顧金燕,邢剛,雷靜,劉斐,周繼勇
豬圓環(huán)病毒2型 (Porcine circovirus type 2,PCV2) 是目前已知的最小的哺乳動(dòng)物病毒,直徑為12–23 nm,是豬圓環(huán)病毒相關(guān)性系統(tǒng)疾病(PCV2-systemic disease,PCV2-SD) 的主要病原。PCV2能損傷豬的免疫系統(tǒng),以淋巴結(jié)腫大、淋巴細(xì)胞減少等為特征,導(dǎo)致嚴(yán)重的免疫抑制,給世界養(yǎng)豬業(yè)帶來巨大的損失。近幾年疫苗的使用使PCV2-SD得到了一定的控制[1]。
1974年,德國學(xué)者Tischer首次描述了一種存在于豬腎細(xì)胞系 PK15 (ATCC-CCL33) 的類似小核糖核酸病毒的細(xì)胞污染物[2]。8年后,他證明這種污染物是一種豬源的單鏈環(huán)狀的DNA病毒,并命名為豬圓環(huán)病毒 (Porcine circovirus,PCV)[3]。將PCV接種豬后,對(duì)豬不具有致病性。1996年,加拿大學(xué)者首次描述了一種新的、從1991年開始偶發(fā)的豬病,該病主要侵犯5–12周齡的豬群且涉及豬病的多個(gè)器官的損傷,稱之為斷奶后仔豬多系統(tǒng)衰竭綜合征 (PMWS)[4-5],現(xiàn)在國際上多稱為 PCV2相關(guān)性系統(tǒng)疾病(PCV2-SD)。隨后,該病在全世界相繼被報(bào)道,逐漸受到人們關(guān)注,并從PCV2-SD患豬中分離到一種新的PCV,這種PCV能致病,且抗原性和核苷酸序列與之前分離到的無致病性的 PCV存在差異,為了區(qū)分兩者,將不致病的PCV命名為 PCV1,能致 PCV2-SD的 PCV命名為PCV2。2009年,德國科學(xué)家利用原位雜交和PCR技術(shù)在一份保存于1962年的豬脾和肺臟組織中檢測到了PCV2[6],說明PCV2可能在豬群中存在已長達(dá)50年以上,在這50多年間,PCV逐漸從一種對(duì)豬群無害的病毒演變?yōu)槟軐?duì)豬群造成重大傷害的病毒。
PCV2主要有兩種基因型:PCV2a和PCV2b。兩者基因組長分別為1 767和1 768個(gè)核苷酸[7],還有一種 PCV2c僅在丹麥有過報(bào)道[8]。起初 PCV2a的大流行導(dǎo)致大規(guī)模的亞臨床感染與零星的發(fā)病,大約到20世紀(jì)90年代,PCV2b逐漸成為優(yōu)勢毒株并導(dǎo)致了PCV2-SD的大爆發(fā),并且大多數(shù)在動(dòng)物模型上成功誘導(dǎo)健康豬發(fā)病的基因亞型都為 PCV2b[9]。2010年,Guo等測定了2004至2008年間分離自我國各地多株 PCV2毒株的序列,并按照現(xiàn)行基因分型原則進(jìn)行分析,首次提出了PCV2d亞型[10]。2011年,Jantafong等將在泰國分離到的一株新PCV2毒株命名為 PCV2e[11],近兩年,PCV2d和PCV2e在世界其他地區(qū)也偶見報(bào)道[12-13]。但是Cortey等并不同意這種新的亞型命名方式,他們認(rèn)為應(yīng)該堅(jiān)持將 PCV2分為 a、b、c 三個(gè)亞型[14]。我們實(shí)驗(yàn)室對(duì)在 2009–2013年間從中國東部地區(qū)分離到的20株P(guān)CV2進(jìn)行分析,發(fā)現(xiàn)兩株P(guān)CV2雖然具有PCV2b標(biāo)簽序列,但在進(jìn)化分析中卻組成一個(gè)獨(dú)立分支,可能是一個(gè)新的基因型,并命名為PCV2new[15]。除此之外,我國還分離到一些基因缺失毒株、基因插入毒株、重組毒株、類PCV毒株等圓環(huán)病毒的突變體[16]。總之,不管用哪種分類方式,以上研究都表明當(dāng)前 PCV2的變異速度加快,且臨床上存在多種PCV2亞型共感染,PCV2與其他多種病毒 (如豬瘟病毒、藍(lán)耳病毒、細(xì)小病毒、偽狂犬病毒等) 共感染的現(xiàn)象,感染情況普遍且復(fù)雜。另有研究發(fā)現(xiàn),PCV2現(xiàn)已不僅在豬群中流行,在人類、牛、嚙齒動(dòng)物、蒼蠅、蚊子、貝類等動(dòng)物種群以及水、人用疫苗、空氣中也分別檢測或分離到了PCV2[17-21],為PCV2-SD的防控帶來新的挑戰(zhàn)。
PCV2基因組很小,Hamel等通過軟件分析認(rèn)為其基因組結(jié)構(gòu)存在11個(gè)潛在的開放閱讀框(Open reading frame,ORF)。PCV2充分利用了其在宿主細(xì)胞內(nèi)形成的復(fù)制中間體及閱讀框間相互重疊的方式傳達(dá)了大量的遺傳信息[22],其中ORF1、5、7和10位于病毒正鏈DNA上并順時(shí)針轉(zhuǎn)錄,而ORF2、3、4、6、8、9、11則位于病毒負(fù)鏈DNA上并逆時(shí)針轉(zhuǎn)錄[23],到目前為止,ORF1、2、3、4的編碼產(chǎn)物已經(jīng)被分別證明,其他閱讀框所編碼產(chǎn)物是否存在尚不清楚。
ORF1基因,亦稱rep基因,是PCV2基因組中最大的ORF (945 bp,nt 51-995),在其基因啟動(dòng)子區(qū)存在一個(gè)干擾素刺激反應(yīng)元件(ISRE,nt 1 737-1 751),研究證明該ISRE在病毒的轉(zhuǎn)錄起始方面起著很重要的作用[24]。rep基因編碼兩個(gè)復(fù)制必需蛋白R(shí)ep和Rep’,前者編碼自rep基因的全長轉(zhuǎn)錄本,而后者則由rep基因剪接轉(zhuǎn)錄本翻譯而得,雖然兩者的N端是一致的,但是由于 Rep’剪接造成的移碼,兩者 C端的氨基酸差異很大[25]。
之前大量實(shí)驗(yàn)數(shù)據(jù)證明,Rep及 Rep’蛋白主要定位于細(xì)胞核[26-27],這可能與Rep及Rep’蛋白N端存在的核定位信號(hào)相關(guān)。Rep及Rep’蛋白的共同 N端存在 3個(gè)核定位信號(hào)區(qū)(NLS1、2、3),其中 NLS1和 NLS2是 Rep及Rep’蛋白核定位所必需的,NLS3在蛋白核轉(zhuǎn)運(yùn)過程中起促進(jìn)作用。但是我們實(shí)驗(yàn)室證實(shí) Rep蛋白僅在病毒感染早期定位于核質(zhì),隨著時(shí)間推移慢慢向細(xì)胞核周圍移動(dòng)并進(jìn)入細(xì)胞質(zhì)[28]。Finsterbusch等通過細(xì)菌雙雜交系統(tǒng)發(fā)現(xiàn)了syncoilin蛋白和轉(zhuǎn)錄調(diào)節(jié)蛋白c-myc與Rep蛋白互作,隨后有人用酵母雙雜交系統(tǒng)又鑒定出了宿主細(xì)胞中能與 Rep蛋白互作的鋅指蛋白265 (ZNF265)、胸腺嘧啶糖苷酶 (TDG) 和血管生成因子 VG5Q。有趣的是 Rep’只能與 VG5Q及 TDG發(fā)生反應(yīng),這可能是因?yàn)?Rep蛋白與ZNF265作用的位點(diǎn)位于兩者差異很大的C端[29]。
位于負(fù)鏈的 ORF2基因編碼一個(gè)大小為27.8 kDa的衣殼蛋白Cap,Cap蛋白是PCV2的結(jié)構(gòu)蛋白。隨著Cap單體蛋白晶體結(jié)構(gòu)的解析,人們終于解開了其組裝方式的神秘面紗,在這個(gè)模型中,60個(gè)Cap蛋白亞基即可形成了一個(gè)對(duì)稱的二十面體,獨(dú)立構(gòu)成完整的PCV2衣殼。
分子流行病學(xué)顯示cap基因比其他ORF基因更容易發(fā)生變異,而且 cap基因的多態(tài)性與PCV2的毒力和復(fù)制能力相關(guān)。研究發(fā)現(xiàn),Cap蛋白110位的脯氨酸變成丙氨酸 (P110A)、191位的精氨酸變成絲氨酸 (R191S) 后,PCV2在體外的生長能力增強(qiáng)但在體內(nèi)的毒力衰減[30]。有學(xué)者在比較 PCV2a和 PCV2b差異序列時(shí)發(fā)現(xiàn),Cap蛋白的190-191-206-210四個(gè)保守氨基酸殘基與病毒蛋白的分布模式相關(guān),PCV2b的這4個(gè)氨基酸殘基AGIE比PCV2a的SRKD更有利于Cap和Rep蛋白在細(xì)胞核中的定位,從而促進(jìn)了病毒的復(fù)制[31]。我們實(shí)驗(yàn)室分離到的長度為1 766 bp的PCV2毒株與1 767 bp毒株相比,其cap基因中1 059處堿基缺失,導(dǎo)致體外復(fù)制能力增強(qiáng)[32]。為了解 PCV2新的潛在單核苷酸缺失可行性,本實(shí)驗(yàn)室選擇 Cap蛋白抗原表位外不影響 ORF2內(nèi)其他編碼框翻譯的1 376、1 377、1 378和1 379位點(diǎn)的堿基進(jìn)行單核苷酸缺失感染性克隆構(gòu)建,結(jié)果顯示,1 376位點(diǎn)不是 PCV2形成病毒粒子所必需的,但是它的缺失能增強(qiáng)病毒復(fù)制能力,促進(jìn)IL-6的表達(dá)[33],再次說明Cap蛋白與PCV2的復(fù)制能力相關(guān)。
作為主要的免疫原性蛋白,Cap蛋白的抗原表位逐漸被解析,2000年,Mahé等利用PEPSCAN技術(shù)鑒定出了Cap蛋白的4個(gè)線性表位,分別為 aa65-87、aa117-131、aa157-183和aa193-207[34];2004年,Lekcharoensuk等利用PCV1和 PCV2嵌合病毒鑒定出了由 aa47-63、aa165-200和C末端的最后4個(gè)氨基酸共同構(gòu)成的至少3個(gè)構(gòu)象表位[35]。2009年,我們利用單抗及合成肽精細(xì)地定位了 Cap蛋白的aa156-162、aa175-192、aa195-202和aa231-233四個(gè)線性表位, 其中aa231-233既是線性表位又能形成構(gòu)象表位,并確認(rèn)其是潛在的 PCV2感染的血清學(xué)標(biāo)志[32]。2011年,Guo等在Cap蛋白的核定位信號(hào)區(qū)鑒定出了一個(gè)新的抗原表位aa26-36,對(duì)Cap蛋白的核定位和功能研究有重要意義[36]。2013年,Ge等利用噬菌體展示技術(shù)又發(fā)現(xiàn)了aa86-93和aa102-107兩個(gè)抗原表位。aa86-93是Cap蛋白中PCV2a和PCV2b兩個(gè)基因型間差異最明顯的氨基酸序列,可能是區(qū)別PCV2兩種基因型的靶標(biāo)片段及特異性表位。aa102-107與PCV2細(xì)胞受體硫酸乙酰肝素潛在的結(jié)合位點(diǎn)末端序列 aa98-103部分重疊,而PCV2是通過Cap蛋白與受體硫酸乙酰肝素和硫酸軟骨素 B的糖胺聚糖結(jié)合而完成入胞過程的[37],所以針對(duì)此表位的單抗可能可以影響PCV2的吸附及入胞[38]。
在PCV感染的早期,Cap蛋白定位于核仁,而后進(jìn)入核質(zhì),說明 Cap蛋白可在細(xì)胞不同區(qū)域之間穿梭,這與只定位于核質(zhì)的 Rep蛋白不同[26]。在 PCV2與宿主細(xì)胞相互作用的研究過程中,研究人員迄今發(fā)現(xiàn)了11個(gè)能與Cap蛋白互作的宿主細(xì)胞蛋白,包括補(bǔ)體因子C1qB、細(xì)胞粘附分子 P-selectin、makorin環(huán)指蛋白 1(MKRN1)、受體蛋白補(bǔ)充組件的球狀頭部 C1q(gC1qR)、核小體組裝蛋白1 (NAP1)、前列腺凋亡反應(yīng)蛋白4 (Par-4)、核仁磷酸蛋白1 (NPM1)、熱休克蛋白 40 (Hsp40)、細(xì)胞骨架蛋白α-tubulin、熱休克蛋白70 (Hsp70)[29,39-40]和我們實(shí)驗(yàn)室最近發(fā)現(xiàn)的胞質(zhì)動(dòng)力蛋白 IC1亞基[41]。另有研究表明,Cap蛋白在體外能與 Rep蛋白互作,甚至Cap蛋白之間也能發(fā)生互作[42],我們實(shí)驗(yàn)室最近研究發(fā)現(xiàn) Rep蛋白和ORF3蛋白具有干擾 Cap蛋白誘導(dǎo)小鼠產(chǎn)生保護(hù)性免疫反應(yīng)的能力[43]。
ORF3疊加于ORF1中,但轉(zhuǎn)錄方向相反。PCV1和 PCV2的 ORF3序列大小不一樣,在PCV1中為621 bp,在PCV2中只有315 bp。2005年,Liu等首次通過實(shí)驗(yàn)證明ORF3編碼蛋白是PCV2復(fù)制非必需的,但是它能通過活化caspase-8和caspase-3通路來誘導(dǎo)細(xì)胞凋亡[44]。隨后的研究表明,ORF3蛋白能與pPirh2特異性結(jié)合并導(dǎo)致 p53聚集從而誘發(fā)細(xì)胞調(diào)亡[45-46]。動(dòng)物試驗(yàn)表明ORF3與PCV2的致病性相關(guān)[47-48],且ORF3能提高病毒在體內(nèi)外的散播[49]。但是,我們實(shí)驗(yàn)室構(gòu)建的ORF3缺失PCV2感染性克隆未能在細(xì)胞上拯救出病毒,ORF3是否在PCV2的復(fù)制中發(fā)揮作用有待進(jìn)一步實(shí)驗(yàn)[50]。最近,Choi等研究發(fā)現(xiàn)在 PCV2感染的早期階段,ORF3蛋白能促進(jìn)蛋白酶體降解RGS16并促使豬上皮細(xì)胞分泌 IL-6、IL-8等細(xì)胞因子,這提示ORF3蛋白可能與PCV2引起的慢性炎癥反應(yīng)有關(guān)[51]。
ORF4基因完全疊加在ORF3基因中,且轉(zhuǎn)錄方向與 ORF3一致,我們實(shí)驗(yàn)室分別從蛋白和轉(zhuǎn)錄本水平驗(yàn)證了PCV2 ORF4基因的轉(zhuǎn)錄和表達(dá),其轉(zhuǎn)錄本為180 bp,并證明ORF4不是PCV2在體內(nèi)外復(fù)制所必需的,ORF4缺失PCV2能夠誘發(fā)感染細(xì)胞更高水平的 caspase-3、8、9活性,提示ORF4蛋白與凋亡抑制相關(guān),是PCV2致病性的負(fù)調(diào)控基因[52]。隨后,Gao等用RACE技術(shù)確定了ORF4的全長mRNA為355 bp[53],并驗(yàn)證了ORF4編碼蛋白不是PCV2復(fù)制所必需的,但卻在感染的早期階段抑制病毒的復(fù)制,ORF4編碼蛋白通過抑制ORF3的轉(zhuǎn)錄來抑制細(xì)胞凋亡作用[54]。
PCV2是PCV2-SD的主要誘因,PCV2-SD患豬的最主要特征是淋巴結(jié)損耗。研究表明,淋巴結(jié)損耗會(huì)影響 B細(xì)胞、T細(xì)胞和 NK細(xì)胞[55-57],且PCV2-SD患豬的外周血中性粒細(xì)胞和淋巴細(xì)胞的相對(duì)比例與健康豬是相反的,說明 PCV2的感染會(huì)對(duì)宿主免疫系統(tǒng)產(chǎn)生巨大的影響[58]。
PCV2很容易侵犯宿主先天免疫系統(tǒng)的單核/巨噬細(xì)胞系統(tǒng)和樹突狀細(xì)胞,但是PCV2在巨噬細(xì)胞中復(fù)制非常緩慢,在樹突狀細(xì)胞中基本不復(fù)制,PCV2與這些細(xì)胞共存,不被降解,不被遞呈,也不引起細(xì)胞凋亡,極有可能PCV2僅是利用這些細(xì)胞作為自己在宿主體內(nèi)散播的載體,這可能與 PCV2的免疫逃避機(jī)制相關(guān)[27,59]。PCV2感染巨噬細(xì)胞后雖然不會(huì)引起細(xì)胞凋亡,但是會(huì)降低其殺微生物的能力。除此之外,感染 PCV2的肺泡巨噬細(xì)胞會(huì)產(chǎn)生高水平TNF-α和IL-8,同時(shí)上調(diào)中性粒細(xì)胞趨化因子Ⅱ、粒細(xì)胞集落刺激因子和單核細(xì)胞趨化蛋白1的水平[60]。
研究表明,PCV2感染能提高宿主淋巴組織和外周血單核細(xì)胞中 IL-10的表達(dá)水平[61],IL-10能夠抑制活化的T細(xì)胞產(chǎn)生細(xì)胞因子,抑制NK細(xì)胞活性,干擾NK細(xì)胞和巨噬細(xì)胞產(chǎn)生細(xì)胞因子。據(jù)報(bào)道病毒的持續(xù)感染或慢性感染會(huì)導(dǎo)致IL-10的高水平表達(dá),IL-10表達(dá)水平的提高導(dǎo)致 IL-12等細(xì)胞因子分泌減少從而誘導(dǎo)免疫抑制,阻礙病毒清除[62]。PCV2感染中IL-10高水平的表達(dá)提示 IL-10誘導(dǎo)的免疫抑制在PCV2的致病和持續(xù)性感染中扮演重要角色[63]。Crisci等發(fā)現(xiàn)在PCV2-SD患豬的脾臟中,IL-10表達(dá)上調(diào)都位于 T細(xì)胞富集區(qū),而很少位于 B細(xì)胞或巨噬細(xì)胞富集區(qū),這有利于 IL-10對(duì) T細(xì)胞的調(diào)節(jié),誘導(dǎo)下游免疫抑制[64]。有趣的是,在感染 PCV2的細(xì)胞中并沒有檢測到高水平的IL-10,而在感染細(xì)胞周圍的細(xì)胞中 IL-10的表達(dá)水平非常高,這可能是旁分泌作用導(dǎo)致的[63]。除了IL-10以外,PCV2還能誘導(dǎo)IL-1β和IL-8的產(chǎn)生,但是對(duì) IL-2、IL-4和 IFN-γ的表達(dá)具有抑制作用,說明 PCV2的感染影響了患豬的免疫功能[61,65]。
在 PCV2感染豬體實(shí)驗(yàn)中,中和抗體一般在接種后4周產(chǎn)生[66],中和抗體的水平與PCV2的復(fù)制相關(guān)。Meerts等發(fā)現(xiàn),在中和抗體和IFN-γ水平很高的豬體中,PCV2的病毒載量很低;而在中和抗體和IFN-γ水平很低的豬體中,PCV2的病毒載量很高,提示中和抗體在清除宿主病毒中起著很重要的作用[67]。在PCV2-SD患豬體內(nèi)往往不能產(chǎn)生特異性中和抗體或抗體水平很低,這可能導(dǎo)致病毒在體內(nèi)大量積聚[68],總之,體液免疫受損,特別是中和抗體反應(yīng)的失能可能是導(dǎo)致PCV2-SD的重要原因。
淋巴細(xì)胞的活化是 PCV2在體內(nèi)增殖所必需的,免疫刺激能促進(jìn) PCV2的增殖,這些現(xiàn)象說明 PCV2能利用天然免疫系統(tǒng)促進(jìn)自身的增殖,但同時(shí)它又破壞宿主免疫系統(tǒng),影響關(guān)鍵天然免疫細(xì)胞的功能,造成免疫抑制。PCV2究竟如何導(dǎo)致PCV2-SD的發(fā)生?哪些因子在這個(gè)過程中起著作用?淋巴系統(tǒng)的損傷又是如何造成的?解決這些問題并不容易,仍然需要科學(xué)家們進(jìn)一步探索。
PCV2單獨(dú)感染時(shí)常呈現(xiàn)亞臨床感染狀態(tài),混合感染時(shí)又與其他共感染病原導(dǎo)致的臨床癥狀及器官病變十分相似,僅依靠臨床和病理學(xué)診斷很難準(zhǔn)確檢測該病。國內(nèi)外學(xué)者對(duì) PCV2的診斷與檢測技術(shù)投入了大量的研究,并取得了很大的進(jìn)步,這些技術(shù)大致可以分為病原學(xué)檢測技術(shù)和血清學(xué)檢測技術(shù)。
PCV2病原學(xué)檢測技術(shù)主要有 PCR技術(shù)、原位雜交技術(shù)和核酸探針技術(shù)。PCR技術(shù)具有快速、簡便、特異性強(qiáng)的優(yōu)點(diǎn),是實(shí)驗(yàn)室最常用的檢測 PCV2病原的方法。隨著分子生物學(xué)的發(fā)展,常規(guī)PCR和基于此的多重PCR、競爭PCR、熒光定量PCR等檢測PCV2的PCR檢測技術(shù)被不斷建立。1999年,Larochelle等應(yīng)用建立多重 PCR方法檢測了加拿大地區(qū) 1994–1998年間的42份病料,此法成功鑒別了每份樣品中PCV的型[69]。2000年,Liu等建立了檢測感染仔豬樣品中PCV基因的競爭PCR方法,此法不僅能夠區(qū)分PCV1和PCV2,還能確定病毒的拷貝數(shù)量[70]。Mcintosh等建立了綠色熒光實(shí)時(shí)PCR方法來檢測PCV2,運(yùn)用該方法成功地從血清、糞便、腸系膜淋巴結(jié)、心肌層、肝臟、腎臟中檢測出PCV2[71]。除此之外,基于PCR技術(shù)的環(huán)介導(dǎo)等溫?cái)U(kuò)增技術(shù)(LAMP)操作簡便,非常適合基層操作,我們實(shí)驗(yàn)室 Qiu等建立的LAMP方法能準(zhǔn)確鑒別PCV2a和PCV2b,具有很好的特異性、靈敏性和穩(wěn)定性[72]。2007年,Pérez-Martín等建立了檢測病料中PCV2的原位雜交方法[73],同年,國內(nèi)姚鑫等利用原位雜交技術(shù)分析了 PCV2在人工感染仔豬主要組織中的分布,此法具有良好的敏感型與特異性,可用于 PCV2的實(shí)驗(yàn)室診斷和感染靶細(xì)胞的定位[74]。核酸探針技術(shù)是一種快速、可靠、敏感度高的檢測 PCV2的方法,姜永厚等結(jié)合 PCR方法和DNA-DNA雜交技術(shù)建立的PCV2檢測與分型寡核苷酸芯片可以準(zhǔn)確鑒別PCV病毒基因型,其靈敏度是凝膠電泳的 5倍[75]。肖馳等根據(jù)PRRSV、CSFV、PCV2的序列制成相應(yīng)探針并構(gòu)建的DNA芯片具有特異性高、靈敏度高和可重復(fù)利用的優(yōu)點(diǎn),能夠同時(shí)檢測PRRSV、CSFV和PCV-2感染[76]。
血清學(xué)檢測技術(shù)主要有間接免疫熒光(Indirect immunofluorescence assay,IFA)、免疫過氧化物酶單層細(xì)胞試驗(yàn) (Immunoperoxidase monolayer assay,IPMA)、酶聯(lián)免疫吸附試驗(yàn)(Enzyme linked immunosorbent assay,ELISA)和膠體金診斷方法等。1998年,Allan等建立了IFA方法用于PCV2感染豬的檢測[77]。1998年,Ellis等建立了用于檢測 PCV2感染豬的 IPMA方法[78]。2007年,劉長明等建立了用于檢測PCV2血清抗體的IPMA[79]。ELISA檢測方法具有快速、簡單、敏感性高、特異性強(qiáng)又易于標(biāo)準(zhǔn)的優(yōu)點(diǎn),為最常用的血清學(xué)檢測技術(shù),用于檢測抗體的ELISA有間接ELISA、競爭ELISA和阻斷ELISA 3種。2000年,Walker等用細(xì)胞培養(yǎng)PCV2作為抗原,以PCV2單抗作為競爭抗體成功建立了檢測PCV2抗體的競爭ELISA方法,結(jié)果顯示此法比 IFA更敏感,具備大規(guī)模檢測PCV2抗體的條件[80]。2002年,Nawagitgul等建立了分別基于PCV2病毒粒子和 Cap蛋白為抗原的間接ELISA方法檢測PCV2抗體,結(jié)果顯示兩者的敏感性、特異性和準(zhǔn)確性相似[81]。我們實(shí)驗(yàn)室 Shang等用大腸桿菌表達(dá)的核定位信號(hào)缺失 Cap蛋白作為包被抗原建立了間接ELISA方法檢測 PCV2抗體,研制出了我國第一個(gè)獲得國家批準(zhǔn)生產(chǎn)的商品化 PCV2 ELISA抗體檢測試劑盒[82]。除了以上這些傳統(tǒng)的PCV2檢測技術(shù),最近Hu等應(yīng)用表面等離子共振技術(shù)檢測液體樣本中的 PCV2含量的方法[83]。Yang等進(jìn)行了將 PCV2特異性的單域抗體融合于堿性磷酸酶作為新型的檢測試劑的探索[84]。
控制病毒性疾病最好的方法是使用安全有效的疫苗。自2004年第一個(gè)PCV2疫苗在法國和德國生產(chǎn)使用以來,商品化的圓環(huán)病毒疫苗已在世界各地豬場廣泛使用。亞單位疫苗、PCV1-2嵌合滅活苗和PCV2滅活苗等在歐洲、北美、韓國等地區(qū)都取得了很好的防疫效果。近年來,中國政府和養(yǎng)殖企業(yè)對(duì)PCV2-SD逐漸關(guān)注,我國浙江大學(xué)、華中農(nóng)業(yè)大學(xué)、南京農(nóng)業(yè)大學(xué)、哈爾濱獸醫(yī)研究所等單位已成功開發(fā)出 5種全病毒滅活疫苗,這些疫苗為控制我國的PCV2-SD作出了重要貢獻(xiàn)。與此同時(shí),基于大腸桿菌、桿狀病毒、偽狂犬病毒及腺病毒等載體的PCV2疫苗研究都取得了重要進(jìn)展。Yin等在大腸桿菌表達(dá)系統(tǒng)獲得了 Cap蛋白組裝的病毒樣顆粒[85-86];Fan等在昆蟲細(xì)胞中獲得了Cap蛋白組裝的病毒樣顆粒,動(dòng)物實(shí)驗(yàn)證明其能在小鼠體內(nèi)誘導(dǎo)產(chǎn)生較好的免疫反應(yīng)[87-88]。最新研究顯示將poIFN-γ與cap基因在桿狀病毒載體串聯(lián)表達(dá)也能誘導(dǎo)小鼠體產(chǎn)生良好的免疫保護(hù)作用[89]。最近,武漢中博股份有限公司利用桿狀病毒載體研發(fā)的 PCV2滅活疫苗取得了國家新獸藥證書。除此以外,以偽狂犬病毒、腺病毒為載體的 PCV2疫苗試驗(yàn)也在不同的實(shí)驗(yàn)室進(jìn)行[90-94],這些研究為 PCV2基因工程疫苗的發(fā)展奠定了基礎(chǔ)。
總之,雖然使用疫苗使PCV2-SD得到了一定程度的遏制,但由于 PCV2許多基本特性和致病機(jī)理不清,加上臨床上 PCV2變異速度的加快、共感染問題愈加嚴(yán)重,未來PCV2-SD的防控面臨著極大的挑戰(zhàn),因此,PCV2感染的研究與PCV2-SD新型控制技術(shù)的開發(fā)任重道遠(yuǎn)。
[1] Beach NM, Meng XJ. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res,2012, 164(1/2): 33–42.
[2] Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralbl Bakteriol Orig A, 1974, 226(2): 153–167.
[3] Tischer I, Gelderblom H, Vettermann W, et al. A very small porcine virus with circular single-stranded DNA. Nature, 1982, 295(5844): 64–66.
[4] Harding JCS, Clark EG. Recognizing and diagnosing postweaning multisystemic wasting syndrome(PMWS). Swine Health Prod, 1997, 5: 201–203.
[5] Harding JCS, Clark EG, Strokappe JH, et al.Postweaning multisystemic wasting syndrome:epidemiology and clinical presentation. Swine Health Prod, 1998, 6: 249–254.
[6] Jacobsen B, Krueger L, Seeliger F, et al. Retrospective study on the occurrence of porcine circovirus 2 infection and associated entities in Northern Germany.Vet Microbiol, 2009, 138(1/2): 27–33.
[7] Cheung AK, Lager KM, Kohutyuk OI, et al. Detection of two porcine circovirus type 2 genotypic groups in United States swine herds. Arch Virol, 2007, 152(5):1035–1044.
[8] Segales J, Olvera A, Grau-Roma L, et al. PCV-2 genotype definition and nomenclature. Vet Rec, 2008,162(26): 867–868.
[9] Tomás A, Fernandes LT, Valero O, et al. A meta-analysis on experimental infections with porcine circovirus type 2 (PCV2). Vet Microbiol, 2008,132(3/4): 260–273.
[10] Guo LJ, Lu YH, Wei YW, et al. Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J, 2010, 7: 273.
[11] Jantafong T, Boonsoongnern A, Poolperm P, et al.Genetic characterization of porcine circovirus type 2 in piglets from PMWS-affected and -negative farms in Thailand. Virol J, 2011, 8: 88.
[12] Toplak I, Lazi? S, Lupulovi? D, et al. Study of the genetic variability of porcine circovirus type 2 detected in serbia and slovenia. Acta Vet Hung, 2012,60(3): 409–420.
[13] Zhai SL, Chen SN, Wei ZZ, et al. Co-existence of multiple strains of porcine circovirus type 2 in the same pig from China. Virol J, 2011, 8: 517.
[14] Cortey M, Olvera A, Grau-Roma L, et al. Further comments on porcine circovirus type 2 (PCV2)genotype definition and nomenclature. Vet Microbiol,2011, 149(3/4): 522–523.
[15] Qiu XH, Lv P, Xing G, et al. Molecular epidemiology of PCV2 in eastern china from 2009 to 2013//Livestock Epidemiology Branch of China Animal Husbandry and Veterinary Institute. Beijing:Chinese Association of Animal Science and Veterinary Medicine, 2013 (in Chinese).
邱小伙, 呂朋, 邢剛, 等. 中國東部PCV2分子流行病學(xué)調(diào)查2009–2013//動(dòng)物生態(tài)養(yǎng)殖、疫病防控、食品安全與人類健康——中國畜牧獸醫(yī)學(xué)會(huì)家畜傳染病學(xué)分會(huì)第八屆全國會(huì)員代表大會(huì)暨第十五次學(xué)術(shù)研討會(huì)論文集. 北京: 中國畜牧獸醫(yī)學(xué)會(huì).
[16] Zhai SL, Chen SN, Xu ZH, et al. Porcine circovirus type 2 in China: an update on and insights to its prevalence and control. Virol J, 2014, 11: 88.
[17] Zhai SL, Chen RA, Chen SN, et al. First molecular detection of porcine circovirus type 2 in bovids in China. Virus Genes, 2014, 49(3): 507–511.
[18] Yang XH, Hou LD, Ye J, et al. Detection of porcine circovirus type 2 (PCV2) in mosquitoes from pig farms by PCR. Pakistan Vet J, 2012, 32(1): 134–135.
[19] Blunt R, McOrist S, McKillen J, et al. House fly vector for porcine circovirus 2b on commercial pig farms. Vet Microbiol, 2011, 149(3/4): 452–455.
[20] Nayar GPS, Hamel AL, Lin LH, et al. Evidence for circovirus in cattle with respiratory disease and from aborted bovine fetuses. Can Vet J, 1999, 40(4):277–278.
[21] L?rincz M, Cságola A, Biksi I, et al. Detection of porcine circovirus in rodents-short communication.Acta Vet Hung, 2010, 58(2): 265–268.
[22] Cheung AK. The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology,2003, 313(2): 452–459.
[23] Hamel AL, Lin LL, Nayar GPS. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol,1998, 72(6): 5262–5267.
[24] Gu JY, Zhang Y, Lian X, et al. Functional analysis of the interferon-stimulated response element of porcine circovirus type 2 and its role during viral replication in vitro and in vivo. Virol J, 2012, 9: 152.
[25] Finsterbusch T, Mankertz A. Porcine circoviruses-Small but powerful. Virus Res, 2009,143(2): 177–183.
[26] Finsterbusch T, Steinfeldt T, Caliskan R, et al.Analysis of the subcellular localization of the proteins Rep, Rep' and Cap of porcine circovirus type 1.Virology, 2005, 343(1): 36–46.
[27] Gilpin DF, McCullough K, Meehan BM, et al. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol, 2003, 94(3/4):149–161.
[28] Zhang X, Ma GP, Li YF, et al. Characterization of monoclonal antibody against replication-associated protein of porcine circovirus. DNA Cell Biol, 2009,28(1): 23–29.
[29] Finsterbusch T, Steinfeldt T, Doberstein K, et al.Interaction of the replication proteins and the capsid protein of porcine circovirus type 1 and 2 with host proteins. Virology, 2009, 386(1): 122–131.
[30] Fenaux M, Opriessnig T, Halbur PG, et al. Two amino acid mutations in the capsid protein of type 2 porcine circovirus (PCV2) enhanced PCV2 replication in vitro and attenuated the virus in vivo. J Virol, 2004, 78(24):13440–13446.
[31] Cheung AK, Greenlee JJ. Identification of an amino acid domain encoded by the capsid gene of porcine circovirus type 2 that modulates intracellular viral protein distribution during replication. Virus Res,2011, 155(1): 358–362.
[32] Shang SB, Jin YL, Jiang XT, et al. Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol Immunol, 2009, 46(3):327–334.
[33] Jin YL, Xing G, Tian PF, et al. Construction of single nucleotide-deleted porcine circovirus type 2 and its bioactivity. Sci Sin Vitae, 2014, 44(4): 422–428 (in Chinese).
金玉蘭, 邢剛, 田朋飛, 等. 豬圓環(huán)病毒2型Cap基因單核苷酸缺失突變體的構(gòu)建與生物學(xué)特性. 中國科學(xué): 生命科學(xué), 2014, 44(4): 422–428.
[34] Mahé D, Blanchard P, Truong C, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol, 2000, 81(Pt 7):1815–1824.
[35] Lekcharoensuk P, Morozov I, Paul PS, et al. Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol, 2004, 78(15): 8135–8145.
[36] Guo L, Lu Y, Huang L, et al. Identification of a new antigen epitope in the nuclear localization signal region of porcine circovirus type 2 capsid protein.Intervirology, 2011, 54(3): 156–163.
[37] Misinzo G, Delputte PL, Meerts P, et al. Porcine circovirus 2 uses heparan sulfate and chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol, 2006, 80(7):3487–3494.
[38] Ge M, Yan A, Luo W, et al. Epitope screening of the PCV2 Cap protein by use of a random peptide-displayed library and polyclonal antibody.Virus Res, 2013, 177(1): 103–107.
[39] Liu J, Bai J, Zhang LL, et al. Hsp70 positively regulates porcine circovirus type 2 replication in vitro.Virology, 2013, 447(1/2): 52–62.
[40] Zhang X, Zhou JY, Wu YP, et al. Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res, 2009, 8(11):5111–5119.
[41] Cao JJ, Lin C, Wang HJ, et al. Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol, 2015, 89(5): 2777–2791.
[42] Timmusk S, Fossum C, Berg M. Porcine circovirus type 2 replicase binds the capsid protein and an intermediate filament-like protein. J Gen Virol, 2006,87(11): 3215–3223.
[43] Shen HG, Zhou JY, Zhang X, et al. Interference of porcine circovirus type 2 ORF2 immunogenicity by ORF1 and ORF3 mixed DNA immunizations in mice.Virology, 2009, 393(1): 104–111.
[44] Liu J, Chen I, Kwang J. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol, 2005, 79(13):8262–8274.
[45] Karuppannan AK, Liu S, Jia Q, et al. Porcine circovirus type 2 ORF3 protein competes with P53 in binding to Pirh2 and mediates the deregulation of P53 homeostasis. Virology, 2010, 398(1): 1–11.
[46] Liu J, Zhu Y, Chen I, et al. The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J Virol, 2007, 81(17):9560–9567.
[47] Karuppannan AK, Jong MH, Lee SH, et al.Attenuation of porcine circovirus 2 in SPF piglets by abrogation of ORF3 function. Virology, 2009, 383(2):338–347.
[48] Liu J, Chen I, Du QY, et al. The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J Virol, 2006, 80(10):5065–5073.
[49] Karuppannan AK, Kwang J. ORF3 of porcine circovirus 2 enhances the in vitro and in vivo spread of the of the virus. Virology, 2011, 410(1): 248–256.
[50] He JL, Dai D, Zhou N, et al. Analysis of putative ORF3 gene within porcine circovirus type 2.Hybridoma, 2012, 31(3): 180–187.
[51] Choi CY, Rho SB, Kim HS, et al. The ORF3 protein of porcine circovirus type 2 (PCV2) promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signaling 16 (RGS16) through physical interaction. J Gen Virol, 2015, 96(Pt 5): 1098–1108.
[52] He JL, Cao JJ, Zhou N, et al. Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J Virol, 2013, 87(3):1420–1429.
[53] Gao ZZ, Dong QF, Jiang YH, et al. Identification and characterization of two novel transcription units of porcine circovirus 2. Virus Genes, 2013, 47(2):268–275.
[54] Gao ZZ, Dong QF, Jiang YH, et al. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res, 2014, 183: 56–62.
[55] Shibahara T, Sato K, Ishikawa Y, et al. Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J Vet Med Sci, 2000,62(11): 1125–1131.
[56] Quintana J, Segalés J, Rosell C, et al. Clinical and pathological observations on pigs with postweaning multisystemic wasting syndrome. Vet Rec, 2001,149(12): 357–361.
[57] Nielsen J, Vincent IE, B?tner A, et al. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome(PMWS). Vet Immunol Immunopathol, 2003, 92(3/4):97–111.
[58] Darwich L, Segalés J, Domingo M, et al. Changes in CD4+, CD8+, CD4+CD8+, and immunoglobulin M-positive peripheral blood mononuclear cells of postweaning multisystemic wasting syndrome-affected pigs and age-matched uninfected wasted and healthy pigs correlate with lesions and porcine circovirus type 2 load in lymphoid tissues.Clin Diagn Lab Immunol, 2002, 9(2): 236–242.
[59] Steiner E, Balmelli C, Herrmann B, et al. Porcine circovirus type 2 displays pluripotency in cell targeting. Virology, 2008, 378(2): 311–322.
[60] Chang HW, Jeng CR, Lin TL, et al.Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet Immunol Immunopathol, 2006,110(3/4): 207–219.
[61] Darwich L, Balasch M, Plana-Durán J, et al. Cytokine profiles of peripheral blood mononuclear cells from pigs with postweaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol, 2003, 84(12):3453–3457.
[62] Brooks DG, Trifilo MJ, Edelmann KH, et al.Interleukin-10 determines viral clearance or persistence in vivo. Nat Med, 2006, 12(11): 1301–1309.
[63] Doster AR, Subramaniam S, Yhee JY, et al.Distribution and characterization of IL-10-secreting cells in lymphoid tissues of PCV2-infected pigs. J Vet Sci, 2010, 11(3): 177–183.
[64] Crisci E, Balester M, Domínguez J, et al. Increased numbers of myeloid and lymphoid IL-10 producing cells in spleen of pigs with naturally occurring postweaning multisystemic wasting syndrome. Vet Immunol Immunopathol, 2010, 136(3/4): 305–310.
[65] Darwich L, Pié S, Rovira A, et al. Cytokine mRNA expression profiles in lymphoid tissues of pigs naturally affected by postweaning multisystemic wasting syndrome. J Gen Virol, 2003, 84(8):2117–2125.
[66] Pogranichnyy RM, Yoon KJ, Harms PA, et al.Characterization of immune response of young pigs to porcine circovirus type 2 infection. Viral Immunol,2000, 13(2): 143–153.
[67] Meerts P, Van Gucht S, Cox E, et al. Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunol, 2005, 18(2): 333–341.
[68] Meerts P, Misinzo G, Lefebvre D, et al. Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease. BMC Vet Res, 2006, 2: 6.
[69] Larochelle R, Antaya M, Morin M, et al. Typing of porcine circovirus in clinical specimens by multiplex PCR. J Virol Methods, 1999, 80(1): 69–75.
[70] Liu Q, Wang L, Willson P, et al. Quantitative,competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol, 2000, 38(9):3474–3477.
[71] Mcintosh KA, Tumber A, Harding JC, et al.Development and validation of a SYBR green real-time PCR for the quantification of porcine circovirus type 2 in serum, buffy coat, feces, and multiple tissues. Vet Microbiol, 2009, 133(1/2): 23–33.
[72] Qiu X, Li T, Zhang G, et al. Development of a loop-mediated isothermal amplification method to rapidly detect porcine circovirus genotypes 2a and 2b.Virol J, 2012, 9: 318.
[73] Pérez-Martín E, Rovira A, Calsamiglia M, et al. A new method to identify cell types that support porcine circovirus type 2 replication in formalin-fixed,paraffin-embedded swine tissues. J Virol Methods,2007, 146(1/2): 86–95.
[74] Yao X, Yang HC, Guo X, et al. Development and Application of an in situ hybridization for detection of porcine type 2. Acta Vet Zootechn Sin, 2007, 38(2):169–174 (in Chinese).
姚鑫, 楊漢春, 郭鑫, 等. 豬圓環(huán)病毒2型原位雜交檢測技術(shù)的建立與應(yīng)用. 畜牧獸醫(yī)學(xué)報(bào), 2007,38(2): 169–174.
[75] Jiang YH, Shang HW, Chen WJ, et al.Oligonucleotide microarray constructed for detecting and identifying subtype of PCV2. Chin J Vet Sci,2008, 28(10): 1174–1180 (in Chinese).
姜永厚, 商晗武, 陳偉杰, 等. 豬圓環(huán)病毒檢測與分型寡核苷酸芯片的建立及應(yīng)用. 中國獸醫(yī)學(xué)報(bào),2008, 28(10): 1174–1180.
[76] Xiao C, Cao SJ, Wen XT, et al. Development of PRRS-CSF-PCV2 diagnostic DNA microarray. Acta Vet Zootechn Sin, 2006, 37(8): 799–803 (in Chinese).
肖馳, 曹三杰, 文心田, 等. PRRS-CSF-PCV2診斷DNA芯片構(gòu)建研究. 畜牧獸醫(yī)學(xué)報(bào), 2006, 37(8):799–803.
[77] Allan GM, McNeilly F, Kennedy S, et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest, 1998, 10(1): 3–10.
[78] Ellis J, Hassard L, Clark E, et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J, 1998,39(1): 44–51.
[79] Liu CM, Zhang CF, Wei YW, et al. Development and application of an immunoperoxidase monolayer assay based kit for detaction of porcine circovirus type 2.Chin J Prev Vet Med, 2007, 29(8): 621–624, 633 (in Chinese).
劉長明, 張超范, 危艷武, 等. 豬圓環(huán)病毒2型免疫過氧化物酶單層細(xì)胞試驗(yàn)抗體檢測試劑盒的研制及應(yīng)用. 中國預(yù)防獸醫(yī)學(xué)報(bào), 2007, 29(8): 621–624,633.
[80] Walker IW, Konoby CA, Jewhurst VA, et al.Development and application of a competitive enzyme-linked immunosorbent assay for the detection of serum antibodies to porcine circovirus type 2. J Vet Diagn Invest, 2000, 12(5): 400–405.
[81] Nawagitgul P, Harms PA, Morozov I, et al. Modified indirect porcine circovirus (PCV) type 2-based and recombinant capsid protein (ORF2)-based enzyme-linked Immunosorbent assays for detection of antibodies to PCV. Clin Diagn Lab Immunol, 2002,9(1): 33–40.
[82] Shang SB, Li YF, Guo JQ, et al. Development and validation of a recombinant capsid protein-based ELISA for detection of antibody to porcine circovirus type 2. Res Vet Sci, 2008, 84(1): 150–157.
[83] Hu JD, Wang TT, Wang S, et al. Development of a surface plasmon resonance biosensing approach for the rapid detection of porcine circovirus type 2 in sample solutions. PLoS ONE, 2014, 9(10): e111292.
[84] Yang SL, Shang YJ, Yin SH, et al. A phage-displayed single domain antibody fused to alkaline phosphatase for detection of porcine circovirus type 2. J Virol Methods, 2015, 213: 84–92.
[85] Wu PC, Lin WL, Wu CM, et al. Characterization of porcine circovirus type 2 (PCV2) capsid particle assembly and its application to virus-like particle vaccine development. Appl Microbiol Biotechnol,2012, 95(6): 1501–1507.
[86] Yin SH, Sun SQ, Yang SL, et al. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli. Virol J,2010, 7(1): 166.
[87] Ye Y, Cheng XL, Zhang J, et al. Induction of robust immunity response in mice by dual-expressionsystem-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2. Virol J,2013, 10(1): 316.
[88] Fan HY, Pan YF, Fang LR, et al. Construction and immunogenicity of recombinant pseudotype baculovirus expressing the capsid protein of porcine circovirus type 2 in mice. J Virol Methods, 2008,50(1/2): 21–26.
[89] Wang YP, Liu D, Guo LJ, et al. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice. Vaccine, 2013, 31(5): 833–838.
[90] Chao AJ, Fu PF, Guo XQ, et al. Immune efficacy in mice by recombinant pseudorabies virus PGO expressing ORF2 gene of porcine circovirus type 2.Acta Microbiol Sin, 2014, 54(2): 211–217 (in Chinese).
鈔安軍, 付朋飛, 郭曉慶, 等. 表達(dá)豬圈環(huán)病毒Ⅱ型 ORF2基因的重組豬偽狂犬病毒的免疫原性. 微生物學(xué)報(bào), 2014, 54(2): 211–217.
[91] Ju CM, Fan HY, Tan YD, et al. Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Vet Microbiol, 2005, 109(3/4): 179–190.
[92] Song YF, Jin ML, Zhang SL, et al. Generation and immunogenicity of a recombinant pseudorabies virus expressing cap protein of porcine circovirus type 2.Vet Microbiol, 2007, 119(2/4): 97–104.
[93] Ju CM, Chen HC, Fan HY, et al. Recombination and expression of ORF1 and ORF2 gene of porcine circovirus type 2 and gene of pseudorabies virus. Chin J Biotech, 2005, 21(3): 370–374 (in Chinese).
琚春梅, 陳煥春, 樊惠英, 等. 豬 2型圓環(huán)病毒ORF1與ORT2基因和偽狂犬病毒基因的重組與表達(dá)的研究. 生物工程學(xué)報(bào), 2005, 21(3): 370–374.
[94] Chi JN, Wu CY, Chien MS, et al. The preparation of porcine circovirus type 2 (PCV2) virus-like particles using a recombinant pseudorabies virus and its application to vaccine development. J Biotechnol,2014, 181: 12–19.