王亞東,鄭建京,孫國強,鄭有偉,劉興旺
1.中國科學院地質(zhì)與地球物理研究所蘭州油氣資源研究中心/甘肅省油氣資源研究重點實驗室,蘭州 730000 2.中國科學院油氣資源研究重點實驗室,蘭州 730000 3.School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ,UK
?
柴西北地區(qū)碎屑鋯石裂變徑跡年齡記錄的阿爾金山早新生代隆升事件
王亞東1, 2, 3,鄭建京1, 2,孫國強1, 2,鄭有偉1, 2,劉興旺1, 2
1.中國科學院地質(zhì)與地球物理研究所蘭州油氣資源研究中心/甘肅省油氣資源研究重點實驗室,蘭州 730000 2.中國科學院油氣資源研究重點實驗室,蘭州 730000 3.School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ,UK
阿爾金山新生代隆升歷史一直倍受關注,大量熱年代學數(shù)據(jù)顯示,漸新世(40~30 Ma)以來發(fā)生階段性隆升,而新生代初期隆升的熱年代學記錄極少。柴達木盆地西北地區(qū)(柴西北地區(qū))新生界碎屑鋯石裂變徑跡年齡研究表明,其物源區(qū)單一且在新生代早期古新世--中晚始新世(65~50 Ma)發(fā)生快速隆升剝露,為該區(qū)提供陸源碎屑。前人通過物源分析發(fā)現(xiàn),柴西北時期的碎屑物主要來源于阿爾金山。同時,該區(qū)路樂河組--下干柴溝組沉積地層殘余厚度及沉積相特征表明,此時(65~50 Ma)阿爾金山存在一次短暫抬升,但幅度較小,與盆地高差不大,使柴西地區(qū)地形東高西低、北高南低。結合前人研究成果,本研究鋯石裂變徑跡熱年代學數(shù)據(jù)以及沉積學指標所記錄的阿爾金山東段65~50 Ma構造隆升事件,是對新生代印度--歐亞板塊碰撞的最初響應,也為青藏高原新生代隆升具有南北同步性提供了新的證據(jù)。
熱年代學;鋯石;阿爾金山;柴西北地區(qū);構造隆升;早新生代
阿爾金山作為青藏高原地理意義上的北界,對限定青藏高原的隆升和變形機制有重要意義[1-6]。研究阿爾金山體系在響應印度--歐亞板塊碰撞過程中構造演化特性的工作,已經(jīng)廣泛開展[3, 5, 7-20]。同時,圍繞阿爾金山隆升歷史的研究,積累了大量熱年代學資料[21-27],袁四化等[28]、Wang等[29]和肖安成等[30]分別對這些熱年代學數(shù)據(jù)進行總結得出,明顯的峰值區(qū)間主要集中在早中侏羅世、白堊紀、晚始新世--早漸新世(40~30 Ma)、早中新世(22~17 Ma)、中中新世(10~7 Ma)、上新世(5.5~4.5 Ma)和更新世(2.11~1.18 Ma)[28-30]。其中,發(fā)生在晚始新世--漸新世時期的構造隆升事件廣泛發(fā)育[8, 14-15, 18, 31-33],但是古新世--早始新世時期的隆升報道較少[16, 23, 25-26, 34],已有的熱年代學記錄均來自山體基巖[23, 25-26]。山體是其相鄰盆地的主要物源,盆地碎屑礦物若未發(fā)生退火,其記錄的信息對理解山體隆升特征及歷史至關重要。
青藏高原北部大型盆地廣泛發(fā)育巨厚的新生代沉積物,記錄了與印度歐亞板塊碰撞相關的陸內(nèi)變形及古氣候演化信息,使揭示該區(qū)區(qū)域造山運動歷史成為可能。柴達木盆地位于青藏高原北緣阿爾金斷裂東南側(cè)(圖1),是青藏高原內(nèi)部最大的沉積盆地,夾持在昆侖山、阿爾金山和祁連山之間,整體呈不規(guī)則菱形。盆地新生代發(fā)展演化受周邊山體隆升及斷裂活動的控制,尤其是柴西北地區(qū),地表構造行跡表現(xiàn)為受阿爾金斷裂走滑和擠壓作用[35-36],發(fā)育一系列走向NW--SE近平行的背斜,其沉積和構造特征與阿爾金山和阿爾金斷裂的演化息息相關。
圖1 柴達木盆地西部地區(qū)構造地質(zhì)圖Fig.1 Structural and geological map of the western Qaidam basin
鋯石因其耐風化可經(jīng)受長距離搬運而在盆地碎屑沉積物中廣泛分布,又因其具有良好的熱穩(wěn)定性, 即使遭受超過180 ℃的熱事件,也不會把其中蘊藏的源區(qū)信息全部清除[40];因此,鋯石的礦物學、地球化學特征及其熱年代學年齡譜是進行源區(qū)示蹤并反演源區(qū)構造演化歷史的首選指標。此外,根據(jù)沉積補償原理,地層厚度尤其是盆地內(nèi)地層厚度變化,在一定程度上能有效反映湖底沉降幅度和古地形的基本輪廓,可用來進行古構造分析[41]。在氣候條件已知的情況下,沉積相發(fā)育特征可定性地限定盆地的物源方位及二者之間相對高差。為此, 筆者選擇在阿爾金山南側(cè)柴達木盆地西北部的新生代地層中開展碎屑鋯石裂變徑跡測年工作, 并結合沉積地層殘余厚度和沉積相分析,以期獲得阿爾金山新生代早期的隆升信息,為青藏高原形成演化提供新的證據(jù)。
1.1 樣品處理與分析
文中分析的5個鋯石樣品分別采自柴達木盆地西北油泉子背斜、南翼山背斜、鄂博梁Ⅰ號和鄂博梁Ⅱ號背斜構造的鉆井(圖1),樣品主要分布在古近紀末期下干柴溝組和新近紀早期上干柴溝組地層中的砂巖或含砂層,地層年代為44~22 Ma。具體采樣層位、深度及測年參數(shù)詳見表1。樣品及井位資料由中國石油青海油田公司提供。
樣品粉碎后,用標準重液和磁選技術分離出鋯石單礦物,制成聚全氟乙丙烯塑料樣片,并拋光為光薄片,在220 ℃的堿性溶液中蝕刻33 h,采用外探測器法定年。樣品置于反應堆內(nèi)輻照后將云母外探測器置于25 ℃的HF酸中蝕刻35 min,揭示誘發(fā)裂變徑跡。年齡計算采用Zata常數(shù)法,并獲得鋯石的Zeta常數(shù)為132.7±6.4。樣品的分析處理在中國科學院高能物理研究所完成。P(χ2)值用于評價所測單顆粒是否屬于同一年齡組的概率[42],P(χ2)<5%是單顆粒年齡不均勻分布的證據(jù)。由于樣品主要來自鉆井巖心,受樣品量所限,每個樣品獲得的鋯石顆粒數(shù)較少(7~17粒)。雖然樣品量很少,但從熱年代學參數(shù)及結果可知,其所記錄的構造事件并不是偶然性的,在文中幾個樣品中均有記錄,可見其結果是可信的。測試結果見表1,放射圖和年齡分布圖見圖2。
圖2 柴達木盆地西部地區(qū)鋯石裂變徑跡放射圖、年齡分布圖和BinomFit分解圖Fig.2 Zircon fission track radial plots, single grain age distribution,and decomposed age distribution in western Qaidam basin
井位層位深度/m顆粒數(shù)ρs/(105/cm)(Ns)ρi/(105/cm)(Ni)ρd/(105/cm)(Nd)γsiP(χ2)/%池年齡(±1σ)/Ma平均年齡(±1σ)/Ma中心年齡(±1σ)/Ma鄂3井E232394.51739.304(842)18.065(387)3.422(3463)0.9021.349.2±3.953.4±5.749.3±4.3南1井E33602.51776.487(620)27.14(220)3.422(3463)0.3947.563.7±6.070.7±6.263.7±6.0鄂2井N13631.28783.904(251)25.740(77)3.422(3463)0.569.073.6±10.354.1±8.958.2±11.5油南1井E33512.41376.980(364)28.127(133)3.422(3463)0.5244.861.8±7.066.2±7.061.7±7.2油6井N12399.81785.822(911)21.856(232)3.422(3463)0.652.088.5±7.984.2±9.180.8±9.2
注:ρs為礦物中自發(fā)裂變徑跡密度;ρi為礦物中誘發(fā)裂變徑跡密度;ρd為標準鈾玻璃的外探測器云母記錄的裂變徑跡密度。Ns為自發(fā)徑跡數(shù);Ni為誘發(fā)徑跡數(shù);Nd為標準鈾玻璃的外探測器白云母記錄的徑跡數(shù)。γsi為Ns和Ni之間的相關系數(shù)。
1.2 鋯石裂變徑跡年齡分解和統(tǒng)計的意義
通常,沉積巖中碎屑礦物的最小年齡組年齡是連接盆地沉積與源區(qū)活動的紐帶,可探討源區(qū)基巖的冷卻/抬升、剝露過程及構造變動[39]。
鋯石裂變徑跡的部分退火帶溫度為(220±40)℃,即鋯石遭受高于260 ℃的地質(zhì)事件影響時其裂變徑跡將被全部消除,低于180 ℃時則全部保留,介于二者之間則一部分徑跡被消除[43-44]。Qiu等[45-46]對柴達木盆地西部地區(qū)大地熱流和地溫梯度變化特征的研究表明,始新世時期柴西中部及北部地區(qū)地溫梯度為35~42 ℃/km,地表溫度為5 ℃,即使按最大地溫梯度計算深度最大的鄂2井(表1),其古地溫為~160 ℃,遠低于鋯石裂變徑跡退火帶。同時,柴西北地區(qū)新生代地層的鋯石裂變徑跡年齡遠大于地層沉積年齡(表1),也說明鋯石在沉積后沒有受熱重置或退火,它們代表源區(qū)的(構造)熱事件或冷卻年齡。5件樣品除油6井外其余P(χ2)均大于5.0%,表明碎屑鋯石來自于遭受相同熱歷史改造的蝕源區(qū)(表1)。各樣品的池年齡(pooled age)為(49.2±3.9)~(88.5±7.9) Ma,離散性不大,反映其來源較單一。依據(jù)鋯石單顆粒年齡的頻率(在某一年齡范圍內(nèi)單顆粒年齡出現(xiàn)的次數(shù))分布及BinomFit[47]分解結果(圖2)對其可能的地質(zhì)意義進行探討。
長期以來,碎屑礦物熱年代學中比較年輕的年齡組分受到更多的關注,因為它們的產(chǎn)生通常被歸因于源區(qū)地形的活動過程。如果鋯石裂變徑跡年輕年齡組的年齡接近或者與地層年齡一致,它們很可能來自一個火山活動的源區(qū)[48];如果沉積物來自沒有火山活動的匯聚造山帶,且具有年輕的年齡峰值,則表明造山帶核心深部就位的變質(zhì)巖發(fā)生快速剝露事件[49]。來自這類巖石的鋯石在區(qū)域變質(zhì)作用發(fā)生時已經(jīng)被完全重置,它們的冷卻年齡代表源區(qū)最近一次的熱歷史。此外,在沉積剖面上,每出現(xiàn)一次新的最年輕年齡組,則預示出現(xiàn)了一個更年輕的蝕源區(qū),代表源區(qū)一次快速的剝露/冷卻或抬升事件;最年輕年齡組年齡突然變大代表盆地中有再循環(huán)物質(zhì)加入或蝕源區(qū)的變更[39]。同時,來自大洋和陸地的證據(jù)顯示,白堊紀時全球處于極端溫室狀態(tài)[50-51],即使西藏地區(qū)的白堊紀大洋紅層也是在底層水高度氧化的深水環(huán)境下形成[52-53],我國西北地區(qū)在晚白堊世末期之前,一直處于一種半濕潤--濕潤的氣候環(huán)境下[54];因此該時期中國西部地區(qū)氣候?qū)ι矫}剝露作用影響較小,山脈剝露過程主要受控于區(qū)域構造變形。
由此可知,上述5個鋯石裂變徑跡樣品記錄了物源區(qū)在65~50 Ma期間的一次快速隆升剝露事件。陳國俊等[41]、付玲等[55]分別通過鉆孔巖屑特征、重礦物組合及母巖特性對比進行物源分析,認為柴達木盆地西北地區(qū)新生代以來干柴溝--鄂博梁--堿山地區(qū)以阿爾金山為物源區(qū),且屬于近源快速堆積。因此,文中碎屑鋯石年齡記錄了阿爾金山在新生代早期65~50 Ma的一次構造隆升事件。
2.1 柴西地區(qū)中生代--古近紀古地形演化
根據(jù)青海油田勘探開發(fā)研究院的研究成果,對盆內(nèi)有關鉆孔地層分層校正分別做柴達木盆地中生代及古近系路樂河組和下干柴溝組沉積殘余厚度圖(圖3, 4)。因存在地層壓實的影響,只能應用殘余厚度來分析阿爾金山前古地形特征。由圖4可知,柴西地區(qū)進入新生代后發(fā)生連續(xù)沉積,古近紀未發(fā)生大規(guī)模的剝蝕[41],不同地層組殘余厚度的變化可反映柴西地區(qū)古近紀受構造運動影響所造成的古地形演化。
由柴達木盆地西部中生代沉積殘余地層厚度(圖3)可知,該時期柴達木盆地西部地層沉積厚度自阿爾金山前至盆地內(nèi)部基本一致,最大殘余厚度1 500 m零星分布且范圍很小,沒有明顯的沉積中心,正處于盆地演化初期,所受到的構造應力很小,具備盆地雛形[57-58]。
圖3 柴達木盆地西部地區(qū)中生代沉積地層殘余厚度圖[56]Fig.3 Cenozoic residual thickness of western Qaidam basin
至路樂河組與下干柴溝組時期(圖4),在柴達木盆地西部地層殘余厚度均呈向阿爾金山逐漸減薄趨勢以至于尖滅。整體表現(xiàn)為北西--北北西向厚與薄間互的分布規(guī)律,說明研究區(qū)古近紀構造呈北北西--南東向的隆凹相間格局,且由路樂河組到下干柴溝組這種格局逐漸明顯。陳國俊等[41]研究表明,柴西地區(qū)路樂河組呈填平補齊式沉積,至下干柴溝組沉積期,柴西地區(qū)古地形大致呈北高南低之勢,各地高差雖不大,但沿阿爾金山前已開始出現(xiàn)獨立于盆地內(nèi)部的沉降中心。由此可知,此時阿爾金山在路樂河組甚至以前已開始隆升,但幅度不大,向湖盆內(nèi)坡度相對較緩。
圖4 柴達木盆地西部地區(qū)路樂河組(a)與下干柴溝組(b)沉積地層殘余厚度圖[56]Fig.4 Residual thickness of Lulehe (a) and Xiaganchaigou (b) Formations in western Qaidam basin
2.2 柴西地區(qū)古近紀沉積相發(fā)育特征
路樂河組時期,柴達木盆地進入新生代發(fā)育期,盆地開始整體下沉[57-58],在阿爾金山前西部和東部分別發(fā)育了洪積扇-辮狀河-三角洲-洪泛平原相和洪積扇-辮狀河-洪泛平原相沉積(圖5),盆地主體以沖積沉積為主,沒有明顯的沉積中心,但在山前西部油砂山--獅子溝和東部一里坪地區(qū)存在小的沉積凹陷,水體較淺。
圖5 柴達木盆地西部地區(qū)路樂河組(a)與下干柴溝組(b)沉積相分布圖[59]Fig.5 Sedimentary facies of Lulehe (a) and Xiaganchaigou (b) Formations in western Qaidam basin
下干柴溝組時期,阿爾金山前湖相發(fā)育區(qū)基本保持不變,但西段油砂山-獅子溝地區(qū)湖相范圍縮小,辮狀河-三角洲相進一步向盆內(nèi)推進;一里坪地區(qū)的湖相范圍稍有擴大。該時期阿爾金山前西部地區(qū)主要發(fā)育三角洲相沉積,而洪積扇-辮狀河沉積相主要分布于阿爾金山前東段地區(qū),這些沖積相沉積前端以指狀向盆地內(nèi)部延伸,洪泛平原相沉積范圍明顯變小,與此時的殘余厚度圖發(fā)育模式比較匹配。
綜合柴達木盆地西部新生代早期地層殘余厚度及沉積相,結合前人研究認為:隨著新生代印度洋板塊向歐亞板塊碰撞擠壓,青藏高原開始抬升,柴達木盆地開始沉降發(fā)育;但路樂河組時期湖盆面積較小,水體較淺,尤其在阿爾金山前以沖積扇相與扇三角洲相為主。青海油田分公司勘探開發(fā)敦煌研究院研究獲得的路樂河組沉積殘余厚度圖和沉積相平面圖印證了這一事實,并揭示了當時盆地地勢為東高西低、北高南低(圖4,圖5)。到下干柴溝組沉積時期,盆地發(fā)生大面積湖侵,湖岸線到達祁連山前及阿爾金山前,扇三角洲相和湖相廣泛發(fā)育,盆地沉積中心位于獅子溝--茫崖一帶(圖4, 圖5),指示盆地處在南北擠壓環(huán)境之下。結合該時期中國西部氣候特征[41],路樂河組--下干柴溝組沉積殘余厚度和沉積相演化說明,在印度--歐亞板塊碰撞柴達木盆地發(fā)育初期,阿爾金山即響應這次構造運動而抬升,成為柴達木盆地西部地區(qū)物源區(qū),但抬升幅度不大,與盆地的相對高差較??;下干柴溝組時期進入相對穩(wěn)定期,山體被剝蝕,高差減小,水體擴大,發(fā)育該時期特征沉積相。
柴達木盆地周邊地區(qū)阿爾金山、東昆侖山系及祁連山等的磷灰石裂變徑跡結果統(tǒng)計(圖6)顯示,該區(qū)域新生代早期65~40 Ma的構造熱事件記錄雖然較少,但仍然有分布;說明在青藏高原北部地區(qū),新生代早期響應印度與歐亞板塊碰撞,山體發(fā)生了一次隆升冷卻事件。然而,阿爾金山系山體基巖記錄65~50 Ma的構造事件主要來自E--W向山脈(圖6中黑色圓點),NE和NNE向山系的基巖幾乎未能得到該次事件;可能是因為其與EW向山系具有不同的動力學機制、在新生代早期未發(fā)生構造抬升,或是因為其記錄被剝蝕沉積在盆地中,這需要更深入的物源分析等工作來進行判識。但由圖6可知,青藏高原東北部地區(qū)新生代早期的構造事件是普遍存在的,尤其在阿爾金山地區(qū),其新生代構造隆升階段也并非前人所劃分的晚始新世40~30 Ma開始,而是古近紀時期已經(jīng)開始。阿爾金山早新生代隆升事件,前人也通過其他研究手段所捕獲。Yin等[5]根據(jù)沉積記錄,認為阿爾金斷裂走滑運動始于始新世早期(~50 Ma);任收麥等[34]通過分析柴達木盆地西部地區(qū)路樂河組和塔里木盆地東南地區(qū)喀什群陸相沉積的特征,認為阿爾金山隆升時間始于古新世--始新世;李海兵等[16]的研究表明,早期阿爾金斷裂的活動從60 Ma持續(xù)至40 Ma左右。綜合上述,本文鋯石裂變徑跡熱年代學數(shù)據(jù)以及沉積學指標所記錄的阿爾金山東段的65~50 Ma構造隆升事件,是青藏高原北部對新生代印度--歐亞板塊碰撞的最初響應的一期普遍存在的構造隆升事件,也為青藏高原新生代隆升具有南北同步性提供了新的證據(jù)。
綜合上述柴西地區(qū)鋯石裂變徑跡熱年代學、古近系沉積殘余地層厚度及沉積相資料,結合區(qū)域構造地質(zhì)背景,得出以下幾點結論:
1)柴達木盆地西部地區(qū)碎屑鋯石裂變徑跡記錄了物源區(qū)阿爾金山新生代早期65~50 Ma期間,發(fā)生一次快速抬升剝露事件。
2)古新世--始新世期間阿爾金山隆升幅度較小,與盆地之間高差較小,且持續(xù)時間較短,隨后進入穩(wěn)定剝蝕階段,柴達木盆地發(fā)育水進系列。由下干柴溝組沉積相發(fā)育特征可知,此次抬升在阿爾金山不同部位存在差異。
3)阿爾金山新生代早期快速抬升剝露期事件幾乎與印度與歐亞大陸的碰撞同時發(fā)生,反映青藏高原北緣對強構造抬升期的準同時協(xié)同響應,支持高原南北同步隆升模式。
對提供樣品及鉆井資料的青海油田勘探開發(fā)研究院研究人員表示誠摯感謝,也感謝在樣品數(shù)據(jù)分析過程中給予指導和建議的Roderick Brown教授。
[1] Meyer B, Tapponnier P, Bourjot L, et al. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau[J]. Geophysics Journal International, 1998, 135: 1-47.
[2] Sobel E R. Basin Analysis of the Jurassic-Lower Cretaceous Southwest Tarim Basin, Northwest China[J]. Global Science American Bulletin, 1999, 111: 709-724.
[3] Yue Yongjun, Liou J G. Two-Stage Evolution Model for the Altyn Tagh Fault, China[J]. Geology, 1999, 27: 227-230.
[4] Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[5] Yin An, Rumelhart P E, Butler R, et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation[J]. Global Science American Bulletin, 2002, 114: 1257-1295.
[6] Cowgill E, Yin An, Harrison T M, et al. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of Back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau[J]. Journal Geophysical Research, 2003, 108: 1-28.
[7] Yue Yongjun, Ritts B D, Graham S A. Initiation and Long-Term Slip History of the Altyn Tagh Fault[J]. International Geology Review, 2001, 43: 1087-1093.
[8] Chen Yan, Gilder S, Halim N, et al. New Paleomagnetic Constraints on Central Asian Kinematics: Displacement Along the Altyn Tagh Fault and Rotation of the Qaidam Basin[J]. Tectonics, 2002, 21(5): 1042, doi:10.1029/2001TC901030.
[9] Wang Xiaoming, Wang Banyue, Qiu Zhanxiang, et al. Danghe Area (Western Gansu, China) Biostratigraphy and Implications for Depositional History and Tec-tonics of Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 208: 253-269.
[10] Yue Yongjun, Ritts B D, Graham S A, et al. Slowing Extrusion Tectonics: Lowered Estimate of Post-Early Miocene Slip Rate for the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2004, 217: 111-122.
[11] Yue Yongjun, Ritts B D, Hanson A D, et al. Sedimentary Evidence Against Large Strike-slip Translation on the Northern Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 2004, 228: 311-323.
[12] Ritts B D, Yue Yongjun, Graham S A. Oligocene-Miocene Tectonics and Sedimentation Along the Altyn Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 2004, 112: 207-229.
[13] Ritts B D, Yue Yongjun, Graham S A, et al. From Sea Level to High Elevation in 15 Million Years: Uplift History of the Northern Tibetan Plateau Margin in the Altun Shan[J]. American Journal of Science, 2008, 308: 657-678.
[14] Sun Jimin, Zhu Rixiang, An Zhisheng. Tectonic Uplift in the Northern Tibetan Plateau Since 13.7 Ma Ago Inferred from Molasse Deposits Along the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2005, 235: 641-653.
[15] Sun Zhiming,Yang Zhenyu, Pei Junling, et al. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2005, 237: 635-646.
[16] 李海兵, 楊經(jīng)綏, 許志琴, 等. 阿爾金斷裂帶對青藏高原北部生長、隆升的制約[J]. 地學前緣, 2006, 13(4): 59-79. Li Haibing, Yang Jingsui, Xu Zhiqin, et al. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4): 59-79.
[17] Wang Erqi, Xu Fengyin, Zhou Jianxun, et al. Eastward Migration of the Qaidam Basin and Its Implications for Cenozoic Evolution of the Altyn Tagh Fault and Associated River Systems[J]. The Geological Society American Bulletin, 2006, 118: 349-365.
[18] Liu Yongjiang, Franz N B, Johann G, et al. Geochronology of the Initiation and Displacement of the Altyn Strike-Slip Fault, Western China[J]. Journal of Asian Earth Sciences, 2007, 29: 243-252.
[19] Zhuang Guangsheng, Hourigan J K, Ritts B D, et al. Cenozoic Multiple-Phase Tectonic Evolution of the Northern Tibetan Plateau: Constraints from Sedimentary Records from Qaidam Basin,Hexi Corridor,and Subei Basin,Northwest China[J].American Journal of Science, 2011, 311: 116-152.
[20] Lu Haijian, Wang Erchie, Meng Kai. Paleomagnetism and Anisotropy of Magnetic Susceptibility of the Tertiary Janggalsay Section (Southeast Tarim Basin): Implications for Miocene Tectonic Evolution of the Altyn Tagh Range[J]. Tectonophysics, 2014, doi: 10.1016/j.tecto.2014.01.031.
[21] 柏道遠, 孟德保, 劉耀榮, 等. 青藏高原北緣昆侖山中段構造隆升的磷灰石裂變徑跡記錄[J]. 中國地質(zhì), 2003, 30(3): 240-246. Bai Daoyuan, Meng Debao, Liu Yaorong, et al. Apatite Fission-Track Records of the Tectonic Uplift of the Central Segment of the Kunlun Mountains on the Northern Margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246.
[22] 拜永山, 任二峰, 范桂蘭, 等. 青藏高原西北緣祁漫塔格山中新世快速抬升的磷灰石裂變徑跡證據(jù)[J]. 地質(zhì)通報, 2008, 27(7): 1044-1048. Bai Yongshan, Ren Erfeng, Fan Guilan, et al. Apatite Fission Track Evidence for the Miocene Rapid Uplift of the Qimantag Mountains on the Northwes-tern Margin of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2008, 27(7): 1044-1048.
[23] 陳正樂, 宮紅良, 李麗, 等. 阿爾金山脈新生代隆升-剝露過程[J]. 地學前緣, 2006, 13(4): 91-102. Chen Zhengle, Gong Hongliang, Li Li, et al. Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains[J]. Earth Science Frontiers, 2006, 13(4): 91-102.
[24] 陳正樂, 萬景林, 王小鳳, 等. 阿爾金斷裂帶8 Ma左右的快速走滑及其地質(zhì)意義[J]. 地球?qū)W報, 2002, 23(4): 295-300. Chen Zhengle, Wan Jinglin, Wang Xiaofeng, et al. Rapid Strike Slip of the Altyn Tagh Fault at 8 Ma and Its Geological Implications[J]. Acta Geoscientia Sinica, 2001, 23(4): 295-300.
[25] 陳正樂, 張岳橋, 王小鳳, 等. 新生代阿爾金山脈隆升歷史的裂變徑跡證據(jù)[J]. 地球?qū)W報, 2001, 22(5): 413-418. Chen Zhengle, Zhang Yueqiao, Wang Xiaofeng, et al. Fission Track Dating of Apatite Constrains on the Cenozoic Uplift of the Altyn Tagh Mountain[J]. Acta Geoscientia Sinica, 2001, 22(5): 413-418.
[26] 萬景林, 王瑜, 李齊, 等. 阿爾金山北段晚新生代山體抬升的裂變徑跡證據(jù)[J]. 礦物巖石地球化學通報, 2001, 20(4): 222-224. Wan Jinglin, Wang Yu, Li Qi, et al. FT Evidence of Northern Altyn Uplift in Late-Cenozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 222-224.
[27] 王瑜, 萬景林, 李齊, 等. 阿爾金山北段阿克塞--當金山口一帶新生代山體抬升和剝蝕的裂變徑跡證據(jù)[J]. 地質(zhì)學報, 2002, 76(2): 191-198. Wang Yu, Wan Jinglin, Li Qi, et al. Fission-Track Evidence for the Cenozoic Uplift and Erosion of the Northern Segment of the Altyn Tagh Fault Zone at the Aksay-Dangjin Pass[J]. Acta Geologica Sinica, 2002, 76(2): 191-198.
[28] 袁四化, 劉永江, 葛肖虹, 等. 阿爾金山中新生代隆升歷史研究進展[J]. 世界地質(zhì), 2006, 25(2): 164-171. Yuan Sihua, Liu Yongjiang, Ge Xiaohong, et al. Adwance in Study of Mesozoic-Cenozoic Uplift History of the Altyn Mountains[J]. Global Geology, 2006, 25(2): 164-171.
[29] Wang Guocan, Cao Kai, Zhang Kexin, et al. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Science, 2011, 54: 29-44.
[30] 肖安成, 吳磊, 李洪革, 等. 阿爾金斷裂新生代活動方式及其與柴達木盆地的耦合分析[J]. 巖石學報, 2013, 29(8): 2826-2836. Xiao Ancheng, Wu Lei, Li Hongge, et al. Tectonic Processes of the Cenozoic Altyn Tagh Fault and Its Coupling with the Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 2013, 29(8): 2826-2836.
[31] Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints[J]. Tectonophysics, 2001, 343:111-134.
[32] 劉永江, Franz N, 葛肖虹, 等. 阿爾金斷裂帶年代學和阿爾金山隆升[J]. 地質(zhì)科學, 2007, 42(1): 134-146. Liu Yongjiang, Franz N, Ge Xiaohong, et al. Geochronology of the Altun Fault Zone and Rising of the Altun Mountains[J]. Chinese Journal of Geology, 2007, 42(1): 134-146.
[33] Yin An, Dang Yuqi, Zhang Min, et al. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions: Part 3: Structural Geology, Sedimentation, and Regional Tectonic Reconstruction[J]. The Geological Society of America, 2008, 120(7/8): 847-876.
[34] 任收麥, 葛肖虹, 劉永江, 等. 晚白堊世以來沿阿爾金斷裂帶的階段性走滑隆升[J]. 地質(zhì)通報, 2004, 23(9/10): 926-932. Ren Shoumai, Ge Xiaohong, Liu Yongjiang, et al. Multi-Stage Strik-Slip Motion and Uplift Along the Altyn Tagh Fault Since the Late Cretaceous[J]. Geological Bulletin of China, 2004, 23(9/10): 926-932.
[35] 尹成明, 任收麥, 田麗艷. 阿爾金斷裂對柴達木盆地西南地區(qū)的影響:來自構造節(jié)理分析的證據(jù)[J]. 吉林大學學報: 地球科學版, 2011, 41(3): 724-734. Yin Chengming, Ren Shoumai, Tian Liyan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin: Evidences from Analysis of Joints Data[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3): 724-734.
[36] 劉重慶, 周建勛. 阿爾金斷裂走滑運動對柴達木盆地的側(cè)向效應[J]. 西安科技大學學報, 2013, 33(3): 291-297. Liu Chongqing, Zhou Jianxun. Lateral Effect of Altyn Fault Strike-Slip Movement on Qaidam Basin[J]. Journal of Xi’an University of Science and Technology, 2013, 33(3): 291-297.
[37] Fang Xiaomin, Zhang Weilin, Meng Qingquan, et al. High-Resolution Magneto Stratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258: 293-306.
[38] Lu Haijian, Xiong Shangfa. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288: 539-550.
[39] Wang Yadong, Zheng Jianjing, Zhang Weilin, et al. Cenozoic Uplift of the Tibetan Plateau: Evidence from the Tectonic-Sedimentary Evolution of the Western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3(2): 175-187.
[40] Bernet M, Garver J I. Fission-Track Analysis of Detrital Zircon[J]. Reviews in Mineralogy & Geoche-mistry, 2005, 58: 205-238.
[41] 陳國俊, 杜貴超, 呂成福, 等. 柴達木盆地西北地區(qū)古近紀沉積充填過程與主控因素分析[J]. 沉積學報, 2011, 29(5): 866-874. Chen Guojun, Du Guichao, Lü Chengfu, et al. Sedimentary Filling History and Analysis of Its Controlling Factors in the Paleogene of the Northwestern Qaidam Basin, China[J]. Acta Sedimentologica Sinica, 2011, 29(5): 866-874.
[42] Green P F. A New Look at Statistics in Fission-Track Dating[J]. Nuclear Tracks, 1981, 5(1/2): 77-86.
[43] Brandon M T, Roden-Tice M K, Garver J I. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Wa-shington State[J]. The Geological Society of American Bulletin, 1998, 110: 985-1009.
[44] Bernet M, Brandon M T, Garver J I, et al. Determining the Zircon Fission-Track Closure Temperature[C]//98th Annual Meeting Abstract with Programs 34. [S.l.]:The Geological Society of American Cordilleran Section, 2002: 18.
[45] Qiu Nansheng, Kang Yongshang, Jin Zhijun. Temperature and Pressure Field in the Tertiary Succession of the Western Qaidam Basin, Northeast Qinghai-Tibet Plateau, China[J]. Marine and Petroleum Geology, 2003, 20: 493-507.
[46] Qiu Nansheng. Tectono-Thermal Evolution of the Qaidam Basin, China: Evidence from Ro and Apatite Fission Track Data[J]. Petroleum Geoscience, 2002, 8: 279-285.
[47] Brandon M T. Decomposition of Mixed Grain Age Distributions Using Binom Fit[J]. On Track, 2002, 24: 13-18.
[48] Garver J I, Soloviev A V, Bullen M E, et al. Towards a More Complete Record of Magmatism and Exhumation in Continental Arcs Using Detrital Fission-Track Thermochronometry[J]. Physics and Chemistry of Earth, 2000, 25: 565-570.
[49] Brandon T Mark, Vance A Joseph. Tectonic Evolution of the Cenozoic Olympic Subduction Complex, Washington State, as Deduced from Fission Track Ages for Detrital Zircons[J]. American Journal Science, 1992, 292: 565-636.
[50] Huber T B, Norris D R, MacLeod G K. Deep Sea Paleotemperature Record of Extreme Warmth During the Cretaceous[J]. Geology, 2002, 30: 123-126.
[51] Robert A Spicer, Judith T Parrish. Late Cretaceous-Early Tertiary Palaeoclimates of Northern High Latitudes: A Quantitative View[J]. Journal of the Geological Society London, 1990, 147: 329-341.
[52] Wang Chengshan, Hu Xiumian, Jansa L, et al. The Cenomanian-Turonian Anoxic Event in Southern Tibet[J]. Cretaceous Research, 2001, 22: 675-676.
[53] Hu Xiumian, Jansa L, Wang Chengshan, et al. Upper Cretaceous Oceanic Red Beds (CORB) in the Tethys: Occurrence, Lithofacies, Age and Environment[J].Cretaceous Research, 2005, 26: 3-20.
[54] 戴霜, 張明震, 彭棟祥, 等. 中國西北地區(qū)中--新生代構造與氣候格局演化[J]. 海洋地質(zhì)與第四紀地質(zhì), 2013, 33(4): 153-168. Dai Shuang, Zhang Mingzhen, Peng Dongxiang, et al. The Mesozoic-Cenozoic Evolution of the Tectonic and Climatic Patterns, NW China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 153-168.
[55] 付玲, 關平, 趙為永, 等. 柴達木盆地古近系路樂河組重礦物特征與物源分析[J]. 巖石學報, 2013, 29(8): 2867-2875. Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875.
[56] 中國石油青海油田勘探開發(fā)研究院. 柴達木盆地西部構造-地層動態(tài)演化與有效圈閉的識別和篩分, 青海油田內(nèi)部報告[R]. 敦煌:中國石油青海油田勘探開發(fā)研究院, 2004. Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum. The Dynamic Evolution of Structural-Stratigraphic and Identifying and Screening of the Effective Traps in the Western Qaidam Basin, Internal Report of Qinghai Oilfield[R]. Dunhuang: Research Institute of Exploration and Development, Qinghai Oilfield, China Petroleum, 2004.
[57] 孫國強, 鄭建京, 蘇龍, 等. 柴達木盆地西北區(qū)中--新生代構造演化過程研究[J]. 天然氣地球科學, 2010, 21(2): 212-217. Sun Guoqiang,Zheng Jianjing,Su Long,et al.Mesozoic-Cenozoic Tectonic Evolution in Northwestern Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(2): 212-217.
[58] 孫國強, 蘇龍, 王旭紅, 等. 柴達木盆地西部地區(qū)構造演化的裂變徑跡揭示[J]. 天然氣工業(yè), 2009, 29(2): 27-31. Sun Guoqiang, Su Long, Wang Xuhong, et al. Fission Track Evidences of Tectonic Evolution in West Qaidam Basin[J]. Natural Gas Industry, 2009, 29(2): 27-31.
[59] 蘇妮娜, 金振奎, 宋璠, 等. 柴達木盆地古近系沉積相研究[J]. 中國石油大學學報: 自然科學版, 2014, 38(3): 1-9. Su Nina, Jin Zhenkui, Song Fan, et al. Sedimentary Facies of the Paleogene in Qaidam Basin[J]. Journal of China University of Petroleum, 2014, 38(3): 1-9.
[60] 萬景林, 鄭德文, 鄭文俊, 等. MDD法和裂變徑跡法相結合模擬樣品的低溫熱歷史:以柴達木盆地北緣賽什騰山中新生代構造演化為例[J]. 地震地質(zhì), 2011, 33(2): 369-382. Wan Jinglin, Zheng Dewen, Zheng Wenjun, et al. Modeling Thermal History During Low Temperature by K-Feldspar MDD and Fission Track: Example from Meso-Cenozoic Tectonic Evolution in Saishitengshan in the Northern Margin of Qaidam Basin[J]. Seismology and Geology, 2011, 33(2): 369-382.
[61] 孫岳, 陳正樂, 陳柏林, 等. 阿爾金北緣EW向山脈新生代隆升剝露的裂變徑跡證據(jù)[J]. 地球?qū)W報, 2014, 35(1): 67-75. Sun Yue, Chen Zhengle, Chen Bailin, et al. Cenozoic Uplift and Denudation of the EW-Trending Range of Northern Altun Mountains: Evidence from Apatite Fission Track Data[J]. Acta Geoscientica Sinica, 2014, 35(1): 67-75.
[62] 王國燦, 向樹元, 王岸, 等. 東昆侖及相鄰地區(qū)中生代--新生代早期構造過程的熱年代學記錄[J]. 地球科學: 中國地質(zhì)大學學報, 2007, 32(5): 605-614. Wang Guocan, Xiang Shuyuan, Wang An, et al. Thermochronological Constraint to the Processes of the East Kunlun and Adjacent Areas in Mesozoic-Early Cenozoic[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(5): 605-614.
[63] Yuan Wanming, Dong Jinquan, Wang Shicheng, et al. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27: 847-856.
[64] Wang Fei, Lo Chinghua, Li Qi, et al. Onset Timing of Significant Unroofing Around Qaidam Basin, Northern Tibet, China: Constraints from40Ar/39Ar and FT Thermochronology on Granitoids[J]. Journal of Asian Earth Sciences, 2004, 24: 59-69.
[65] Lu Haijian,Wang Erchie,Shi Xuhua,et al.Cenozoic Tectonic Evolution of the Elashan Range and Its Surroundings, Northern Tibetan Plateau as Constrained by Paleomagnetism and Apatite Fission Track Analyses[J]. Tectonophysics, 2012, 580: 150-161.
[66] 陳宣華, Michael W M, 李麗, 等. 東昆侖造山帶多期隆升歷史的地質(zhì)熱年代學證據(jù)[J]. 地質(zhì)通報, 2011, 30(11): 1647-1660. Chen Xuanhua, Michael W M, Li Li, et al. Thermochronological Evidence for Multi-Phase Uplifting of the East Kunlun Mountains, Northern Tibetan Plateau[J]. Geological Bulletin of China, 2011, 30(11): 1647-1660.
[67] 王岸, 王國燦, 張克信, 等. 東昆侖造山帶新生代早期構造事件的碎屑裂變徑跡年代學證據(jù)[J]. 地球科學: 中國地質(zhì)大學學報, 2010, 35(5): 737-746. Wang An, Wang Guocan, Zhang Kexin, et al. An Early Cenozoic Tectonic Event in Eastern Kunlun Orogen, Evidence from Detrital Fission Track Geochronology[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(5): 737-746.
[68] 姜少飛. 北祁連山磷灰石裂變徑跡熱年代學初步研究[D]. 蘭州: 蘭州大學, 2011. Jiang Shaofei. Study on Apatite Fission-Track Thermochronology in Northern Qilian Mountain[D]. Lanzhou: Lanzhou University, 2011.
Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin
Wang Yadong1, 2, 3, Zheng Jianjing1, 2, Sun Guoqiang1, 2, Zheng Youwei1, 2, Liu Xingwang1, 2
1.LanzhouCenterforOilandGasResources,InstituteofGeologyandGeophysics,CAS/GansuProvincialKeyLaboratoryofPetroleumResources,Lanzhou730000,China2.KeyLaboratoryofPetroleumResourcesResearch,ChineseAcademyofSciences,Lanzhou730000,China3.SchoolofGeographicalandEarthSciences,UniversityofGlasgow,GlasgowG12 8QQ,UK
The Cenozoic uplift of Altyn Mountains has been closely concerned. A large number of thermochronology dates show that Altyn Mountains have periodically uplifted since Late Eocene (40-30 Ma). However, the thermochronology records of the early Cenozoic uplift of Altyn Mountains are rarely documented. The Cenozoic detrital zircon fission track age in the northwestern Qaidam basin shows that the detrital zircons came from the same source which did rapid uplift and exposed to the air in Early Cenozoic Paleocene-Middle Eocene(65-50 Ma), and provided the terrene clast. The previously reported analysis results suggested that the source of the western Qaidam basin were from Altyn Mountains. In consideration of the residual thickness of the sedimentary strata and sedimentary facies of Lulehe-Xiaganchaigou Formations in the western Qaidam basin, a brief and small-scale uplift of Altyn Mountains occurred in Early Cenozoic; which resulted in the small elevation difference between the mountains and the basin. Under the influence of the uplift, Qaidam terrain is high at southeast and low at northwest. The uplift represents the response of Altyn Mountains to the initial stage of collision between India and Eurasian plates. The zircon fission track thermal chronology data recorded the tectonic events of the middle-east part of Altyn Mountains in 65-50 Ma, which indicates the Cenozoic synchronicity uplifts of Tibetan plateau throughout south to north.
thermal chronology; zircon; Altyn Mountains; northwestern Qaidam basin; tectonic uplift;Early Cenozic
10.13278/j.cnki.jjuese.201505116.
2014-12-12
中國科學院西部行動計劃項目(KZCX2-XB3-02); 中國科學院“西部之光”人才培養(yǎng)計劃“西部博士資助項目”( 2013-01-01)
王亞東(1980--),女,助理研究員,博士,主要從事含油氣盆地及造山帶裂變徑跡熱年代學研究,E-mail:wangyd2015@lzb.ac.cn。
10.13278/j.cnki.jjuese.201505116
P588.212; P542.2
A
王亞東,鄭建京,孫國強,等.柴西北地區(qū)碎屑鋯石裂變徑跡年齡記錄的阿爾金山早新生代隆升事件.吉林大學學報:地球科學版,2015,45(5):1447-1459.
Wang Yadong, Zheng Jianjing, Sun Guoqiang, et al. Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin.Journal of Jilin University:Earth Science Edition,2015,45(5):1447-1459.doi:10.13278/j.cnki.jjuese.201505116.