国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氰戊菊酯生理毒物代謝動力學(xué)模型的建立

2015-03-07 06:49:03梁穎丁瑩張留圈劉賢金
生態(tài)毒理學(xué)報 2015年3期
關(guān)鍵詞:氰戊菊酯毒物房室

梁穎,丁瑩,張留圈,劉賢金

1. 江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室,南京 210014 2. 農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全控制技術(shù)與標(biāo)準(zhǔn)重點(diǎn)實(shí)驗(yàn)室,南京 210014

?

氰戊菊酯生理毒物代謝動力學(xué)模型的建立

梁穎1,2,丁瑩2,張留圈2,劉賢金1,*

1. 江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室,南京 210014 2. 農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全控制技術(shù)與標(biāo)準(zhǔn)重點(diǎn)實(shí)驗(yàn)室,南京 210014

利用生理毒物代謝動力學(xué)(PBTK)對小鼠靜脈注射農(nóng)藥氰戊菊酯后,氰戊菊酯在體內(nèi)分布轉(zhuǎn)化代謝過程進(jìn)行模擬,為評價農(nóng)藥暴露風(fēng)險提供依據(jù)。小鼠靜脈注射氰戊菊酯的PBTK模型構(gòu)建分為5個房室:肝臟、肺、腎臟、充分灌注室和不充分灌注室,各房室內(nèi)氰戊菊酯的濃度變化率由質(zhì)量守恒微分方程表示。根據(jù)歐拉數(shù)值計(jì)算方法,對小鼠靜脈注射氰戊菊酯后的毒物代謝動力學(xué)數(shù)據(jù)進(jìn)行模擬。結(jié)果模擬預(yù)測了小鼠靜脈注射0.5 mg·kg-1、2.5 mg·kg-1、10 mg·kg-1氰戊菊酯后血液、肝臟和肺中氰戊菊酯濃度變化曲線。為驗(yàn)證該模型的準(zhǔn)確性,對小鼠靜脈注射0.77 mg·kg-1氰戊菊酯后血液、肝臟和肺中氰戊菊酯的濃度值變化模擬值與前人的實(shí)驗(yàn)測量值進(jìn)行比較,結(jié)果顯示模擬值與實(shí)驗(yàn)值之間不存在顯著性差異。因此利用該方法可以估測小鼠靜脈注射氰戊菊酯的毒物代謝動力學(xué)數(shù)據(jù),為評估農(nóng)藥暴露體內(nèi)劑量數(shù)據(jù)提供了便利途徑。

氰戊菊酯;生理毒物代謝動力學(xué)模型;小鼠;歐拉數(shù)值法;靜脈注射

農(nóng)藥在果蔬及其加工品中總是不可避免的存在,給食品安全帶了極大挑戰(zhàn),對農(nóng)藥殘留進(jìn)行暴露分析以及潛在慢性風(fēng)險評估已日漸為公眾所重視。我國2009年公布實(shí)行的《食品安全法》中明確要求建立食品安全監(jiān)測與評估制度。國際上也出現(xiàn)了開發(fā)更真實(shí)、更詳盡的化合物風(fēng)險評估新方法的趨勢,其中影響最為顯著的是藥學(xué)領(lǐng)域生理毒物代謝動力學(xué)(PBTK)模型的引入[1-3]。該模型可在多種條件下預(yù)測化合物在人體、動物體內(nèi)吸收、擴(kuò)散、代謝和排泄過程,在應(yīng)用于風(fēng)險評估中可以大大降低結(jié)果的不確定性[4],與美國國家研究委員會所推薦的發(fā)展使用體外方法代替體內(nèi)毒性試驗(yàn)方法相吻合[5],具有不可多得的發(fā)展?jié)摿6]。歐洲食品安全局出版的《化學(xué)物聯(lián)合機(jī)制風(fēng)險評估意見》中指出:PBTK模型適用于化合物的風(fēng)險評估,并且是目前最精確的模型[7]。PBTK模型在醫(yī)學(xué)藥物開發(fā)、藥物治療等領(lǐng)域研究較多,針對農(nóng)藥的研究較少,目前已建有毒死蜱[8]、三唑酮[9]、莠去津[10]、二嗪農(nóng)[11]的PBTK模型,而針對氰戊菊酯的PBTK模型尚未建立。

氰戊菊酯是一種新型Ⅱ型擬除蟲菊酯類(type Ⅱ synthetic pyrethroids)農(nóng)藥,具有殺蟲譜廣、效率高的特點(diǎn),廣泛用于棉花、果樹和蔬菜等農(nóng)作物的蟲害防治。近年由于高毒劇毒有機(jī)磷農(nóng)藥在我國禁用,菊酯類農(nóng)藥使用量大幅增加,其對人類的危害越來越引起國內(nèi)外學(xué)者的普遍關(guān)注。氰戊菊酯屬中等毒性農(nóng)藥,主要干擾神經(jīng)細(xì)胞膜離子通道的正常生理功能,具有類雌激素樣作用,干擾雄性繁殖性能。長期氰戊菊酯暴露會使雄性大鼠睪丸指數(shù)、精子活力、精子數(shù)和睪酮含量明顯下降,有報道顯示男性職業(yè)暴露會引起精子活力下降、畸形精子增加[12]。此外,氰戊菊酯在對農(nóng)作物病害防治過程中,大部分進(jìn)入農(nóng)田土壤及水體,存在嚴(yán)重的生態(tài)污染風(fēng)險。氰戊菊酯屬高親脂性殺蟲劑,在水中能直接進(jìn)入水生動物的鰓和血液中,對水產(chǎn)動物毒性較大[13]。本文擬建立小鼠靜脈注射氰戊菊酯的PBTK模型,并采用歐拉數(shù)值計(jì)算法進(jìn)行模擬與驗(yàn)證,為評估氰戊菊酯暴露風(fēng)險提供依據(jù)。

1 材料與方法(Materials and methods)

1.1 模型框架

由于小鼠飲食攝入和呼吸攝入等暴露途徑的吸收常數(shù)缺失,本文主要研究小鼠靜脈注射氰戊菊酯后體內(nèi)分布、吸收、代謝過程,不考慮其他暴露途徑。PBTK模型將相應(yīng)組織器官作為單獨(dú)房室看待,房室間借助血液循環(huán)相連接,氰戊菊酯在各房室間轉(zhuǎn)運(yùn)和轉(zhuǎn)化遵循質(zhì)量守恒原理。靜脈注射氰戊菊酯的PBTK模型根據(jù)毒理學(xué)資料分為5個房室[14],包括肝臟、肺、腎臟、充分灌注室、不充分灌注室,如圖1所示。

圖1 氰戊菊酯靜脈注射在小鼠體內(nèi)分布代謝的PBTK模型

假設(shè)氰戊菊酯只在肝臟中發(fā)生代謝,依據(jù)流入各房室的血流速率、氰戊菊酯在房室內(nèi)的組織/血分配系數(shù)和房室所占有的組織體積,可建立每一房室內(nèi)氰戊菊酯濃度變化率的微分方程[15]。

動脈血和靜脈血中氰戊菊酯含量的方程為:

dAart/dt=Qc(Aven/Vven)-Qli(Aart/Vart)-Qlu(Aart/Vart)-Qk(Aart/Vart)-Qs(Aart/Vart)-Qr(Aart/Vart)公式1

dAven/dt=AdKa+QliCli+QluClu+QkCk+QsCs+QrCr-Qc(Aven/Vven)公式2

其中:Ad—注射氰戊菊酯的量(mg);Aart—動脈血中氰戊菊酯含量(mg);Aven—靜脈血中氰戊菊酯含量(mg);Ka—吸收速率(h-1);Vart—動脈血體積(L);Vven—靜脈血體積(L);Qc—心輸出血量(L·h-1);Qli—肝血流量(L·h-1);Qlu—肺血流量(L·h-1);Qk—腎血流量(L·h-1);Qs—不充分灌注室血流量(L·h-1);Qr—充分灌注室血流量(L·h-1);Cli—肝臟中氰戊菊酯濃度(mg·kg-1);Clu—肺中氰戊菊酯濃度(mg·kg-1);Ck—腎臟氰戊菊酯濃度(mg·kg-1);Cr—充分灌注室氰戊菊酯濃度(mg·kg-1);Cs—不充分灌注室氰戊菊酯濃度(mg·kg-1)。

腎、肺、充分灌注室以及不充分灌注室中氰戊菊酯含量的方程為:

dAi/dt =Vi×dCi/dt = Qi(Cart-Ai/(ViPi))公式3

肝中氰戊菊酯含量的方程為:

dAi/dt =Vi×dCi/dt = Qi(Cart-Ai/(ViPi))-Ai×Km

公式4

其中 Ai—各房室中氰戊菊酯含量(mg);Qi—各房室中血流量(L·h-1);Vi—各房室體積(L);Pi—各房室/血分配系數(shù);Km—肝中氰戊菊酯代謝速率(h-1)

1.2 生理生化參數(shù)及分配系數(shù)

模型模擬中所需用到的小鼠生理參數(shù)見表1。體重和各組織血流量數(shù)據(jù)來自參考文獻(xiàn)[16],各組織體積數(shù)據(jù)來自參考文獻(xiàn)[17]。氰戊菊酯在小鼠肝內(nèi)代謝常數(shù)取自參考文獻(xiàn)[18],氰戊菊酯在小鼠體內(nèi)組織/血分配系數(shù)根據(jù)參考文獻(xiàn)[19]的數(shù)據(jù)以參考文獻(xiàn)[18]中的方法計(jì)算所得。

1.3 模型模擬與驗(yàn)證

求解PBTK模型中的質(zhì)量守恒微分方程一般是由相關(guān)軟件編程完成的,例如ACSL,Berkeley Madonna,Matlab等。本文中不使用模擬軟件,而是利用歐拉數(shù)值法,借助Excel電子表格對模型進(jìn)行求解[21],并將其與相關(guān)的實(shí)驗(yàn)測量值進(jìn)行比較,驗(yàn)證方法的可靠性。對于一階微分方程,歐拉數(shù)值法認(rèn)為時間t時方程的解近似等于t-t時方程時的解加上微分方程的斜率乘以步長(t)。根據(jù)該方法,可以計(jì)算出不用時間下各房室中及血液中氰戊菊酯的濃度變化。

2 結(jié)果與討論(Results and discussion)

2.1 小鼠靜脈注射氰戊菊酯的模擬結(jié)果

氰戊菊酯的NOEL(無明顯損害作用水平)為2 mg·kg-1體重,大鼠急性經(jīng)口半數(shù)致死量為75-88 mg·kg-1體重。本文對小鼠注射量模擬選擇圍繞無明顯損害作用水平并遠(yuǎn)小于致死量,取小鼠靜脈注射0.5 mg·kg-1體重、2.5 mg·kg-1體重、10 mg·kg-1體重的氰戊菊酯在肝臟、血液的毒物代謝動力學(xué)進(jìn)行了模擬,步長為0.004 h。圖2為血液中氰戊菊酯濃度變化模擬曲線。該模擬曲線是基于小鼠靜脈注射氰戊菊酯后瞬間在血液中分布達(dá)到平衡的假設(shè)前提條件下進(jìn)行的,因此該曲線與實(shí)際相比具有一定前延性。圖3為肝臟中氰戊菊酯濃度變化模擬曲線。當(dāng)靜脈注射后1.36 h時,肝臟中氰戊菊酯的濃度達(dá)到最高,隨之下降。圖4為肺中氰戊菊酯濃度變化模擬曲線。當(dāng)靜脈注射后1.1 h時,肺中氰戊菊酯的濃度達(dá)到最高,隨之下降。同一時間肺中氰戊菊酯的濃度高于肝臟中濃度。

表1 小鼠生理生化參數(shù)及氰戊菊酯在組織/血中的分配系數(shù)

2.2 模型的驗(yàn)證

對模型模擬所獲得的氰戊菊酯在小鼠體內(nèi)毒物代謝動力學(xué)數(shù)據(jù)與前人實(shí)驗(yàn)數(shù)據(jù)相比較,以驗(yàn)證模型和求解方法的準(zhǔn)確性。張?jiān)隼萚22]注射0.77 mg·kg-1氰戊菊酯于小鼠,測量了小鼠不同時間血液、肝臟、肺中氰戊菊酯的濃度,本文對上述暴露情況進(jìn)行模擬,將模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較,具體見圖5、圖6和圖7。血液、肝臟、肺中氰戊菊酯濃度的實(shí)驗(yàn)值與模擬值經(jīng)方差分析,P>0.05,差異均不顯著,由此可認(rèn)為方法得到的結(jié)果與實(shí)驗(yàn)測量值基本一致。

圖2 小鼠不同劑量靜脈注射血液中氰戊菊酯變化模擬曲線

圖3 小鼠不同劑量靜脈注射肝臟中氰戊菊酯變化模擬曲線

圖4 小鼠不同劑量靜脈注射肺中氰戊菊酯變化模擬曲線

圖5 小鼠靜脈注射血液中氰戊菊酯變化的實(shí)驗(yàn)與模擬值對比

圖6 小鼠靜脈注射肝臟中氰戊菊酯變化的實(shí)驗(yàn)與模擬值對比

圖7 小鼠靜脈注射肺中氰戊菊酯變化的實(shí)驗(yàn)與模擬值對比

3 結(jié)論(Conclusion)

由于動物毒理學(xué)實(shí)驗(yàn)條件要求嚴(yán)格、動物福利法規(guī)對實(shí)驗(yàn)動物數(shù)量限制,雖然已經(jīng)有一部分氰戊菊酯在動物體內(nèi)毒理學(xué)資料[22-24],但暴露劑量單一、濃度時間點(diǎn)取值少,在評估實(shí)際暴露風(fēng)險中具有很大局限性。PBTK模型基于毒物代謝動力學(xué)機(jī)制開展毒理學(xué)研究,具有極大的優(yōu)勢,可模擬不同劑量暴露、不同時間化學(xué)物體內(nèi)劑量水平,在模擬低劑量暴露情形下的優(yōu)勢尤為突出。而利用歐拉數(shù)值法求解PBTK方程組,不需昂貴模擬軟件,不需編程,是一種簡便、易學(xué)、經(jīng)濟(jì)且有效的工具。

文本所建立的PBTK模型可以較好的模擬小鼠靜脈注射氰戊菊酯后體內(nèi)代謝動力學(xué)過程,獲得各組織、血液中氰戊菊酯濃度變化的一系列內(nèi)劑量數(shù)據(jù),為進(jìn)一步評估農(nóng)藥暴露風(fēng)險提供了途徑。

[1] Jos G B, George L, Kannan K, et al. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment: Recommendations from a joint EPAA - EURL ECVAM ADME workshop [J]. Regulatory Toxicology and Pharmacology, 2014, 68(1): 119-139

[2] DeWoskin R S, Sweeney L M, Teeguarden J G, et al. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide [J]. Food and Chemical Toxicology, 2013, 58: 506-521

[3] Teuschler L K. Deciding which chemical mixtures risk assessment methods work best for what mixtures [J]. Toxicology and applied pharmacology, 2007, 223(2): 139-147

[4] Trine K R, John C L, Otto M. Risk assessment of mixtures of pesticides: Current approaches and future strategies [J]. Regulatory Toxicology and Pharmacology, 2010, 56: 174-192

[5] Andersen M E, Krewski D. Toxicity testing in the 21st century: Bringing the vision to life [J]. Toxicological Sciences, 2009, 107: 324-330.

[6] Punt A, Schiffelers W A, Horbach G J, et al. Evaluation of research activities and research needs to increase the impact and applicability of alternative testing strategies in risk assessment practice [J]. Regulatory Toxicology and Pharmacology, 2011, 61(1): 105-114

[7] EFSA. Scientific opinion of the PPR Panel on A Request from the EFSA Evaluate the Suitability of Existing Methodologies and, if Appropriate, the Identification of New Approaches to Assess Cumulative and Synergistic Risks from Pesticides to Human Health with A View to Set MRLs for Those Pesticides in the Frame of Regulation [R]. EC 396/2005, EFSA J 704. 2008.

[8] Smith J N, Hinderliter P M, Timchalk C, et al. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: Development and validation [J]. Regulatory Toxicology and Pharmacology, 2014, 69(3): 580-597.

[9] Crowell S R, Henderson W M, Kenneke J F, et al. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans [J]. Toxicology Letters, 2011, 205(2): 154-162

[10] Lin Z M, Fisher J W, Ross M K, et al. A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse [J]. Toxicology and Applied Pharmacology, 2011, 251(1): 16-31

[11] Poet T S, Kousba A A, Dennison S L, et al. Physiologically based pharmacokinetic / pharmacodynamic model for the organophosphorus pesticide diazinon [J]. Neurotoxicology, 2004, 25(6): 1013-1030

[12] Meeker J D, Barrd B, Hauser R. Human semen quality and sperm DNA damage in relation to urinary metabolites of pyrethroid insecticides [J].Human Reproduction, 2008, 23(8): 1932-1940

[13] 丁正鋒, 史陽白, 李瀟軒, 等. 氰戊菊酯對河川沙塘鱧幼魚的毒性效應(yīng)[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報. 2013, 29(30): 357-363

Ding Z F, Shi Y B, Li X X, et al. Toxic effects of Fenvalerate on Odontobutis potamophila Juvenile [J]. Journal of Ecology and Rural Environment. 2013, 29(30): 357-363 (in Chinese)

[14] Shah P V, Mc G D. Fenvalerate [M]. Washington DC USA, Environmental Protection Agency, 2012: 307-361

[15] Office of prevention, pesticides and toxic substances. Physiologically-Based Pharmacokinetic/ Pharmacodynamic Modeling: Preliminary Evaluation and Case Study for the N-Methyl Carbamate Pesticides [M]. Washington D.C: US Environmental Protection Agency, 2003: 11-16

[16] Brown R P, Delp M D, Lindstedt S L, et al. Physiological parameter values for physiologically based pharmacokinetic models [J]. Toxicology and Industrial Health, 1997, 13(4): 407-484

[17] Davies B, Morris T. Physiological parameters in laboratory animals and humans [J]. Pharmaceutical Research, 1993, 10(7): 1093-1095

[18] Tong J, Zhang Z L. Toxicokinetics of fenvalerate mixed with phoxim in mice [J]. Journal of Occupation Health, 2002, 44: 103-104

[19] Schmitt W. General approach for the calculation of tissue to plasma partition coefficients [J]. Toxicology in Vitro, 2008, 22: 457-467

[20] Poulin P, Krishnan K. Molecular structure-based prediction of the partition coefficients of organic chemicals for physiological pharmacokinetic models [J]. Toxicology Methods, 1996, 6: 117-137

[21] Meineke I, Brockmoller J. Simulation of complex pharmacokinetic models in Microsoft Excel [J]. Computer Methods and Programs in Biomedicine, 2007, 88(3): 239-245

[22] 張?jiān)隼? 童建, 周建偉, 等. 農(nóng)藥氰戊菊酯混配前后的代謝動力學(xué)研究[J]. 工業(yè)衛(wèi)生與職業(yè)病, 2002, 28(5): 270-273

Zhang Z L, Tong J, Zhou J W, et al. Study on toxicokineticsof fenvalerate before and after mixed with phoxim [J]. Industrial Health and Occupational Diseases, 2002, 28(5): 270-273 (in Chinese)

[23] Misra S, Sharma C B. Metabolism and bioaccumulation of fenvalerate and its metabolites in rat organs [J]. Biomedical Chromatography, 1997, 11: 50-53

[24] Yang D R, He F S, Li T. Repetitive nerve stimulation and stimulation single fiber electromyography studies in rats intoxicated with single or mixed insecticides [J]. Toxicology, 2001, 161(1-2): 111-116

Physiologically Based Toxicokinetic Model for Fenvalerate in Mice

Liang Ying1,2, Ding Ying2, Zhang Liuquan2, Liu Xianjin1,*

1. Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China 2. Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Nanjing 210014, China

Received 8 August 2014 accepted 19 September 2014

The physiologically based toxicokinetic (PBTK) model was developed to simulate the process of absorption, distribution and metabolism of fenvalerate in mice’s body after intravenous injection. The PBTK model for fenvalerate contains five compartments: liver, lung, kidney, rapidly perfused tissues and slowly perfused tissues. The change rate of the amount of fenvalerate in the compartments could be described by the mass balance differential equation. The toxicokinetic data were simulated according to Euler’s method of numerical integration. The concentrations of fenvalerate in the liver, lung and blood were obtained for exposing to 0.5 mg·kg-1, 2.5 mg·kg-1, 10 mg·kg-1fenvalerate. The simulation results were validated by comparing them with experimental measurements. It was found that the simulation results obtained were very close to experimental results. This method could predict the toxicokinetics of injectionof fenvalerate in mice. By this model, the internal doses of organism exposed to hazards could be estimated providing a new route for assessing the hazards.

fenvalerate; physiologically based toxicokinetic model; mice; Euler’s method; injection

國家自然科學(xué)基金(Nos.31201356);江蘇省農(nóng)業(yè)自主創(chuàng)新項(xiàng)目(Nos. cx(13)3087);江蘇省自然科學(xué)基金(Nos. BK20130701)

梁穎(1980-),女,副研究員,博士,研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量與安全,E-mail:mnily555@163.com

*通訊作者(Corresponding author), E-mail: jaasliu@163.com

10.7524/AJE.1673-5897-20140808001

2014-08-08 錄用日期:2014-09-19

1673-5897(2015)3-170-07

X171.5

A

劉賢金(1963-),男,植物保護(hù)博士,研究員,主要研究方向?yàn)檗r(nóng)產(chǎn)品質(zhì)量安全,發(fā)表學(xué)術(shù)論文90余篇。

梁穎, 丁瑩, 張留圈, 等. 氰戊菊酯生理毒物代謝動力學(xué)模型的建立[J]. 生態(tài)毒理學(xué)報, 2015, 10(3): 170-176

Liang Y, Ding Y, Zhang L Q, et al. Physiologically based toxicokinetic model for fenvalerate in mice [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 170-176 (in Chinese)

猜你喜歡
氰戊菊酯毒物房室
房室交接區(qū)期前收縮致復(fù)雜心電圖表現(xiàn)1 例
快跑!有毒物 絕密毒藥報告
毒物——水銀
信息更正
房室阻滯表現(xiàn)多變的臨床心電圖分析
氰戊菊酯超標(biāo)茶葉
氰戊菊酯降解菌的篩選與鑒定及其降解條件優(yōu)化
AMDIS在法醫(yī)毒物分析中的應(yīng)用
經(jīng)食管心臟電生理檢測房室交界區(qū)前傳功能
超聲聯(lián)合Fenton試劑降解氰戊菊酯的研究
宝鸡市| 开江县| 沽源县| 朝阳县| 洛南县| 沾益县| 光泽县| 定襄县| 资兴市| 玛多县| 崇义县| 雷波县| 河津市| 寻乌县| 信宜市| 石首市| 东兰县| 简阳市| 剑河县| 鹤庆县| 陆河县| 湖北省| 新乡市| 余干县| 望江县| 忻州市| 朔州市| 白山市| 南充市| 明溪县| 永平县| 黑山县| 宣汉县| 怀远县| 甘孜| 霍山县| 民勤县| 无为县| 乐安县| 罗源县| 朝阳县|