烈(Komabayashi et al., 2004; Lei and Zhao, 2005; Ohtani et al., 2004; Zhao et al., 2007).這種太平洋板塊快速俯沖的深部脫水作用在Yonga俯沖帶已被發(fā)現(xiàn)(Conder and Wiens, 2006; Zhao et al., 1997).從搜集的各種資料來看,西太平洋深部地幔富水是大家的共識(Komiya and Maruyama, 2007).實驗室數(shù)據(jù)同樣也證明,即使少量水也會顯著降低橄欖巖和其他上地幔礦物的有效黏性系數(shù)(Hirth and Kohlstedt, 1996).本文中熱巖石圈與地震巖石圈底界自西向東的逐漸接近,暗示著流變邊界層厚度自西向東的減薄,意味著華北克拉通巖石圈下部的軟流圈地幔黏性系數(shù)自西向東逐漸降低,這可能與中生代太平洋俯沖脫水形成的低黏大地幔楔有關(guān),從另一側(cè)面印證了太平洋俯沖脫水作用對華北克拉通的影響.
本文在最新且全面系統(tǒng)的大地?zé)崃髅芏妊芯炕A(chǔ)上,通過二維溫度場數(shù)值研究,獲得了華北克拉通西部的鄂爾多斯盆地深部東西大剖面深部熱結(jié)構(gòu)特征.其地幔熱流為21.2~24.5 mW·m-2,遠低于華北東部的高地幔熱流,與Rudnick和Nyblade(1999)獲得的太古代穩(wěn)定地質(zhì)體的地幔熱流17~25 mW·m-2相近;殼幔熱流比(Qc/Qm)介于1.51~1.84之間,為“熱殼冷?!?;鄂爾多斯盆地西部平均熱巖石圈厚度約160 km,東部厚度約140 km,以上特征均表明位于華北克拉通西部的鄂爾多斯盆地處于相對穩(wěn)定的深部動力學(xué)環(huán)境.華北克拉通地表大地?zé)崃鞲咧底詵|向西不斷減少,間接表明了太平洋板塊俯沖作用對構(gòu)造活動的影響;綜合前人研究以及本文計算再次發(fā)現(xiàn)地震巖石圈和熱巖石圈厚度確實存在差異,表明了流變邊界層的存在,且華北克拉通自西向東,地震巖石圈厚度與熱巖石圈厚度差異不斷減小,意味著華北克拉通巖石圈下部的軟流圈地幔黏性系數(shù)自西向東逐漸降低,這可能與中生代太平洋俯沖脫水形成的低黏大地幔楔有關(guān),從另一側(cè)面可能說明了太平洋俯沖脫水作用對華北克拉通的影響.
致謝 感謝兩位匿名審稿專家提出的建設(shè)性意見!
Anderson D L. 1995. Lithosphere, asthenosphere, and perisphere.ReviewsofGeophysics, 33(1): 125-149. Artemieva I M, Mooney W D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study.J.Geophys.Res., 106(B8): 16387-16414. Barrell J. 1914. The strength of the Earth′s crust.TheJournalofGeology: 655-683.
Baumann M, Rybach L. 1991. Temperature field modelling along the northern segment of the European geotraverse and the Danish transition zone.Tectonophysics, 194(4): 387-407.
Birch F, Roy R F, Decker E R. 1968. Heat flow and thermal history in New England and New York. Studies of Appalachian Geology: Northern and Maritime: 437-451.
Blackwell D D. 1971. The thermal structure of the continental crust. ∥ The structure and physical properties of the earth′s crust. Washington, D. C.: AGU, 169-184.
Cai X L, Zhu J S, Cao J M, et al. 2007. 3D structure and dynamic types of the lithospheric crust in continental China and its adjacent regions.GeologyofChina(in Chinese), 34(4): 543-557.
Chen H S, Zhang Y H. 1999. Tectonic Characteristics of Lithospheric Structure and Evolution of Oil and Gas Resources in the Lower Yangtze and Its Adjacent Areas (in Chinese). Beijing: Geological Publishing House.
Chen L, Cheng C, Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton.EarthandPlanetaryScienceLetters, 286(1-2): 171-183.
Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications.Lithos, 120(1-2): 96-115.
Chen M X. 1988. North China Geothermal (in Chinese). Beijing: Science Press.
Chi Q H, Yan M C. 1998. Radioactive elements of rocks in North China Platform and the thermal structure and temperature distribution of the modern continental lithosphere.ChineseJ.Geophys. (ActaGeophysicaSinica) (in Chinese), 41(1): 38-48.Conder J A, Wiens D A. 2006. Seismic structure beneath the Tonga arc and Lau back-arc basin determined from jointVp,Vp/Vstomography.Geochemistry,Geophysics,Geosystems, 7(3).
Cooper C M, Lenardic A, Moresi L. 2004. The thermal structure of stable continental lithosphere within a dynamic mantle.EarthandPlanetaryScienceLetters, 222(3-4): 807-817.
Deng J F, Xiao Q H, Qiu R Z, et al.2006.Cenozoic lithospheric extension and thinning of North China: mechanism and process.GeologicalinChina(in Chinese): 33(4): 751-761.
Fu M X, Hu S B, Wang J Y. 2004. The transformation of Mesozic thermal regime in the east of North China and its tectonic significance.Sci.ChinaEarthSci. (in Chinese), 34(6): 514-520.
Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China craton.Nature, 432(7019): 892-897.
Gong Y L, Wang L S, Liu S W, et al. 2005. Mantle heat flow and deep temperature of Jiyang depression, Shandong, North China.EarthScience(in Chinese), 30(1): 121-128.
Gornov P Y, Goroshko M V, Malyshev Y F, et al. 2009. Thermal structure of lithosphere in Central Asian and Pacific belts and their adjacent cratons, from data of geoscience transects.RussianGeologyandGeophysics, 50(5): 485-499.
Goutorbe B. 2010. Combining seismically derived temperature with heat flow and bathymetry to constrain the thermal structure of oceanic lithosphere.EarthandPlanetaryScienceLetters, 295(3-4): 390-400.
Green N L. 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system.Lithos, 87(1-2): 23-49.
Grove T L, Parman S W. 2004. Thermal evolution of the Earth as recorded by komatiites.EarthandPlanetaryScienceLetters, 219(3-4): 173-187.
He L J, Hu S B, Wang J Y. 2001. Characteristics of lithospheric thermal structure in eastern China mainland.ProgressinNaturalScience(in Chinese), 11(9): 966-969. He L J, Hu S B, Yang W C, et al. 2009. Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt.EarthandPlanetaryScienceLetters, 277(3-4): 525-538.He L J. 2014. The Rheological boundary layer and its implications for the difference between the thermal and seismic lithospheric bases of the North China Craton.ChineseJ.Geophys. (in Chinese), 57(1): 53-61, doi: 10.6038/cjg20140106.Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere.EarthandPlanetaryScienceLetters, 144(1-2): 93-108.
Hu S B, Wang J Y, Wang Y H. 1994. Deep temperature and lithospheric thickness along the Eastern segment of the Heishui-Quanzhou Geotraverse.ActaGeophysicaSinica(in Chinese), 37(3): 330-337.
Hu S B, Wang J Y. 2000. Heat flow, deep temperature and thermal structure across the orogenic belts in Southeast China.JournalofGeodynamics, 30(4): 461-473. Jaupart C, Mareschal J C. 1999. The thermal structure and thickness of continental roots.Lithos, 48(1-4): 93-114.Ji S C, Wang Q, Xu Z Q. 2008. Break-up of the North China Craton through lithospheric thinning.ActaGeologicaSinica(in Chinese), 82(2): 174-193.
Jia S X, Zhang X K. 2005. Crustal structure and comparison of different tectonic blocks in North China.ChineseJ.Geophys. (in Chinese), 48(3): 611-620.
Jiao Y X, Qiu N S, Li W Z, et al. 2013. The Mesozoic-Cenozoic evolution of lithospheric thickness in the Ordos basin constrained by geothermal evidence.ChineseJ.Geophys. (in Chinese), 56(9): 3051-3060, doi: 10.6038/cjg20130918.Komabayashi T, Omori S, Maruyama S. 2004. Petrogenetic grid in the system MgO-SiO2-H2O up to 30 GPa, 1600 ℃: Applications to hydrous peridotite subducting into the Earth′s deep interior.JournalofGeophysicalResearch:SolidEarth(1978-2012), 109(B3).
Komiya T, Maruyama S. 2007. A very hydrous mantle under the western Pacific region: implications for formation of marginal basins and style of Archean plate tectonics.GondwanaResearch, 11(1-2): 132-147.Lachenbruch A H. 1968. Preliminary geothermal model of the Sierra Nevada.JournalofGeophysicalResearch, 73(22): 6977-6989.
Lachenbruch A H. 1978. Heat flow in the Basin and Range province and thermal effects of tectonic extension.PureandAppliedGeophysics, 117(1-2): 34-50.
Lebedev S, Nolet G. 2003. Upper mantle beneath Southeast Asia from S velocity tomography.J.Geophys.Res., 108(B1): 2048.
Leeman W P, Lewis J F, Evarts R C, et al. 2005. Petrologic constraints on the thermal structure of the Cascades arc.JournalofVolcanologyandGeothermalResearch, 140(1-3): 67-105.
Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia.Tectonophysics, 397(3-4): 281-295.Lewis T J, Hyndman R D, Flück P. 2003. Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics.JournalofGeophysicalResearch:SolidEarth(1978—2012), 108(B6).Li C, Wang L S, Shi Y S. 1996. Deep thermal state and lithospheric thickness in the lower Yangtze area.JournalofNanjingUniversity(NaturalSciences) (in Chinese), 32(3): 494-499.
Li C, Van Der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography.JournalofGeophysicalResearch:SolidEarth(1978—2012), 115(B7). Li G Y, Lü M G. 2002. The Atlases of Oil and Gas Basin in China (Second edition) (in Chinese). Beijing: Petroleum Industry Press.
Liu S W, Wang L S, Gong Y L, et al. 2005. The thermal-rheological stucture of lithosphere and geodynamics of Jiyang depression.ScienceinChinaSer.D:EarthSciences(in Chinese), 35(3): 203-214.Matthews A, Fouillac C, Hill R, et al. 1987. Mantle-derived volatiles in continental crust: the Massif Central of France.EarthandPlanetaryScienceLetters, 85(1-3): 117-128. McKenzie D. 1978. Some remarks on the development of sedimentary basins.EarthandPlanetaryScienceLetters, 40(1): 25-32.McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere.JournalofPetrology, 29(3): 625-679.McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere.EarthandPlanetaryScienceLetters, 233(3-4): 337-349.McLennan S M, Taylor S R. 1996. Heat flow and the chemical composition of continental crust.TheJournalofGeology, 104(4): 369-377.
Michaut C, Jaupart C, Mareschal J C. 2009. Thermal evolution of cratonic roots.Lithos, 109(1-2): 47-60.
M?ller P, Weise S M, Althaus E, et al. 1997. Paleofluids and recent fluids in the upper continental crust: results from the German continental deep drilling program (KTB).JournalofGeophysicalResearch:SolidEarth(1978—2012), 102(B8): 18233-18254.
Morgan P. 1984. The thermal structure and thermal evolution of the continental lithosphere.PhysicsandChemistryoftheEarth, 15: 107-193.
Ohtani E, Litasov K, Hosoya T, et al. 2004. Water transport into the deep mantle and formation of a hydrous transition zone.PhysicsoftheEarthandPlanetaryInteriors, 143-144: 255-269.
Oxburgh E R, O′Nions R K, Hill R I. 1986. Helium isotopes in sedimentary basins.Nature, 324(6098): 632-635.
Oxburgh E R, O′Nions R K. 1987. Helium loss, tectonics, and the terrestrial heat budget.Science, 237(4822): 1583-1588.
Pasquale V, Cabella C, Verdoya M. 1990. Deep temperatures and lithospheric thickness along the European Geotraverse.Tectonophysics, 176(1-2): 1-11.Petitjean S, Rabinowicz M, Grégoire M, et al. 2006. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity.Geochemistry,Geophysics,Geosystems, 7(3).
Pollack H N. 1986. Cratonization and Thermal Evolution of the Mantle.EarthandPlanetaryScienceLetters, 80(1-2): 175-182.
Pollack H, Chapman D. 1977. On the regional variation of heat flow, geotherms, and lithospheric thickness.Tectonophysics, 38(3-4): 279-296.
Polyak B G, Tolstikhin I N. 1985. Isotopic composition of the Earth′s helium and the problem of the motive forces of tectogenesis.ChemicalGeology:IsotopeGeoscienceSection, 52(1): 9-33.
Qiu N S. 1998. Thermal status profile in terrestrial sedimentary basins in China.AdvanceinEarthScinences(in Chinese), 13(5): 447-451.
Qiu N S, Hu S B, He L J. 2004. Theory and Application of Thermal Regime in Sedimentary Basin (in Chinese). Beijing: Petroleum Industry Press.Ren Z L, Zhao Z Y, Zhang J, et al. 1994. Research on Paleotemperature in the Ordos Basin.ActaSedimentologicaSinica(in Chinese), 12(1): 56-65. Ren Z L. 1996. Research on the relations between geothermal history and oil-gas accumulation in the Ordos Basin.ActaPetroleiSinica(in Chinese), 17(1): 17-24.
Ren Z L. 1998. Comparative research on tectonic thermal history of sedimentary basins in the North China [Ph. D. thesis] (in Chinese). Xi′an: Northwest University.
Ren Z L, Zhang S, Gao S L, et al. 2006. Research on region of maturation anomaly and formation time in Ordos Basin.ActaGeologicaSinica(in Chinese), 80(5): 674-684.
Ren Z L, Zhang S, Gao S L, et al. 2007. Ordos basin tectonic thermal evolution history and its metallogenic significance.Sci.ChinaEarthSci. (in Chinese), 37(S1): 23-32.
Rudnick R, Nyblade A. 1999. The composition and thickness of Archean continental roots: constraints from xenolith thermobarometry. Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, 6: 3-12. Rudnick R L, McDonough W F, O′Connell R J. 1998. Thermal structure, thickness and composition of continental lithosphere.ChemicalGeology, 145(3-4): 395-411. Shi X B, Zhou D, Zhang Y X. 2000. Lithospheric thermal-rheological structures of the continental margin in the Northern South China Sea.ChineseScienceBulletin, 45(22): 2107-2112.
Shi Y L. 1990. The thermal structure and implication of Continental lithosphere.AdvanceinEarthScinences(in Chinese), 5(6): 14-23.
Sleep N H. 2003. Survival of Archean cratonal lithosphere.JournalofGeophysicalResearch, 108(B6): 2302.
Sleep N H. 2006. Mantle plumes from top to bottom.Earth-ScienceReviews, 77(4): 231-271.
Sun S H, Liu S S, Wang J Y. 1996a. The heat flow field in Ordos Basin, NW China.GeotectonicaetMetallogenia(in Chinese), 20(1): 29-37.
Sun S H, Liu S S, Wang J Y. 1996b. The geotemperature field and evolution of hydrocarbon source rock of the Ordos Basin.GeotectonicaetMetallogenia(in Chinese), 20(3): 255-261.
Teng J W, Wang F Y, Zhao W Z, et al. 2010. Velocity structure of Layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos Basin.ChineseJournalofGeophysics(in Chinese), 53(1): 67-85, doi: :10.3969/j.issn.00015733.2010.01.008.
Turcotte D L, Schubert G. 1982. Geodynamics: Application of Continuum Physics to Geological Problems. New York: John Wiley,450.
Wang J, Li N, Wang J. 1996. Geothermics in China. Beijing: Seismological Press, 218, 232.
Wang J Y, Wang J A. 1986. The thermal stucture from crust-upper mantle of Liaohe rift basin.ChinaScience:B(in Chinese), (8): 856-866.
Wang L S, Liu S W, Li C, et al. 2004. The continental dynamics related to the thermal-rheological structure of the lithosphere.AdvanceinEarthSciences(in Chinese), 19(3): 382-386.
Wang Y. 2000. Estimations of the ratio of Crust/Mantle heat flow using Helium isotope ratio of underground fluid.ChineseJournalofGeophysics(in Chinese), 43(6): 762-770.
Wang Y, Wang J Y, Xiong L P, et al. 2001. Lithospheric geothermics of major geotectonic units in China mainland.ActaGeoscinentiaSinica(in Chinese), 22(1): 17-22.
Wang Y, Cheng S H. 2011. Thermal state and rheological strength of the lithosphere beneath the eastern China.GeotectonicaetMetallogenia(in Chinese), 35(1): 12-23.
Wernicke B. 1981. Low-angle normal faults in the Basin and Range Province: nappe tectonics in an extending orogen.Nature, 291(5817): 645-648.
White R S. 1988. The Earth′s crust and lithosphere.JournalofPetrology,(1): 1-10.
Wu F Y, Ge W C, Sun D Y, et al. 2003. Disscusions on the lithospheric thinning in eastern China.EarthScienceFrontiers(in Chinese), 10(3): 51-60.
Wu F Y, Walker R J, Yang Y H, et al. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton.GeochimicaetCosmochimicaActa, 70(19): 5013-5034.
Wu F Y, Xu Y G, Gao S, et al. 2008. Lithospheric thinning and destruction of the North China Craton.ActaPetrologicaSinica(in Chinese), 24(6): 1145-1174.
Xu Y G. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin′anling-Taihangshan gravity lineament.Lithos, 96(1-2): 281-298.
Yang J J. 2002. Tectonic Evolution and Oil Gas Distribution of the Ordos Basin (in Chinese). Beijing: Petroleum Industry Press.
Zang S X, Liu Y G, Ning J Y. 2002. Thermal structure of the lithosphere in North China.ChineseJournalofGeophysics(in Chinese), 45(1): 56-66.
Zeng R S, Sun W G, Mao T E, et al. 1995. Graph of Moho depth of China mainland.ActaSeismologicaSinica(in Chinese), 17(3): 322-327. Zhang H F, Sun M, Zhou X H, et al. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications.Lithos, 81(1-4): 297-317.Zhao D P, Xu Y B, Wiens D A, et al. 1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes.Science, 278(5336): 254-257. Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics.GondwanaResearch, 11(1-2): 120-131.Zhao G C, Wilde S A, Cawood P A, et al. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution.PrecambrianResearch, 107(1-2): 45-73.
Zhao M W, Behr H. 1996. Vitrinite reflectance in triassic with relation to geothermal history of Ordos Basin.ActaPetroleiSinica(in Chinese), 17(2): 15-23.
Zhao M W. 1996. The application of apatite fission track analysis to the reconstruction of the subsidence and uplift history of sedimentary basins: a case study from the Ordos Basin.ActaGeophysicaSinica(in Chinese), 39(S1): 238-248.
Zheng J P, Griffin W L, O′Reilly S Y, et al. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis.GeochimicaetCosmochimicaActa, 71(21): 5203-5225.
Zhu J S, Cai X L, Cao J M, et al. 2006. Lithospheric structure and geodynamics in China and its adjacent areas.GeologyinChina(in Chinese), 33(4): 793-803.
Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton.ScienceChinaEarthSciences, 54(6): 789-797.
Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton.Sci.ChinaEarthSci. (in Chinese), 41(5): 583-592.
Zhu R X, Xu Y G, Zhu G, et al. 2012. Destruction of North China Craton.Sci.ChinaEarthSci. (in Chinese), 42(8): 1135-1159.Ziegler P A, Cloetingh S. 2004. Dynamic processes controlling evolution of rifted basins.Earth-ScienceReviews, 64(1-2): 1-50. Zuo Y H, Qiu N S, Chang J, et al. 2013. Meso-Cenozoic lithospheric thernal stucture in the Bohai Bay Basin.ActaGeologicaSinica(in Chinese), 87(2): 145-153.
中文參考文獻
蔡學(xué)林, 朱介壽, 曹家敏等. 2007. 中國大陸及鄰區(qū)巖石圈地殼三維結(jié)構(gòu)與動力學(xué)型式. 中國地質(zhì), 34(4): 543-557.
陳滬生, 張永鴻. 1999. 下?lián)P子及鄰區(qū)巖石圈結(jié)構(gòu)構(gòu)造特征與油氣資源評價. 北京: 地質(zhì)出版社.
陳墨香. 1988. 華北地?zé)? 北京: 科學(xué)出版社.
遲清華, 鄢明才. 1998. 華北地臺巖石放射性元素與現(xiàn)代大陸巖石圈熱結(jié)構(gòu)和溫度分布. 地球物理學(xué)報 41(1): 38-48.
鄧晉福, 肖慶輝, 邱瑞照等. 2006. 華北地區(qū)新生代巖石圈伸展減薄的機制與過程. 中國地質(zhì), 33(4): 751-761.
付明希, 胡圣標(biāo), 汪集旸. 2004. 華北東部中生代熱體制轉(zhuǎn)換及其構(gòu)造意義. 中國科學(xué)(D輯: 地球科學(xué)), 34(6): 514-520.
龔育齡, 王良書, 劉紹文等. 2005. 濟陽坳陷地幔熱流和深部溫度. 地球科學(xué), 30(1): 121-128.
何麗娟, 胡圣標(biāo), 汪集旸. 2001. 中國東部大陸地區(qū)巖石圈熱結(jié)構(gòu)特征. 自然科學(xué)進展, 11(9): 966-969.
何麗娟. 2014. 流變邊界層及其對華北克拉通熱/地震巖石圈底界差異的意義. 地球物理學(xué)報, 57(1): 53-61, doi: 10.6038/cjg20140106.
胡圣標(biāo), 汪集旸, 汪屹華. 1994. 黑水―泉州地學(xué)斷面東段深部溫度與巖石層厚度. 地球物理學(xué)報, 37(3): 330-337.
嵇少丞, 王茜, 許志琴. 2008. 華北克拉通破壞與巖石圈減薄. 地質(zhì)學(xué)報, 82(2): 174-193.
嘉世旭, 張先康. 2005. 華北不同構(gòu)造塊體地殼結(jié)構(gòu)及其對比研究. 地球物理學(xué)報, 48(3): 611-620.
焦亞先, 邱楠生, 李文正等. 2013. 鄂爾多斯盆地中-新生代巖石圈厚度演化——來自地?zé)釋W(xué)的證據(jù). 地球物理學(xué)報, 56(9): 3051-3060, doi: 10.6038/cjg20130918.
李成, 王良書, 施央申. 1996. 下?lián)P子區(qū)深部熱狀態(tài)與巖石圈厚度. 南京大學(xué)學(xué)報(自然科學(xué)版), 32(3): 494-499.
李國玉, 呂鳴崗. 2002. 中國含油氣盆地圖集(第二版). 北京: 石油工業(yè)出版社.
劉紹文, 王良書, 龔育齡等. 2005. 濟陽坳陷巖石圈熱-流變學(xué)結(jié)構(gòu)及其地球動力學(xué)意義. 中國科學(xué): D輯, 35(3): 203-214.
邱楠生. 1998. 中國大陸地區(qū)沉積盆地?zé)釥顩r剖面. 地球科學(xué)進展, 13(5): 447-451.
邱楠生, 胡圣標(biāo),何麗娟.2004. 沉積盆地?zé)狍w制研究的理論與應(yīng)用. 北京:石油工業(yè)出版社.
任戰(zhàn)利, 趙重遠, 張軍等. 1994. 鄂爾多斯盆地古地溫研究. 沉積學(xué)報, 12(1): 56-65.
任戰(zhàn)利. 1996. 鄂爾多斯盆地?zé)嵫莼放c油氣關(guān)系的研究. 石油學(xué)報, 17(1): 17-24.
任戰(zhàn)利. 1998. 中國北方沉積盆地構(gòu)造熱演化史恢復(fù)及其對比研究 [博士論文]. 西安: 西北大學(xué).
任戰(zhàn)利, 張盛, 高勝利等. 2006. 鄂爾多斯盆地?zé)嵫莼潭犬惓7植紖^(qū)及形成時期探討. 地質(zhì)學(xué)報, 80(5): 674-684.
任戰(zhàn)利, 張盛, 高勝利等. 2007. 鄂爾多斯盆地構(gòu)造熱演化史及其成藏成礦意義. 中國科學(xué)D輯: 地球科學(xué), 37(S1): 23-32.
施小斌, 周蒂, 張毅祥. 2000. 南海北部陸緣巖石圈熱―流變結(jié)構(gòu). 科學(xué)通報, 45(15): 1660-1665.
石耀霖. 1990. 大陸巖石圈的熱結(jié)構(gòu)及其意義. 地球科學(xué)進展, 5(6): 14-23.
孫少華, 劉順生, 汪集旸. 1996a. 鄂爾多斯盆地?zé)崃鲌鎏卣? 大地構(gòu)造與成礦學(xué), 20(1): 29-37.
孫少華, 劉順生, 汪集暘. 1996b. 鄂爾多斯盆地地溫場與烴源巖演化特點. 大地構(gòu)造與成礦學(xué), 20(3): 255-261.
滕吉文, 王夫運, 趙文智等. 2010. 陰山造山帶—鄂爾多斯盆地巖石圈層、塊速度結(jié)構(gòu)與深層動力過程. 地球物理學(xué)報, 53(1): 67-85, doi: :10.3969/j.issn.00015733.2010.01.008.
汪集旸, 汪緝安. 1986. 遼河裂谷盆地地殼上地幔熱結(jié)構(gòu). 中國科學(xué)B輯, (8): 856-866.
王良書, 劉紹文, 李成等. 2004. 巖石圈熱—流變結(jié)構(gòu)與大陸動力學(xué). 地球科學(xué)進展, 19(3): 382-386.
汪洋. 2000. 利用地下流體氦同位素比值估算大陸殼幔熱流比例. 地球物理學(xué)報, 43(6): 762-770.
汪洋, 汪集旸, 熊亮萍等. 2001. 中國大陸主要地質(zhì)構(gòu)造單元巖石圈地?zé)崽卣? 地球?qū)W報, 22(1): 17-22.
汪洋, 程素華. 2011. 中國東部巖石圈熱狀態(tài)與流變學(xué)強度特征. 大地構(gòu)造與成礦學(xué), 35(1): 12-23.
吳福元, 葛文春, 孫德有等. 2003. 中國東部巖石圈減薄研究中的幾個問題. 地學(xué)前緣, 10(3): 51-60.
吳福元, 徐義剛, 高山等. 2008. 華北巖石圈減薄與克拉通破壞研究的主要學(xué)術(shù)爭論. 巖石學(xué)報, 24(6): 1145-1174.
楊俊杰. 2002. 鄂爾多斯盆地構(gòu)造演化與油氣分布規(guī)律. 北京: 石油工業(yè)出版社.
臧紹先, 劉永剛, 寧杰遠. 2002. 華北地區(qū)巖石圈熱結(jié)構(gòu)的研究. 地球物理學(xué)報, 45(1): 56-66.
曾融生, 孫為國, 毛桐恩等. 1995. 中國大陸莫霍界面深度圖. 地震學(xué)報, 17(3): 322-327.
趙孟為, Behr H. 1996. 鄂爾多斯盆地三疊系鏡質(zhì)體反射率與地?zé)崾? 石油學(xué)報, 17(2): 15-23.
趙孟為.1996. 磷灰石裂變徑跡分析在恢復(fù)盆地沉降抬升史中的應(yīng)用──以鄂爾多斯盆地為例. 地球物理學(xué)報, 39(S1): 238-248.
朱介壽, 蔡學(xué)林, 曹家敏等. 2006. 中國及相鄰區(qū)域巖石圈結(jié)構(gòu)及動力學(xué)意義. 中國地質(zhì), 33(4): 793-803.
朱日祥, 陳凌, 吳福元等. 2011. 華北克拉通破壞的時間、范圍與機制. 中國科學(xué): 地球科學(xué), 41(5): 583-592.
朱日祥, 徐義剛, 朱光等. 2012. 華北克拉通破壞. 中國科學(xué): 地球科學(xué), 42(8): 1135-1159.
左銀輝, 邱楠生, 常健等. 2013. 渤海灣盆地中、新生代巖石圈熱結(jié)構(gòu)研究. 地質(zhì)學(xué)報, 87(2): 145-153.
(本文編輯 汪海英)
Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton
HUANG Fang1,2, HE Li-Juan2*, WU Qing-Ju1
1InstituteofGeophysics,ChinaEarthquakeAdministration,Beijing100081,China2StateKeyLaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing100029,China
Recently, the destruction of the North China Craton has become a center of active discussion in earth sciences. While its mechanism remains unclear and debatable. Moreover, geothermal research on this subject is relatively few. The Ordos Basin, located in the west of the North China Craton, is a typical intraplate tectonic unit with stable sedimentation since Paleozoic. Jurassic to Cretaceous is an important period of the formation and evolution of this basin, which were affected by the Tethyan and circum-Pacific tectonic domains. In an attempt to understand the deep dynamics of lithospheric destruction of the North China Craton, the thermal structure of a two-dimensional profile (named AB) across the Ordos Basin from west to east has been studied to provide geothermic evidence to addressing this issue.Based on the two-dimensional steady-state heat conduction equation and using the finite element algorithm, thermal modeling along the profile(named AB) across the Ordos Basin has been carried out, resulting in the lithospheric thermal structure in the Ordos Basin west of the North China Craton. Furthermore, in the process of simulated calculation, we constantly adjust the heat flow at the bottom of the model to calculate surface heat flow (named calculated surface heat flow), which will be used to fit the measured heat flow on the surface of the earth. So the simulation results are convinced because they are constrained by both thermal physical parameters and the measured surface heat flow.The results are as follows: (1) The Moho temperature along the profile ranges from 610 ℃ to 700 ℃. The temperature in the east is higher than that in the west. (2) Mantle heat flow values in different tectonic units in the Ordos Basin range from 21.2 to 24.5 mW·m-2. In the eastern Ordos Basin mantle heat flow values are high while the values in the western region are relatively low. But mantle heat flow values are smooth and not high overall, showing a stable deep thermal background in the west of the North China Craton. (3)The heat flow ratios of crust to mantle(Qc/Qm)along the profile are between 1.51 and 1.84, which indicates a thermal state of relatively hotter crust while colder mantle. (4) In the west of Ordos Basin, the thermal lithospheric thickness is about 160km, while in the east it is about 140km. They both indicate that the Ordos Basin has a thick thermal lithospheric root.By the lithospheric thermal structure study, we find that the Ordos Basin, located in the west of North China Craton, is in a relatively stable deep dynamic environment. Moreover, we focus on the disparity in thickness between the thermal and seismic lithosphere. The difference between seismic and thermal lithosphere thicknesses in the western Ordos Basin is about 140km, which decreases gradually from the Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin farther east. That is to say the differences between seismic and thermal lithosphere thicknesses decrease gradually from the west to the east of North China Craton. The simulation results imply that viscosity of the asthenosphere under the North China Craton decreases gradually from west to east, confirming that dehydration of the Pacific subduction plate likely has a great effect on the North China Craton. Combining previous results and this study, we suggest that convection erosion and peridotite melting in the big mantle wedge formed by the Pacific subduction under the eastern North China Craton are the dynamic mechanisms of the destruction of the North China Craton.
Temperature field; Thermal structure; Thermal lithosphere; Destruction of the North China Craton; Ordos Basin
10.6038/cjg20151020.
Huang F, He L J, Wu Q J. 2015. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton.ChineseJ.Geophys. (in Chinese),58(10):3671-3686,doi:10.6038/cjg20151020.
國家自然科學(xué)基金重大研究計劃(91114202),中國地震局地球物理研究所基本科研業(yè)務(wù)專項(DQJB14B09)聯(lián)合資助.
黃方,女,1984年生,助理研究員,主要從事沉積盆地、巖石圈構(gòu)造—熱演化數(shù)值模擬和地球動力學(xué)研究.E-mail:huangfang65@126.com*通訊作者 何麗娟,研究員.E-mail:ljhe@mail.iggcas.ac.cn
10.6038/cjg20151020
P314
2015-04-20,2015-09-17收修定稿
≤≥? ?黃方, 何麗娟, 吳慶舉. 2015. 鄂爾多斯盆地深部熱結(jié)構(gòu)特征及其對華北克拉通破壞的啟示.地球物理學(xué)報,58(10):3671-3686,