王永濤(綜述),馬依彤 (審校)
(新疆醫(yī)科大學(xué)第一附屬醫(yī)院心臟中心,烏魯木齊 830054)
?
微RNA在干細(xì)胞移植治療心肌梗死中的作用
王永濤△(綜述),馬依彤※(審校)
(新疆醫(yī)科大學(xué)第一附屬醫(yī)院心臟中心,烏魯木齊 830054)
摘要:微RNA(miRNA)是一類廣泛存在于人體內(nèi)的含約22個(gè)核苷酸的非編碼小分子單鏈RNA,通過與靶信使RNA 3′非翻譯末端特異性結(jié)合,在轉(zhuǎn)錄后水平調(diào)節(jié)靶基因翻譯。近年來,國內(nèi)外研究發(fā)現(xiàn),miRNA參與眾多心血管疾病的病理生理過程,并可通過調(diào)控細(xì)胞分化、血管新生、細(xì)胞凋亡等過程影響干細(xì)胞移植治療心肌梗死。該文綜合當(dāng)前文獻(xiàn),就miRNA在干細(xì)胞移植治療心肌梗死中的作用予以綜述。
關(guān)鍵詞:心肌梗死;微RNA;干細(xì)胞
急性心肌梗死是目前人類死亡的主要原因之一,正確積極的治療對(duì)心肌梗死的預(yù)后至關(guān)重要。近年來,通過細(xì)胞移植技術(shù),人們?cè)噲D將干細(xì)胞移入受損心肌組織中,分化為心肌細(xì)胞,替代壞死心肌,改善心功能。這為心肌梗死提供了全新的治療策略。然而,在體外實(shí)驗(yàn)發(fā)現(xiàn),干細(xì)胞在梗死心肌的生存能力差,栽種的干細(xì)胞大量死亡,因此干細(xì)胞移植的效果并不理想[1]。研究發(fā)現(xiàn),微RNA(microRNA,miRNA)幾乎參與所有干細(xì)胞移植治療梗死心肌的過程,因此認(rèn)為,調(diào)控干細(xì)胞內(nèi)miRNA的水平可有效改善干細(xì)胞移植的治療效果[2-3]。該文將從細(xì)胞分化、移植后干細(xì)胞的生存能力、血管新生及細(xì)胞凋亡等方面綜述miRNA在干細(xì)胞移植治療心肌梗死中的作用。
1影響細(xì)胞分化
miR-1、miR-133a可以促進(jìn)干細(xì)胞向心肌細(xì)胞的分化。Takaya等[4]研究了小鼠胚胎干細(xì)胞向心肌細(xì)胞分化時(shí)miR-1、miR-133a的表達(dá)譜,并發(fā)現(xiàn)這些miRNA在自發(fā)分化時(shí)表達(dá)均上調(diào);在小鼠和人類中胚層的胚胎干細(xì)胞早期發(fā)育過程中,miR-1和miR-133a的功能性表達(dá)促進(jìn)了中胚層的誘導(dǎo),并在斑馬魚和小鼠等動(dòng)物中抑制了其向外胚層和內(nèi)胚層的分化。Ivey等[5]的研究中,小鼠胚胎干細(xì)胞胚體分化后第4日,中胚層即可檢測(cè)到miR-1和miR-133a的表達(dá),兩者均可促進(jìn)多能干細(xì)胞早期中胚層標(biāo)志分子Bry的表達(dá)。Chen等[6]利用爪蟾胚胎進(jìn)行在體實(shí)驗(yàn),發(fā)現(xiàn)過量表達(dá)miR-133a的胚胎干細(xì)胞雖然能夠形成心肌組織,但由于這種胚胎處于高度的分化狀態(tài),導(dǎo)致心臟在發(fā)育過程中不能環(huán)化形成心腔。這一結(jié)果提示,miR-133a的正常表達(dá)對(duì)于心肌形成十分重要。有研究證明,化合物56—表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)抑制劑的一種,可通過抑制EGFR的表達(dá)促進(jìn)人骨髓間充質(zhì)干細(xì)胞向心肌細(xì)胞分化,向梗死心肌移植經(jīng)過化合物56處理的人骨髓間充質(zhì)干細(xì)胞后,可以顯著提高干細(xì)胞向心肌細(xì)胞分化,改善心臟功能;而miR-133a的靶目標(biāo)恰好為EGFR,其可抑制EGFR的表達(dá),將轉(zhuǎn)染了miR-133a的人骨髓間充質(zhì)干細(xì)胞移植到梗死心肌區(qū)域,可以顯著降低EGFR的表達(dá),并促進(jìn)骨髓間充質(zhì)干細(xì)胞向心肌細(xì)胞的分化[7]。研究表明,miR-1也可靶向抑制胚胎干細(xì)胞周期依賴性激酶9的表達(dá)而調(diào)節(jié)心肌細(xì)胞的增殖和分化[4]。現(xiàn)已研究證明,Notch配基DU-1的編碼基因DLl1為miR-1的靶基因,miR-1通過抑制DU-1蛋白的表達(dá),從而抑制Notch信號(hào)通路,促進(jìn)胚胎干細(xì)胞向心肌細(xì)胞分化[5]。Huang等[8]通過轉(zhuǎn)染的方法使miR-1在間充質(zhì)干細(xì)胞中高表達(dá),并觀察到在第1、7、14日Notch信號(hào)通路的下游靶分子hairy and enhancer of split-1(Hes-1)顯著降低,而特異性心臟基因表達(dá)上調(diào);單獨(dú)剔除Hes-1也得到了相同的結(jié)果。由此表明,miRNA-1可通過負(fù)性調(diào)節(jié)Hes-1的表達(dá)促進(jìn)干細(xì)胞向心臟系統(tǒng)分化。
2影響移植的干細(xì)胞的生存能力
miR-210在骨髓間充質(zhì)干細(xì)胞缺氧和低氧環(huán)境下可被誘導(dǎo)表達(dá)[9]。高水平的miR-210可以正向調(diào)控缺氧誘導(dǎo)因子1α(hypoxia induciactor 1α,HIF-1α)蛋白的水平,而HIFs可以通過參與細(xì)胞代謝、血管生成、紅細(xì)胞生成、細(xì)胞增殖、分化和凋亡等過程,調(diào)控干細(xì)胞對(duì)缺氧環(huán)境的反應(yīng),從而增強(qiáng)缺氧條件下人骨髓間充質(zhì)干細(xì)胞的存活能力[10-12]。Chang等[13]試驗(yàn)證明,將miR-210轉(zhuǎn)染到缺氧環(huán)境下的骨髓間充質(zhì)干細(xì)胞中,使骨髓間充質(zhì)干細(xì)胞中miR-210表達(dá)上調(diào),可增強(qiáng)蛋白激酶B(protein kinase B,PKB/Akt)和細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)活性,使骨髓間充質(zhì)干細(xì)胞存活率明顯提高。研究表明,miR-34a也可以影響細(xì)胞治療中細(xì)胞的功能和存活,miR-34a是在心力衰竭患者的骨髓源細(xì)胞中誘導(dǎo)產(chǎn)生的,并且,在體外抑制miR-34a可以促進(jìn)細(xì)胞的存活;在體外骨髓源細(xì)胞移植治療急性心肌梗死時(shí),miR-34a的抑制劑可以增強(qiáng)移植細(xì)胞的功能改善梗死心肌的恢復(fù);相反,過表達(dá)miR-34a可以誘導(dǎo)細(xì)胞的死亡,并且可以通過增加衰老使促血管生成細(xì)胞的促血管生成活性進(jìn)一步降低[14]。
3影響血管新生
miR-126可促進(jìn)干細(xì)胞移植時(shí)血管新生的能力。Chen和Zhou[15]的研究中,通過結(jié)扎冠狀動(dòng)脈建立心肌梗死小鼠模型,將動(dòng)物隨機(jī)分為3組,即在小鼠梗死區(qū)心肌內(nèi)注射轉(zhuǎn)染miR-126的骨髓間充質(zhì)干細(xì)胞組、骨髓間充質(zhì)干細(xì)胞組和對(duì)照組;結(jié)果顯示,與另外兩組比較,注射轉(zhuǎn)染miR-126的骨髓間充質(zhì)干細(xì)胞組心臟ERK、磷酸化ERK、Akt和磷酸化Akt基因水平明顯升高,心肌梗死區(qū)域毛細(xì)血管密度顯著增加,左心室射血分?jǐn)?shù)和縮短分?jǐn)?shù)也明顯改善,證明了移植轉(zhuǎn)染miR-126 的骨髓間充質(zhì)干細(xì)胞可以改善小鼠心肌梗死區(qū)域的血管形成和心臟功能,并且其調(diào)控過程很可能與Akt/ERK途徑的激活有關(guān)。此外,miR-126可以通過下調(diào)磷脂酰肌醇-3激酶/Akt信號(hào)通路的抑制劑,激活促存活A(yù)kt信號(hào)通路,從而促進(jìn)細(xì)胞的存活[16]。miR-126還可調(diào)控骨髓間充質(zhì)干細(xì)胞中的Notch配體 DLL4通路途徑,通過控制這一途徑,miR-126不僅提高細(xì)胞的存活,也促進(jìn)了小管樣組織的發(fā)生[17]。研究發(fā)現(xiàn),miR-17-92家族(包括miR-17、miR-18a、miR-19a、miR-20a、miR-19b及miR-92a)與腫瘤血管發(fā)生有關(guān)[18];miR-320在糖尿病大鼠的微血管內(nèi)皮上缺失功能表達(dá),表明miR-320在缺血性疾病中可能有促血管生成的作用[19]。
4影響細(xì)胞凋亡
在已知的數(shù)百種miRNA中,miR-1被認(rèn)為最具有心肌特異性,對(duì)其機(jī)制的研究也比較清楚。目前認(rèn)為,miR-1主要參與心肌缺血后調(diào)控細(xì)胞凋亡過程,向梗死心肌移植轉(zhuǎn)染miR-1 的干細(xì)胞后,可明顯減少心肌細(xì)胞凋亡,增強(qiáng)干細(xì)胞存活能力[4]。研究證明,向心肌梗死區(qū)域移植miR-1高表達(dá)的胚胎干細(xì)胞后,可以通過激活磷酸化Akt途徑,抑制胱天蛋白酶3、磷酸酶、張力蛋白同源物及超氧化物的生成,從而保護(hù)心肌不受心肌梗死誘導(dǎo)的細(xì)胞凋亡的影響[20]。Glass和Singla[21]的研究也表明,向梗死心肌移植胚胎干細(xì)胞和轉(zhuǎn)染miR-1的胚胎干細(xì)胞后4周,后者心肌中磷酸化Akt蛋白水平顯著升高,而人第10號(hào)染色體缺失的磷酸酶及張力蛋白同源基因水平明顯降低;通過原位末端轉(zhuǎn)移酶標(biāo)記技術(shù)和胱天蛋白酶3活性檢測(cè),發(fā)現(xiàn)心肌細(xì)胞凋亡明顯減少,通過超聲心動(dòng)圖等檢查發(fā)現(xiàn)縮短分?jǐn)?shù)和射血分?jǐn)?shù)則明顯提高。Huang等[22]的研究中,對(duì)冠狀動(dòng)脈結(jié)扎的小鼠心肌梗死區(qū)域分別注射骨髓干細(xì)胞和轉(zhuǎn)染了miR-1的骨髓干細(xì)胞,結(jié)果顯示,在小鼠的梗死區(qū)域,兩組移植的骨髓干細(xì)胞均可以分化為心肌細(xì)胞,但轉(zhuǎn)染了miR-1的骨髓干細(xì)胞在心臟修復(fù)和改善心功能方面更為有效,因?yàn)閙iR-1增強(qiáng)了骨髓干細(xì)胞的存活能力和分化能力。此外,miR-34a也可影響細(xì)胞凋亡信號(hào),其可靶向作用于抗凋亡蛋白B細(xì)胞淋巴瘤,從而抑制細(xì)胞周期調(diào)控者周期素D2和細(xì)胞周期蛋白依賴性激酶,阻斷細(xì)胞增殖,使細(xì)胞凋亡[14,23]。研究表明,miR-21、miR-221、miR-24三者一起可以明顯改善心臟祖細(xì)胞的移植效率,可一起靶向作用于細(xì)胞凋亡蛋白Bim,阻斷凋亡通路,從而影響細(xì)胞凋亡[24]。
5小結(jié)
在過去的十年里,干細(xì)胞移植療法和miRNA已經(jīng)成為人們關(guān)注的熱點(diǎn)。改變干細(xì)胞內(nèi)的miRNA水平后再將其移植到梗死心肌區(qū)域,可有效提高干細(xì)胞在梗死區(qū)域的存活,改善心臟功能。但是,miRNA在臨床治療中的應(yīng)用仍面臨著困難和挑戰(zhàn),miRNA的生物學(xué)作用機(jī)制還遠(yuǎn)沒有被闡釋清楚,現(xiàn)階段大規(guī)模的基因治療臨床試驗(yàn)也是不允許的[25]。相信隨著研究的深入,miRNA將成為一個(gè)新的作用靶點(diǎn),用于調(diào)控干細(xì)胞移植治療心肌梗死。
參考文獻(xiàn)
[1]Wen Z,Zheng S,Zhou C,etal.Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair:microRNA as novel regulators[J].J Cell Mol Med,2012,16(4):657-671.
[2]Li M,Marin-Muller C,Bharadwaj U,etal.MicroRNAs:control and loss of control in human physiology and disease[J].World J Surg,2009,33(4):667-684.
[3]Cannell IG,Kong YW,Bushell M.How do microRNA regulate gene expression? [J].Biochem Soc Trans,2008,36(pt 6):1224-1231.
[4]Takaya T,Ono K,Kawamura T,etal.MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells[J].Circ J,2009,73(8):1492-1497.
[5]Ivey KN,Muth A,Arnold J,etal.MicroRNA regulation of cell lineages in mouse and human embryonic stem cells[J].Cell Stem Cell,2008,2(3):219-229.
[6]Chen JF,Mandel EM,Thomson JM,etal.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J].Nat Genet,2006,38(2):228-233.
[7]Lee SY,Ham O,Cha MJ,etal.The promotion of cardiogenic differentiation of hMSCs by targetting epidermal growth factor receptor using microRNA-133a[J].Biomaterials,2013,34(1):92-99.
[8]Huang F,Tang L,Fang ZF,etal.miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1[J].Biomed Res Int,2013,2013:216286.
[9]Camps C,Buffa FM,Colella S,etal.hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer[J].Clin Cancer Res,2008,14(5):1340-1348.
[10]Huang X,Le QT,Giaccia AJ.MiR-210--micromanager of the hypoxia pathway[J].Trends Mol Med,2010,16(5):230-237.
[11]Kelly TJ,Souza AL,Clish CB,etal.A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like[J].Mol Cell Biol,2011,31(13):2696-2706.
[12]Puisségur MP,Mazure NM,Bertero T,etal.miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity[J].Cell Death Differ,2011,18(3):465-478.
[13]Chang W,Lee CY,Park JH,etal.Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J].J Vet Sci,2013,14(1):69-76.
[14]Xu Q,Seeger FH,Castillo J,etal.Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease[J].J Am Coll Cardiol,2012,59(23):2107-2117.
[15]Chen JJ,Zhou SH.Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway[J].Cardiol J,2011,18(6):675-681.
[16]Mirotsou M,Zhang Z,Deb A,etal.Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair[J].Proc Natl Acad Sci U S A,2007,104(5):1643-1648.
[17]Huang F,Zhu X,Hu XQ,etal.Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4,enhancing ischemic angiogenesis and cell survival[J].Int J Mol Med,2013,31(2):484-492.
[18]Bonauer A,Carmona G,Iwasaki M,etal.MicroRNA-92a controls angiohenesis and functional recovery of ischemic tissues in mice[J].Science,2009,324(5935):1710-1713.
[19]Wang XH,Qian RZ,Zhang W,etal.MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats[J].Clin Exp Pharmacol Physiol,2009,36(2):181-188.
[20]Glass C,Singla DK.MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart[J].Am J Physiol Heart Circ Physiol,2011,301(5):2038-2049.
[21]Glass C,Singla DK.ES cells overexpressing microRNA-1 attenuate apoptosis in the injured myocardium[J].Mol Cell Biochem,2011,357(1/2):135-141.
[22]Huang F,Li ML,Fang ZF,etal.Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction[J].Cardiology,2013,125 (1):18-30.
[23]Hermeking H.The miR-34 family in cancer and apoptosis[J].Cell Death Differ,2010,17(2):193-199.
[24]Hu S,Huang M,Nguyen PK,etal.Novel microRNA prosurvival cocktail for improving engraftment and function of cardiac progenitor cell transplantation[J].Circulation,2011,124(11 Suppl):S27-34.
[25]Van Rooij E,Marshall WS,Olson EN.Toward microRNA-based therapeutics for heart disease:the sense in antisense[J].Circ Res,2008,103(9):919-928.
MiRNA′s Role in the Stem Cell Transplantation for Treatment of Myocardial InfarctionWANGYong-tao,MAYi-tong.(HeartCenter,theFirstAffiliatedHospitalofXinjiangMedicalUniversity,Urumqi830054,China)
Abstract:MicroRNA(miRNA) is a non-coding small single stranded RNA of about 22 nucleotides,widely exist in the human body.It regulates the translation of target gene at the post transcriptional level through specific binding with the target mRNA 3′ untranslated terminal.miRNA participates in the pathophysiology of many cardiovascular diseases,which can affect stem cell transplantation in the treatment of myocardial infarction by regulating cell differentiation,angiogenesis,apoptosis and other processes.Here is to make a review of MiRNA′s role in the stem cell transplantation for treatment of myocardial infarction.
Key words:Myocardial infarction; MicroRNA; Stem cells
收稿日期:2014-10-30修回日期:2015-01-16編輯:鄭雪
基金項(xiàng)目:新疆維吾爾自治區(qū)科技支撐計(jì)劃項(xiàng)目(201233138)
doi:10.3969/j.issn.1006-2084.2015.14.004
中圖分類號(hào):R363
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)14-2505-03