楊偉煌黃 平
呼出氣冷凝液在COPD、哮喘、肺癌及間質(zhì)性肺疾病中應(yīng)用的研究進展
楊偉煌①黃 平①
呼出氣冷凝液(EBC)是一種新興的呼吸道系統(tǒng)疾病檢測方法。通過檢測EBC中的實時生物標記物,以評價氣道急慢性炎癥、氧化應(yīng)激水平。由于EBC具有無創(chuàng)、實時監(jiān)測、簡便、可重復等優(yōu)點,具有良好的發(fā)展應(yīng)用前景,因而可作為肺部疾病的診斷、疾病嚴重程度、藥物療效及預(yù)后評估,在COPD、哮喘、肺癌及間質(zhì)性肺病得到廣泛應(yīng)用。本文對近年來EBC在COPD、哮喘、肺癌及間質(zhì)性肺病中的研究做簡要綜述。
呼出氣冷凝液; COPD; 哮喘; 肺癌; 間質(zhì)性肺病
呼吸道系統(tǒng)疾病是嚴重危害人類健康的常見病、多發(fā)病。COPD發(fā)病率和死亡率高,預(yù)計到2020年將成為全球死亡原因的第3位;肺癌死亡率高,位居于腫瘤死亡率之首;哮喘、間質(zhì)性肺病嚴重影響患者生活質(zhì)量。目前人們研究出多種下呼吸道檢測方法,如纖維支氣管鏡黏膜組織活檢、支氣管肺泡灌洗液(Bronchoalveolar lavage fluid, BALF)、誘導痰等,但其有各自缺點。氣管黏膜組織活檢及肺泡灌洗是一種侵入性檢測手段,對呼吸道有損傷,患者依從性較差,尤其是危重患者難以耐受反復有創(chuàng)性檢測。誘導痰由于霧化吸入時對支氣管有激發(fā)作用,檢測不能用于重癥哮喘及兒童患者,因此上述檢測手段在臨床上應(yīng)用受到一定的限制。
呼出氣冷凝液(exhaled breath condensate, EBC)是近年來一種檢測呼吸道生化成分的新技術(shù),與傳統(tǒng)的檢測手段比較,具有安全無創(chuàng)、良好的可重復性、操作簡易特點。EBC中主要成分包括呼吸道內(nèi)襯液氣溶膠化而形成的各種生物微粒、水溶性揮發(fā)性物質(zhì)以及呼出氣冷凝水,其中前兩者占EBC總體積甚少,約為1%,但其成分卻包含上千種生物微粒、蛋白物質(zhì)等。人體氣道內(nèi)襯液中含有多種水溶性活性分子、抗氧化物,是呼吸道的防御屏障之一。一旦氣道損傷及結(jié)構(gòu)改變,這些生物活性分子的變化可反映氣道、肺組織內(nèi)微環(huán)境的變化。EBC能較好地反映氣道、肺組織內(nèi)襯液變化,并實時反映氣道及肺組織的損傷及炎癥情況,是一種很有前景的無創(chuàng)的肺部疾病生物標記物的來源[1]。故可用于呼吸道疾病診斷、監(jiān)測及藥物療效評價。此外,EBC適用范圍廣,可在各種人群中得以應(yīng)用,既適用于兒童患者又可用于危重癥患者,而且其費用比BALF要更便宜。本文就EBC在COPD、哮喘、肺癌、間質(zhì)性肺病的檢測作一綜述。
慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease, COPD)是一種氣道不完全可逆、呈進行性發(fā)展的氣流受限疾病。氣道、肺實質(zhì)及肺血管的慢性炎癥為其主要特征。COPD患者氣道、肺組織慢性炎癥,各種炎癥細胞的聚集,并且釋放各種肺損傷因子及細胞因子[2],尤其是COPD急性發(fā)作期更明顯,國內(nèi)外眾多學者對其EBC進行了研究。
COPD患者由于中性粒細胞的趨化作用釋放出白三烯B4(Leukotriene-B4, LTB4)導致了EBC中LTB4濃度升高。研究發(fā)現(xiàn),AECOPD患者EBC及誘導痰中LTB4明顯升高[3]。最近,Corhay等[4]研究也發(fā)現(xiàn),在COPD患者中,急性加重期EBC中細粒細胞趨化活性升高,而在穩(wěn)定期時下降,而LTB4在穩(wěn)定期和急性加重期均發(fā)揮作用,但急性加重期是升高更明顯,表明LTB4反映體內(nèi)的炎癥水平。α-1-抗胰蛋白酶(α-1-antitrypsin, ATT)是一種急性相關(guān)蛋白,是中性粒細胞彈性蛋白酶抑制劑,ATT的缺乏可能會導致早發(fā)性呼吸道癥狀。Koczulla等[5]對35例AECOPD患者EBC研究發(fā)現(xiàn),EBC中ATT在加重期顯著升高,并且可作為COPD并且加重的生物標記物。
細胞因子常在炎癥過程中異常表達。如炎癥過程中表達IL-1、IL-4、IL-6、IL-8和TNF-α等可促進炎性細胞趨化及浸潤。國外多項研究表明,這些炎性細胞因子在COPD患者EBC中水平中不同程度的升高,如Foschino等[6]發(fā)現(xiàn)輕度COPD患者EBC中IL-4、IL-6及TNF-α水平較健康對照顯著升高,并且急性加重期較穩(wěn)定期升高更明顯。IL-4、IL-6及TNF-α參與的COPD氣道炎癥反應(yīng)。
COPD、哮喘等氣道炎癥疾中肺泡灌洗液的pH呈酸性,認為氣道慢性炎癥可能導致氣道及肺組織呈酸化改變,氣道的內(nèi)源性酸化。MacNee等[7]通過測COPD患者EBC中的pH值,發(fā)現(xiàn)COPD急性加重患者氣道內(nèi)酸化明顯,并且與氣道炎癥呈正相關(guān)。
氣道及肺部氧化應(yīng)激過程,產(chǎn)生過量的氧自由基、活性氮,對氣道及肺泡組織的慢性炎癥及損傷有重要作用。目前對EBC中的一氧化氮(NO)研究較多,它反映氣道炎癥特異性較高。Antus等[8]研究發(fā)現(xiàn)COPD患者穩(wěn)定期及急性加重期呼出氣一氧化氮(FENO)較健康對照組升高,并且急性加重期升高更顯著,F(xiàn)ENO值與肺功能呈負相關(guān)[9]。COPD患者的EBC中還可檢測到其他許多炎癥性相關(guān)因子,如8-異前列腺烷、IL-10、H2O2等。
目前對哮喘EBC中氧化應(yīng)激及氣道過敏性炎癥標記物研究中都有所深入,但氧化應(yīng)激對研究者更具吸引力。Barreto等[10]對運動性支氣管痙攣兒童研究,發(fā)現(xiàn)氧化應(yīng)激在氣道高反應(yīng)性起到一定的作用,EBC中8-異前列烷的濃度較健康組升高,其濃度與哮喘嚴重程度呈正相關(guān),并且與哮喘發(fā)作次數(shù)及氧化應(yīng)激呈正相關(guān)[11]。EBC中8-異前列烷的濃度呈顯著季節(jié)性改變,氧化應(yīng)激與小兒氣道炎癥密切相關(guān)[12]。表明8-異前列烷可以作為哮喘生物標記物,還作為評估病情嚴重程度的指標之一。但是,最近Sood等[13]的研究卻持有不同的觀點,通過對哮喘過敏原誘發(fā)的支氣管激發(fā)評價EBC的8-異前列烷的濃度,發(fā)現(xiàn)在輕度哮喘患者其濃度改變幾乎無明顯改變。
哮喘氣道酸化也是研究熱點之一,pH值可反映氣道炎癥細胞泌酸能力及氣道對酸性物質(zhì)的中和能力。Kostikas等[14]通過檢測EBC的pH值哮喘病情控制情況,發(fā)現(xiàn)哮喘控制不佳患者pH值降低。Murata等[15]也證實哮喘患者氣道pH值降低,氣道及肺泡組織呈酸化。
哮喘患者EBC中其他生物學指標的檢測也有大量研究。如Murata等[15]檢測到哮喘患者EBC中H2O2濃度升高,且經(jīng)治療后濃度水平下降;Kazani等[16]對不同嚴重程度的哮喘患者及健康患者研究,發(fā)現(xiàn)EBC中脂氧素A4(LXA4)和LTB4均高于健康對照組,并且其與哮喘嚴重程度呈正相關(guān);Wan等[17]對34名兒童過敏性哮喘FENO研究,發(fā)現(xiàn)過敏性哮喘的發(fā)病與FENO有相關(guān)性,認為FENO在變態(tài)反應(yīng)性疾病機制中發(fā)揮了作用。
肺癌的死亡率仍然較高,并且對早期診斷方法仍然缺乏。EBC被認為是用于獲取導致非小細胞肺癌生物信息的可靠潛在工具。研究肺癌患者EBC中腫瘤標志物是近幾年的熱點。血管內(nèi)皮生長因子(Vascular endothelial growth factor, VEGF)是一種促血管內(nèi)皮生長的重要因子,與多種腫瘤的發(fā)生、發(fā)展及血管的生成有密切關(guān)系。Dalaveris等[18]研究發(fā)現(xiàn),肺癌患者血清及EBC中VEGF水平均明顯高于健康組,而且血清及EBC中的VEGF水平具有良好的相關(guān)性。Brussino等[19]對15例非小細胞肺癌的EBC研究也證實VEGF濃度升高,經(jīng)治療后VEGF水平下降,認為檢測EBC中VEGF可作為早期肺癌篩查及治療效果評估的無創(chuàng)方法。
細胞間黏附分子1(Intercellular adhesion molecule1, ICAM-1)和血管細胞黏附分子1(vascular cell adhesion molecule 1, VCAM-1)是免疫球蛋白超家族成員,增加宿主細胞對腫瘤細胞的黏附性。在正常的肺組織,ICAM-1主要表達于支氣管和肺泡上皮細胞。然而,ICAM-1能增強惡性腫瘤的轉(zhuǎn)移能力并且高表達于非小細胞肺癌的所有組織類型。VCAM-1是被發(fā)現(xiàn)于內(nèi)皮細胞、樹突細胞、巨噬細胞、腎壁層上皮細胞、滑膜襯里細胞和反應(yīng)間皮細胞。血清中可溶性形VCAM-1水平已被報道在多種惡性腫瘤升高。ICAM1和VCAM-1的信號途徑參與GTP酶的活化,靶蛋白的磷酸化,從而引起交界破壞、細胞骨架重塑及細胞膜融合,在腫瘤發(fā)生、發(fā)展過程起重要作用。Zhou等[20]對肺癌患者EBC中ICAM-1及VCAM-1檢測發(fā)現(xiàn),EBC中可溶性ICAM-1水平高于COPD患者及健康對照組,而VCAM-1并未見升高,認為呼出可溶性ICAM-1對肺癌的診斷有一定價值,可能成為肺癌診斷及預(yù)后評估的生物標記物。
此外,Xiao等[21]發(fā)現(xiàn)非小細胞肺癌EBC中檢測出甲基化的基因P16升高,在基因分子水平檢測中,其敏感性及特異性都很高,對肺癌的篩查有一定應(yīng)用前景。研究發(fā)現(xiàn)EBC中瘦素、IL-2、TNF-α、以及內(nèi)皮縮血管肽-1(ET-1)的檢測均有助于肺癌的早期診斷和藥物治療評估[22-23]。
氧化應(yīng)激病理學機制被認為是與石棉肺、特發(fā)性間質(zhì)性肺纖維化等間質(zhì)性疾病的發(fā)生、發(fā)展有一定聯(lián)系。研究者們發(fā)現(xiàn)石棉肺患者EBC中8-異前列烷水平較健康組有明顯升高[24],表明8-異前列烷在石棉肺的發(fā)病機制起了一定作用。特發(fā)性肺纖維化患者EBC中8-異前列烷、過氧化氫及亞硝酸鹽濃度升高,且與其疾病嚴重程度正相關(guān)[25-26]。ET-1作為纖維化標志物在系統(tǒng)性硬化癥患者EBC中濃度顯著升高,且其濃度水平與肺功能的惡化明顯相關(guān)。細胞因子IL-2、IL-6、IL-10在系統(tǒng)性硬化癥患者EBC中濃度水平升高[27]。
EBC作為檢測呼吸道疾病生物標記物新技術(shù),具有無創(chuàng)、實時監(jiān)測、簡便、可重復等優(yōu)點,但是也有局限性,如生物指標選擇、收集方法、收集的時間窗沒有統(tǒng)一的標準,目前其僅用于研究工作,而尚未廣泛應(yīng)用于臨床。隨著科技進步,上述問題等到進一步解決,EBC技術(shù)將會在呼吸系統(tǒng)疾病的早期診斷、病情評估及藥物療效評價等有良好的發(fā)展應(yīng)用前景。
[1] Montuschi P.Review:analysis of exhaled breath condensate in respiratory medicine:methodological aspects and potential clinical applications[J].Therapeutic Advances in Respiratory Disease,2007,1(1):5-23.
[2] Stolz D, Breidthardt T, Christ-Crain M, et al.Use of B-type natriuretic peptide in the risk stratification of acute exacerbations of COPD[J]. CHEST Journal,2008,133(5):1088-1094.
[3] Ko F W S, Leung T F, Wong G W K, et al.Measurement of tumor necrosis factor-α, leukotriene B4, and interleukin 8 in the exhaled breath condensate in patients with acute exacerbations of chronic obstructive pulmonary disease[J].International Journal of Chronic Obstructive Pulmonary Disease,2009,4(14):79.
[4] Corhay J L, Moermans C, Henket M, et al.Increased of exhaled breath condensate neutrophil chemotaxis in acute exacerbation of COPD[J]. Respiratory Research,2014,15(1):115.
[5] Koczulla A R, Noeske S, Herr C, et al.Alpha-1 antitrypsin is elevated in exhaled breath condensate and serum in exacerbated COPD patients[J].Respiratory Medicine,2012,106(1):120-126.
[6] Foschino B M P, Carpagnano G E, Spanevello A, et al.Inflammation,oxidative stress and systemic effects in mild chronic obstructive pulmonary disease[J].International Journal of Immunopathology and Pharmacology,2006,20(4):753-763.
[7] MacNee W, Rennard S I, Hunt J F, et al.Evaluation of exhaled breath condensate pH as a biomarker for COPD[J].Respiratory Medicine,2011,105(7):1037-1045.
[8] Antus B, Barta I, Horvath I, et al.Relationship between exhaled nitric oxide and treatment response in COPD patients with exacerbations[J]. Respirology,2010,15(3):472-477.
[9] Kim S Y, KIM S A, Suh C, et al.0440 A systemic review and metaanalysis of exhaled nitric oxide in chronic obstructive pulmonary disease:relationship to pulmonary function[J].Occupational and Environmental Medicine,2014,71(Suppl 1):A118-A119.
[10] Barreto M, Villa M P, Olita C, et al.8-Isoprostane in exhaled breath condensate and exercise-induced bronchoconstriction in asthmatic children and adolescents[J].CHEST Journal,2009,135(1):66-73.
[11] Keskin O, Balaban S, Keskin M, et al.Relationship between exhaled leukotriene and 8-isoprostane levels and asthma severity, asthma control level, and asthma control test score[J].Allergol Immunopathol,2014,42(3):191-197.
[12] Wan G H, Yan D C, Tseng H Y, et al.Cysteinyl leukotriene levels correlate with 8-isoprostane levels in exhaled breath condensates of atopic and healthy children[J].Pediatric Research,2013,74(5):584-591.
[13] Sood A, Qualls C, Seagrave J C, et al.Effect of allergen inhalation on airway oxidant stress, using exhaled breath condensate 8-isoprostane,in mild asthma[J].Journal of Asthma,2013,50(5):449-456.
[14] Kostikas K, Papaioannou A I, Tanou K, et al.Exhaled NO and exhaled breath condensate pH in the evaluation of asthma control[J]. Respiratory Medicine,2011,105(4):526-532.
[15] Murata K, Fujimoto K, Kitaguchi Y, et al.Hydrogen peroxide content and pH of expired breath condensate from patients with asthma and COPD[J].COPD:Journal of Chronic Obstructive Pulmonary Disease,2014,11(1):81-87.
[16] Kazani S, Planaguma A, Ono E, et al.Exhaled breath condensate eicosanoid levels associate with asthma and its severity[J].Journal of Allergy and Clinical Immunology,2013,132(3):547-553.
[17] Wan G H, Yan D C, Tung T H, et al.Seasonal changes in endotoxin exposure and its relationship to exhaled nitric oxide and exhaled breath condensate pH levels in atopic and healthy children[J].PloS One,2013,8(6):e66 785.
[18] Dalaveris E, Kerenidi T, Katsabeki-Katsafli A, et al.VEGF,TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer[J].Lung Cancer,2009,64(2):219-225.
[19] Brussino L, Culla B, Bucca C, et al.Inflammatory cytokines and VEGF measured in exhaled breath condensate are correlated with tumor mass in non-small cell lung cancer[J].Journal of Breath Research,2014,8(2):027110.
[20] Zhou F, Chen J, Tao G, et al.Increased levels of exhaled sICAM1, sVCAM1, and sE-selectin in patients with non-small cell lung cancer[J].Respiratory Medicine,2014,108(11):1670-1676.
[21] Xiao P, Chen J, Zhou F, et al.Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer[J].Lung Cancer,2014,83(1):56-60.
[22] Carpagnano G E, Spanevello A, Curci C, et al.IL-2, TNF-α, and leptin:local versus systemic concentrations in NSCLC patients[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2006,16(8):375-381.
[23] Carpagnano G E, Foschino-Barbaro M P, Resta O, et al.Endothelin-1 is increased in the breath condensate of patients with non-small-cell lung cancer[J].Oncology,2004,66(3):180-184.
[24] Pelclova D, Fenclova Z, KA?ER P, et al.Increased 8-isoprostane,a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure[J].Industrial Health,2008,46(5):484-489.
[25] Psathakis K, Mermigkis D, Papatheodorou G, et al.Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis[J].European Journal of Clinical Investigation,2006,36(5):362-367.
[26] Rihák V, Zatloukal P, Chládková J, et al.Nitrite in exhaled breath condensate as a marker of nitrossative stress in the airways of patients with asthma, COPD, and idiopathic pulmonary fibrosis[J].Journal of Clinical Laboratory Analysis,2010,24(5):317-322.
[27] Edmé J L, Tellart A S, Launay D, et al.Cytokine concentrations in exhaled breath condensates in systemic sclerosis[J].Inflammation Research,2008,57(4):151-156.
Advances of Application of Exhaled Breath Condensate in COPD, Asthma, Lung Cancer and Interstitial Lung Disease/
YANG Wei-huang, HUANG Ping.//Medical Innovation of China,2015,12(10):153-156
Exhaled breath condensate (EBC) is a new method for the detection of respiratory system diseases. Detecting real-time biomarkers in EBC evaluates acute and chronic airway inflammation and oxidative stress level.Since the EBC has non-invasive, real-time monitoring, simple, repeatable advantages, it can be used as diagnosis of lung disease, severity assessment, evaluation of drug efficacy and prognostic marker,and has good application prospects. EBC has extensive application in COPD, asthma, lung cancer and interstitial lung disease.In this paper, we review the advances of EBC in COPD, asthma, lung cancer and interstitial lung disease.
Exhaled breath condensate; COPD; Asthma; Lung cancer; Interstitial lung disease
10.3969/j.issn.1674-4985.2015.10.050
2014-11-24) (本文編輯:陳丹云)
①廣東醫(yī)學院附屬深圳南山醫(yī)院 廣東 深圳 518052
黃平
First-author’s address:Nanshan Hospital Affiliated to Guangdong Medical College, Shenzhen 518052,China