骨髓間充質(zhì)干細(xì)胞治療腦梗死的研究進(jìn)展
王萬(wàn)松屈新輝1吳曉牧1
(南昌大學(xué)醫(yī)學(xué)院,江西南昌330006)
關(guān)鍵詞〔〕骨髓間充質(zhì)干細(xì)胞;移植;腦梗死;缺血再灌注
中圖分類(lèi)號(hào)〔〕R743.3〔文獻(xiàn)標(biāo)識(shí)碼〕A〔
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助課題(No.81160148)
通訊作者:屈新輝(1970-),男,主任醫(yī)師,碩士生導(dǎo)師,主要從事帕金森病及干細(xì)胞的基礎(chǔ)和臨床研究。
1江西省人民醫(yī)院神經(jīng)內(nèi)科 江西省神經(jīng)病學(xué)研究所
第一作者:王萬(wàn)松(1988-),男,碩士,主要從事干細(xì)胞的基礎(chǔ)研究。
腦梗死是常見(jiàn)的腦血管病類(lèi)型,因腦血管供血障礙而引發(fā)缺血性級(jí)聯(lián)反應(yīng),造成神經(jīng)功能缺損。隨著人口老齡化,其發(fā)病率逐年上升,成為人類(lèi)死亡和殘疾的主要病因之一。目前,針對(duì)腦梗死的溶栓治療因嚴(yán)格的時(shí)間窗而限制了獲益患者。傳統(tǒng)藥物治療雖然使疾病死亡率有所下降,但多數(shù)患者仍殘存神經(jīng)功能缺損,嚴(yán)重影響患者生活質(zhì)量。自干細(xì)胞移植理論的興起,骨髓間充質(zhì)干細(xì)胞(BMSCs)移植治療腦梗死的研究中發(fā)現(xiàn)移植BMSCs可促進(jìn)腦梗死后功能改善〔1〕和組織修復(fù)〔2〕,并有望成為臨床腦梗死治療的新方法。
1BMSCs的特性
BMSCs是具有自我更新和多向分化能力的中胚層源成體干細(xì)胞,最早由Friedenstein等〔3〕從骨髓分離培養(yǎng),體外形如長(zhǎng)梭紡錘狀,貼壁集落生長(zhǎng);固定高表達(dá)CD90、CD106、CD29等,低表達(dá)或不表達(dá)CD34、CD45、CD11b等,區(qū)別于造血干細(xì)胞,被認(rèn)為是骨髓中的非造血成分,參與造血微環(huán)境的構(gòu)成。一般情況下可分化為脂肪細(xì)胞、骨細(xì)胞和軟骨細(xì)胞等中胚層源細(xì)胞,而其分化方向和免疫表型受外界微環(huán)境因素影響,在誘導(dǎo)因素作用下,可跨胚層分化為神經(jīng)細(xì)胞等〔4〕,并且研究發(fā)現(xiàn)腦組織提取液可促進(jìn)BMSCs分化為神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞〔5〕。
BMSCs具有調(diào)節(jié)免疫炎癥作用,通過(guò)影響抗感染和炎癥因子的分泌,降低炎癥對(duì)組織的損傷〔6〕,同時(shí)可抑制炎癥環(huán)境中神經(jīng)膠質(zhì)細(xì)胞活化〔7〕,具有免疫調(diào)節(jié)作用。Zimmermann等〔8〕發(fā)現(xiàn)BMSCs可通過(guò)自身的旁分泌作用調(diào)節(jié)炎癥信號(hào)通路,或許BMSCs可通過(guò)多重機(jī)制調(diào)節(jié)免疫炎癥。另有研究發(fā)現(xiàn)BSMCs在缺氧環(huán)境中上調(diào)缺氧誘導(dǎo)因子(HIF)的表達(dá),并通過(guò)加強(qiáng)營(yíng)養(yǎng)因子和生長(zhǎng)因子的分泌起到抗凋亡作用〔9〕。通過(guò)免疫炎癥的調(diào)節(jié)及營(yíng)養(yǎng)和生長(zhǎng)因子的分泌,BMSCs具有重塑其所在微環(huán)境的功能。BMSCs可自體提供、取材安全、無(wú)道德倫理沖突,再者,容易培養(yǎng)、擴(kuò)增周期短、異體移植未見(jiàn)排異〔10〕,因此,相對(duì)其他類(lèi)型干細(xì)胞而言,BMSCs應(yīng)用更為廣泛。
2BMSCs移植治療腦梗死研究
幾乎在所有的動(dòng)物實(shí)驗(yàn)中,移植BMSCs均能有效改善神經(jīng)功能缺損癥狀。Suzuki等〔11〕選擇腦梗死后6 h移植BMSCs,發(fā)現(xiàn)隨著梗死體積明顯減小,神經(jīng)功能缺損得到顯著改善。而Ding等〔12〕在腦梗死后第5天移植BMSCs,雖然也觀察到神經(jīng)功能缺損癥狀的好轉(zhuǎn),但卻未發(fā)現(xiàn)梗死體積縮小??梢?jiàn)梗死體積并不是功能預(yù)后的決定因素,并且能否有效減少梗死體積與移植時(shí)間點(diǎn)密切相關(guān)。Gutierrez-Fernandez等〔13〕移植BMSCs后雖然也發(fā)現(xiàn)梗死體積沒(méi)有差異,但在改善神經(jīng)功能缺損的同時(shí),凋亡細(xì)胞數(shù)目減少,細(xì)胞增殖明顯,并認(rèn)為BMSCs可保護(hù)腦梗死后受損的細(xì)胞免于凋亡,從而修復(fù)受損組織,提高神經(jīng)功能。在關(guān)于腦梗死后移植BMSCs減少細(xì)胞凋亡的實(shí)驗(yàn)中,Deng等〔14〕選擇在腦梗死后24 h靜脈移植BMSCs,并且在移植后14 d和28 d發(fā)現(xiàn)血管內(nèi)皮生長(zhǎng)因子(VEGF)水平的升高和細(xì)胞凋亡的減少密切相關(guān),并認(rèn)為腦梗死缺血半暗帶的血液供應(yīng)對(duì)于抗凋亡至關(guān)重要。Bao等〔15〕則證實(shí)BMSCs通過(guò)旁分泌作用,分泌大量腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF),營(yíng)養(yǎng)支持受損神經(jīng)細(xì)胞,有效阻止凋亡,并促進(jìn)神經(jīng)發(fā)生。Li等〔16〕發(fā)現(xiàn)移植BMSCs后,腦梗死病灶周?chē)寡滓蜃影准?xì)胞介素-10(IL-10)的表達(dá)上升,降低炎癥對(duì)神經(jīng)細(xì)胞的持續(xù)損害,減少細(xì)胞凋亡,并且室管膜下區(qū)細(xì)胞增殖明顯。如上所述,BMSCs可通過(guò)增強(qiáng)血液供應(yīng)、營(yíng)養(yǎng)支持和調(diào)節(jié)炎癥起到抗凋亡作用,達(dá)到組織修復(fù)效果。Zhang等〔17〕證實(shí)BMSCs可以激活具有促進(jìn)細(xì)胞增殖功能的sonic hedgehog信號(hào)通路,促進(jìn)腦梗死后少突膠質(zhì)細(xì)胞增殖,修復(fù)受損神經(jīng)軸突。
但是BMSCs對(duì)腦梗死的治療效果仍然受限于BMSCs存活時(shí)間短暫的問(wèn)題。Goldmacher等〔18〕發(fā)現(xiàn)移植后腦梗死病灶中的BMSCs在第8天全部消失。為此,為獲得更大療效或發(fā)揮BMSCs的治療潛能,延長(zhǎng)干細(xì)胞的存活時(shí)間成為突破當(dāng)前瓶頸的新思路。
3BMSCs治療腦梗死的新策略
3.1缺氧預(yù)處理BMSCs腦梗死缺血缺氧導(dǎo)致的炎癥反應(yīng)、氧化應(yīng)激反應(yīng)和大量凋亡因子等都不利于移植后BMSCs的存活。但Liu等〔19〕發(fā)現(xiàn)BMSCs在含氧量?jī)H為3%的缺氧環(huán)境中,激活具有調(diào)節(jié)細(xì)胞增殖、分化和凋亡功能的PI3K/Akt信號(hào)通路,上調(diào)HIF的表達(dá),提高BMSCs對(duì)缺氧環(huán)境的耐受,延長(zhǎng)BMSCs的存活時(shí)間。眾多學(xué)者重點(diǎn)研究了移植缺氧預(yù)處理的BMSCs治療腦梗死。Wei等〔20〕發(fā)現(xiàn)缺氧預(yù)處理后的BMSCs歸巢明顯,可定植于梗死皮層,并且有效減少梗死體積和缺血半暗帶處死亡細(xì)胞數(shù)。另一研究〔21〕發(fā)現(xiàn)將缺氧預(yù)處理后的BMSCs移植入腦梗死模型中有著強(qiáng)烈的神經(jīng)發(fā)生和血管再生,并認(rèn)為缺氧預(yù)處理能有效提高BMSCs的治療潛能。
3.2基因修飾BMSCs鑒于BMSCs可旁分泌BDNF、VEGF等蛋白促進(jìn)腦梗死的修復(fù),利用內(nèi)源性基因轉(zhuǎn)染BMSCs后移植,則可使相關(guān)蛋白基因高表達(dá),將有助于病灶修復(fù)。van Velthoven等〔22〕將BDNF基因修飾BMSCs后移植,發(fā)現(xiàn)BDNF強(qiáng)烈分泌并有效改善神經(jīng)功能缺損,但是在移植后第28天與單純移植BMSCs組神經(jīng)功能缺損無(wú)差異,治療效果主要受限于基因修飾后BMSCs不能長(zhǎng)時(shí)間穩(wěn)定高表達(dá)目的蛋白。Liu等〔23〕將一種名為Survivin的抗凋亡基因轉(zhuǎn)染BMSCs后移植,發(fā)現(xiàn)在提高BMSCs存活率和延長(zhǎng)其存活時(shí)間的同時(shí),BMSCs長(zhǎng)時(shí)間旁分泌VEGF和堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)。Shen等〔24〕將一種名為依達(dá)拉奉(MCI-186)的氧自由基清除劑基因轉(zhuǎn)染BMSCs后移植,發(fā)現(xiàn)BMSCs存活率的提高使BDNF和VEGF得到高表達(dá)。
除了單基因轉(zhuǎn)染,有學(xué)者成功將多重基因轉(zhuǎn)染BMSCs,并將其移植治療腦梗死。Ding等〔12〕將具有促神經(jīng)發(fā)生功能的Noggin基因和神經(jīng)生長(zhǎng)因子(NGF)基因雙基因轉(zhuǎn)染BMSCs后移植,兩種內(nèi)源性蛋白協(xié)同高表達(dá),較單基因轉(zhuǎn)染移植,BMSCs分化為神經(jīng)細(xì)胞現(xiàn)象更為明顯。雖然干細(xì)胞結(jié)合基因治療腦梗死更具療效,但是出于安全性的考慮,其尚未應(yīng)用于臨床。
3.3誘導(dǎo)BMSCs為神經(jīng)樣細(xì)胞BMSCs可多向分化,并能分化為神經(jīng)細(xì)胞;但研究發(fā)現(xiàn)在腦梗死病灶BMSCs僅少量表達(dá)nestin,未能分化為成熟的神經(jīng)細(xì)胞〔25〕。將BMSCs誘導(dǎo)為神經(jīng)細(xì)胞后移植成為一新思路。Heo等〔26〕將BMSCs誘導(dǎo)成為神經(jīng)元樣細(xì)胞,移植后抗炎效果加強(qiáng),但是神經(jīng)元樣細(xì)胞在梗死灶邊緣并未分化為成熟的神經(jīng)細(xì)胞。顯然誘導(dǎo)BMSCs為神經(jīng)細(xì)胞后移植仍不成熟。首先,對(duì)于誘導(dǎo)BMSCs為神經(jīng)細(xì)胞的有效性存在爭(zhēng)議,Thomas等〔27〕發(fā)現(xiàn)誘導(dǎo)的BMSCs僅具有神經(jīng)細(xì)胞形態(tài)而不具備相應(yīng)功能。其次應(yīng)考慮誘導(dǎo)劑的毒副作用,尤其是化學(xué)誘導(dǎo)劑具有的細(xì)胞毒性作用,將會(huì)影響細(xì)胞骨架的穩(wěn)定和變形能力。
4移植BMSCs的途徑和數(shù)量
目前關(guān)于BMSCs的移植途徑主要為靜脈途徑、頸動(dòng)脈途徑和立體定向途徑。(1)靜脈途徑:其最大優(yōu)點(diǎn)在于創(chuàng)傷微小,風(fēng)險(xiǎn)較低,可操作性強(qiáng)。缺點(diǎn)在于BMSCs歸巢量微少,大部分細(xì)胞都滯留于肺脾等外周器官〔28〕,而且細(xì)胞容易相互凝集形成細(xì)胞栓子,造成外周器官栓塞,尤其以肺栓塞多見(jiàn)。(2)頸動(dòng)脈途徑:優(yōu)點(diǎn)在于可以避免外周器官阻滯BMSCs,同時(shí)可以最小創(chuàng)傷向病灶移植大量BMSCs。缺點(diǎn)在于容易造成腦動(dòng)脈栓塞形成,引發(fā)腦梗死。(3)立體定向途徑:其優(yōu)點(diǎn)在于直接向病灶移植BMSCs,提高細(xì)胞利用率,增強(qiáng)療效。Kawabori等〔29〕證實(shí)立體定向途徑移植1 106的細(xì)胞量,其療效優(yōu)于靜脈途徑移植3 106的細(xì)胞量。其缺點(diǎn)在于損害腦組織、創(chuàng)傷較大,引發(fā)顱內(nèi)高壓,操作難度大。
關(guān)于移植細(xì)胞數(shù)量,目前主要集中在1×104~107等范圍〔13,30〕,Wang等〔30〕證實(shí)移植1×106~107的細(xì)胞量療效優(yōu)于1×104~105的細(xì)胞量。但是這并不意味移植的細(xì)胞數(shù)量越多,療效越好。首先,血液途徑移植,細(xì)胞濃度越高越容易形成細(xì)胞栓塞。其次,梗死灶貧瘠的微環(huán)境不足以營(yíng)養(yǎng)支持大量的干細(xì)胞,造成干細(xì)胞的存活率降低,結(jié)果可能適得其反。
5BMSCs治療腦梗死的具體機(jī)制
BMSCs治療腦梗死有其獨(dú)特的優(yōu)點(diǎn):(1)都能有效改善神經(jīng)功能缺損癥狀。(2)相對(duì)其他治療措施,極大延長(zhǎng)了治療時(shí)間窗〔31〕。(3)是基因工程治療的良好載體。(4)未見(jiàn)腫瘤等不良事件發(fā)生。
但是目前對(duì)于BMSCs治療腦梗死的具體機(jī)制不明,可能與以下幾個(gè)方面有關(guān)。(1)細(xì)胞替代:BMSCs移植治療腦梗死最初目的在于替代壞死細(xì)胞以恢復(fù)受損結(jié)構(gòu)。然而其有效性飽受爭(zhēng)議。首先,血管途徑移植BMSCs的歸巢量微少〔28〕及在腦梗死慢性期膠質(zhì)瘢痕的限制阻礙,能有效定植壞死部位的干細(xì)胞數(shù)量微少。再者,移植后雖然有小部分BMSCs表達(dá)神經(jīng)元和膠質(zhì)細(xì)胞表面標(biāo)志物,但是其是否具有相應(yīng)功能有待進(jìn)一步確定。(2)營(yíng)養(yǎng)支持:研究表明移植BMSCs后凋亡的細(xì)胞數(shù)顯著減少并改善神經(jīng)缺損,這可能與BMSCs的營(yíng)養(yǎng)支持相關(guān)。研究表明移植后BMSCs可分泌BDNF、GDNF、bFGF等多種營(yíng)養(yǎng)因子〔15,23〕,對(duì)受損的神經(jīng)細(xì)胞提供營(yíng)養(yǎng)支持。(3)免疫炎癥調(diào)節(jié):BMSCs能旁分泌TGF-β(轉(zhuǎn)化生長(zhǎng)因子)抑制免疫細(xì)胞的播散,有效減少炎癥細(xì)胞的浸潤(rùn)〔32〕,可調(diào)節(jié)外周血中的調(diào)節(jié)性T細(xì)胞活性,減少炎癥細(xì)胞對(duì)梗死灶損害〔30〕。(4)血管再生:BMSCs可分泌VEGF支持血管再生,并且研究表明移植BMSCs后缺血半暗帶血管發(fā)生明顯〔14〕。(5)促進(jìn)內(nèi)源性修復(fù):Li等〔33〕研究證實(shí)腦梗死后大腦自身啟動(dòng)自我修復(fù),包括祖細(xì)胞的生成、神經(jīng)發(fā)生和血管新生。而B(niǎo)MSCs可支持祖細(xì)胞的生成、促進(jìn)神經(jīng)發(fā)生和加強(qiáng)血管新生以促進(jìn)修復(fù)。
在腦梗死后不同時(shí)期移植BMSCs,其具體治療機(jī)制可能有所偏重。研究證實(shí)腦梗死早期移植BMSCs主要通過(guò)炎癥抑制和營(yíng)養(yǎng)支持發(fā)揮療效〔34〕,而恢復(fù)期移植BMSCs則偏重于血管再生〔31〕和抑制膠質(zhì)瘢痕形成以恢復(fù)功能。
6展望
目前已從多角度多方向研究利用BMSCs移植治療腦梗死,并且臨床試驗(yàn)業(yè)已開(kāi)展,但是仍然有著許多問(wèn)題亟需解決和值得深入研究。這包括預(yù)處理干細(xì)胞的最佳方式、影響干細(xì)胞存活的決定因素、移植模式以及干細(xì)胞在體內(nèi)的蹤跡和最終結(jié)局,這些問(wèn)題的盡早解決關(guān)系到治療效果的穩(wěn)定性和安全性,有利于進(jìn)一步開(kāi)展臨床試驗(yàn)。
參考文獻(xiàn)7
1Song M,Mohamad O,Gu X,etal.Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice〔J〕.Cell transplant,2013;22(11):2001-15.
2Jang DK,Park SI,Han YM,etal.Motor-evoked potential confirmation of functional improvement by transplanted bone marrow mesenchymal stem cell in the ischemic rat brain〔J〕.J Biomed Biotechnol,2011;2011:238409.
3Friedenstein AJ,Chailakhyan RK,Latsinik NV,etal.Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues:cloning in vitro and retransplantation in vivo〔J〕.Transplantation,1974;17(4):331-40.
4Zhao Y,Xin J,Sun C,etal.Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70〔J〕.Gene,2012;509(1):85-92.
5Yang S,Gao Q,Bao L,etal.Striatal extracts promote the dopaminergic differentiation of GFP-bone mesenchymal stem cells〔J〕.Neuroscience Letters,2012;530(2):115-20.
6Yuan Y,Lin S,Guo N,etal.Marrow mesenchymal stromal cells reduce methicillin-resistant staphylococcus aureus infection in rat models〔J〕.Cytotherapy,2014;16(1):56-63.
7Schafer S,Calas AG,Vergouts M,etal.Immunomodulatory influence of bone marrow-derived mesenchymal stem cells on neuroinflammation in astrocyte cultures〔J〕.J Neuroimmunol,2012;249(1-2):40-8.
8Zimmermann JA,McDevitt TC.Preconditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion〔J〕.Cytotherapy,2014;16(3):331-45.
9Zhong Q,Zhou Y,Ye W,etal.Hypoxia-inducible factor 1-alpha-AA-modified bone marrow stem cells protect PC12 cells from hypoxia-induced apoptosis,partially through VEGF/PI3K/Akt/FoxO1 pathway〔J〕.Stem Cells Dev,2012;21(14):2703-17.
10Gutierrez-Fernandez M,Rodriguez-Frutos B,Alvarez-Grech J,etal.Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats〔J〕.Neuroscience,2011;175(3):394-405.
11Suzuki J,Sasaki M,Harada K,etal.Bilateral cortical hyperactivity detected by fMRI associates with improved motor function following intravenous infusion of mesenchymal stem cells in a rat stroke model〔J〕.Brain Res,2013;1497(1):15-22.
12Ding J,Cheng Y,Gao S,etal.Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats〔J〕.J Neurosci Res,2011;89(2):222-30.
13Gutierrez-Fernandez M,Rodriguez-Frutos B,Ramos-Cejudo J,etal.Effects of intravenous administration of allogenic bone marrow-and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke〔J〕.Stem Cell Res Ther,2013;4(1):11.
14Deng YB,Ye WB,Hu ZZ,etal.Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats〔J〕.Neurol Res,2010;32(2):148-56.
15Bao X,Wei J,F(xiàn)eng M,etal.Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats〔J〕.Br Res,2011;1367(1):103-13.
16Li J,Zhu H,Liu Y,etal.Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macacafascicularis〔J〕.Br Res,2010;1334(1):65-72.
17Zhang J,Li Y,Zhang ZG,etal.Bone marrow stromal cells increase oligodendrogenesis after stroke〔J〕.J Cereb Blood Flow Metab,2009;29(6):1166-74.
18Goldmacher GV,Nasser R,Lee DY,etal.Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model〔J〕.PLoS One,2013;8(3):e60049.
19Liu H,Xue W,Ge G,etal.Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs〔J〕.Biochem Biophysi Res Commun,2010;401(4):509-15.
20Wei N,Yu SP,Gu X,etal.Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice〔J〕.Cell Transplant,2013;22(6):977-91.
21Wei L,F(xiàn)raser JL,Lu ZY,etal.Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats〔J〕.Neurobiol Dis,2012;46(3):635-45.
22van Velthoven CT,Sheldon RA,Kavelaars A,etal.Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke〔J〕.Stroke,2013;44(5):1426-32.
23Liu N,Zhang Y,F(xiàn)an L,etal.Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats〔J〕.J Transl Med,2011;9(1):105.
24Shen LH,Ye M,Ding XS,etal.Protective effects of MCI-186 on transplantation of bone marrow stromal cells in rat ischemic stroke model〔J〕.Neuroscience,2012;223(3):315-24.
25Chen C,Cheng Y,Chen J.Transfection of noggin in bone marrow stromal cells (BMSCs) enhances BMSC-induced functional outcome after stroke in rats〔J〕.J Neurosci Res,2011;89(8):1194-202.
26Heo JS,Choi SM,Kim HO,etal.Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke〔J〕.Neuroscience,2013;238(3):305-18.
27Thomas MG,Stone L,Evill L,etal.Bone marrow stromal cells as replacement cells for Parkinson's disease:generation of an anatomical but not functional neuronal phenotype〔J〕.Transl Res,2011;157(1):56-63.
28Steiner B,Roch M,Holtkamp N,etal.Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia〔J〕.Neurosci Lett,2012;513(1):25-30.
29Kawabori M,Kuroda S,Sugiyama T,etal.Intracerebral,but not intravenous,transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct:an optical imaging study〔J〕.Neuropathology,2012;32(3):217-26.
30Wang LQ,Lin ZZ,Zhang HX,etal.Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke〔J〕.CNS Neurosci Ther,2014;20(4):317-26.
31Komatsu K,Honmou O,Suzuki J,etal.Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia〔J〕.Brain Res,2010;1334(1):84-92.
32Yoo SW,Chang DY,Lee HS,etal.Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-beta〔J〕.Neurobiol Dis,2013;58(3):249-57.
33Li B,Piao CS,Liu XY,etal.Brain self-protection:the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia〔J〕.Brain Res,2010;1327(1):91-102.
34Zheng W,Honmou O,Miyata K,etal.Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia〔J〕.Brain Res,2010;1310(1):8-16.
〔2014-11-22修回〕
(編輯袁左鳴)