張濤,楊翼
自噬在心肌梗死患者運(yùn)動(dòng)康復(fù)中的研究進(jìn)展
張濤1,楊翼2
[摘要]自噬是廣泛存在于生物體內(nèi)細(xì)胞對(duì)抗外界壓力而實(shí)現(xiàn)自我保護(hù)的一種機(jī)制,心肌細(xì)胞自噬對(duì)維持心臟功能具有重要作用。心肌梗死患者早期介入運(yùn)動(dòng)康復(fù),可以改善患者的生活質(zhì)量及機(jī)體功能。本文總結(jié)運(yùn)動(dòng)康復(fù)在心肌梗死過(guò)程中誘導(dǎo)心肌細(xì)胞自噬所起的作用和可能的機(jī)制。
[關(guān)鍵詞]心肌梗死;自噬;運(yùn)動(dòng)康復(fù);綜述
[本文著錄格式]張濤,楊翼.自噬在心肌梗死患者運(yùn)動(dòng)康復(fù)中的研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐, 2015, 21(9): 1042-1044.
CITED AS: Zhang T, Yang Y. Role of autophagy in sport rehabilitation for myocardial infarction (review) [J]. Zhongguo Kangfu Lilun Yu Shijian, 2015, 21(9): 1042-1044.
隨著社會(huì)經(jīng)濟(jì)發(fā)展,人口老齡化以及人們生活方式的改變,我國(guó)心肌梗死患者的死亡率在明顯增加[1]。心臟康復(fù)治療可以降低心肌梗死患者再次發(fā)生心肌梗死的風(fēng)險(xiǎn),降低患者的死亡率,改善患者的生活質(zhì)量[2]。最近一項(xiàng)隨機(jī)對(duì)照研究發(fā)現(xiàn),運(yùn)動(dòng)康復(fù)的早期介入能顯著改善急性心肌梗死患者的生活質(zhì)量與身體功能[3]。深入研究運(yùn)動(dòng)康復(fù)在心血管病中的作用機(jī)制非常必要。
自噬(autophagy)是真核細(xì)胞生物體內(nèi)普遍存在的新陳代謝現(xiàn)象,是細(xì)胞的一種自我更新過(guò)程和機(jī)體組織的一種自我防護(hù)機(jī)制。適宜運(yùn)動(dòng)能夠提高心肌細(xì)胞的自噬活性[4-5]。本文對(duì)國(guó)內(nèi)外相關(guān)領(lǐng)域的研究進(jìn)行綜述。
1.1自噬的形式與過(guò)程
自噬一詞來(lái)源于希臘語(yǔ),即自我吞噬之意,是指細(xì)胞在外界環(huán)境因素影響下,對(duì)其內(nèi)部受損的細(xì)胞器、錯(cuò)誤折疊的蛋白質(zhì)和入侵其內(nèi)的病原體在溶酶體中進(jìn)行降解的生物學(xué)過(guò)程。目前細(xì)胞自噬分為3種不同形式:巨自噬(macrophagy)、微自噬(microautophagy)和分子伴侶介導(dǎo)的自噬(chaperone-mediated autophagy, CMA)。3種形式主要區(qū)別在于其底物進(jìn)入溶酶體的途徑不同,一般沒(méi)有特殊說(shuō)明,我們所研究的自噬都是傳統(tǒng)意義上的巨自噬[6]。
巨自噬的發(fā)生是一個(gè)連續(xù)的過(guò)程,且持續(xù)時(shí)間短暫。為了方便描述,可分為4個(gè)動(dòng)態(tài)發(fā)展階段:首先是細(xì)胞內(nèi)膜包裹底物形成自噬囊泡(phagophore),也叫自噬前體;其后自噬囊泡之間邊緣融合形成自噬小體(autophagosome);接下來(lái)自噬小體與溶酶體結(jié)合形成自噬溶酶體(autolysosome);最后底物與自噬囊泡雙層膜結(jié)構(gòu)的內(nèi)膜部分發(fā)生降解,降解產(chǎn)物在細(xì)胞內(nèi)進(jìn)入循環(huán)再利用[7]。
1.2自噬的信號(hào)通路及生理意義
自噬是一種高度保守的細(xì)胞機(jī)制[8]。它不是一個(gè)完全被動(dòng)的細(xì)胞學(xué)過(guò)程,而是細(xì)胞自身在受到外界刺激后,通過(guò)細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)觸發(fā)的一系列維持內(nèi)環(huán)境穩(wěn)定的主動(dòng)生物學(xué)過(guò)程。目前研究最為廣泛的兩條自噬信號(hào)通路是:哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)通路和Ⅲ類磷脂酰肌醇- 3激酶(phosphatidylinositol 3- kinase, ClassⅢPI3K)通路[9-10]。
細(xì)胞自噬是生物體適應(yīng)不同環(huán)境的內(nèi)部調(diào)節(jié)和保護(hù)機(jī)制。細(xì)胞自噬參與代謝應(yīng)激的保護(hù)機(jī)制,細(xì)胞在遇到如營(yíng)養(yǎng)缺乏、生長(zhǎng)因子缺如、低氧等代謝應(yīng)激時(shí),需要進(jìn)行細(xì)胞自噬調(diào)節(jié)[11]。細(xì)胞自噬是細(xì)胞的看家者,機(jī)體通過(guò)自噬機(jī)制清除生命過(guò)程中發(fā)生損傷的細(xì)胞器和錯(cuò)誤折疊的蛋白質(zhì)[11]。細(xì)胞自噬是染色體的守護(hù)者,一旦細(xì)胞自噬相關(guān)基因發(fā)生異常,DNA損傷加劇,且染色體的穩(wěn)定性顯著下降[11-12]。細(xì)胞自噬可以決定細(xì)胞死亡,在某些情況下自噬介導(dǎo)細(xì)胞死亡,這是一種特殊形式的死亡,稱為細(xì)胞自噬型死亡[11,13]。
自1976年Sybers等報(bào)導(dǎo)心肌細(xì)胞存在自噬以來(lái),自噬逐漸成為心血管疾病研究的關(guān)注重點(diǎn)[14]。心肌細(xì)胞作為一種長(zhǎng)壽命分裂后期細(xì)胞,分化再生能力非常有限,其長(zhǎng)時(shí)間存活與自噬密切相關(guān)[15]。正常的心臟組織保留著低水平的自噬,心肌細(xì)胞通過(guò)自噬,降解功能異?;蝈e(cuò)誤折疊的蛋白質(zhì)以及受損或老化的細(xì)胞器,為細(xì)胞提供能量、促進(jìn)物質(zhì)循環(huán)及細(xì)胞的自我更新,基礎(chǔ)水平的自噬對(duì)于保障心臟功能和保持心肌活力具有重要作用[16]。自噬也參與許多心血管疾病的發(fā)生、發(fā)展過(guò)程,在心肌梗死后的缺血以及再灌注階段,心肌細(xì)胞自噬均扮演重要角色。
2.1缺血階段
心肌缺血可以理解為血流供應(yīng)不足所致的心肌細(xì)胞營(yíng)養(yǎng)物質(zhì)缺乏。心肌細(xì)胞通過(guò)自噬適應(yīng)這種低營(yíng)養(yǎng)狀態(tài),發(fā)揮心臟保護(hù)作用。細(xì)胞自噬通過(guò)選擇性增加氧缺乏時(shí)ATP的生成,維持心肌能量代謝,從而保護(hù)心肌功能[17]。Decker等發(fā)現(xiàn),離體灌流兔子心臟缺血40 min后,心肌細(xì)胞自噬上調(diào)[18]。Yan等在豬慢性心肌缺血實(shí)驗(yàn)中,也觀察到豬心肌細(xì)胞自噬增強(qiáng)[19]。Yan等報(bào)道,在豬慢性缺血時(shí),自噬作用的增強(qiáng)能使細(xì)胞凋亡率下降;而發(fā)生凋亡的細(xì)胞,自噬受到抑制[20]。這說(shuō)明慢性心肌缺血過(guò)程中,心肌細(xì)胞自噬發(fā)揮心肌保護(hù)作用。在體外細(xì)胞系的研究中,Dosenko等發(fā)現(xiàn),通過(guò)自噬抑制劑3-甲基腺嘌呤(3-Methyladenine, 3-MA)阻斷自噬作用,缺氧/復(fù)氧誘導(dǎo)的心肌細(xì)胞存活率明顯下降[21]??梢娫谛募〖?xì)胞缺血階段,自噬介導(dǎo)心肌的保護(hù)作用。其可能的機(jī)制為:隨著機(jī)體氧和營(yíng)養(yǎng)物質(zhì)的下降,內(nèi)生ATP水平下降,一磷酸腺苷(Adenosine monophosphate, AMP)水平上升,激活腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK),從而抑制mTOR,通過(guò)AMPK/ mTOR通路引發(fā)自噬[22],保護(hù)缺血狀態(tài)下的心肌。
2.2再灌注階段
心臟恢復(fù)灌注后即解除了氧和營(yíng)養(yǎng)物質(zhì)的不足,理論上自噬應(yīng)該受到抑制而減弱,然而Valentim等的實(shí)驗(yàn)發(fā)現(xiàn),再灌注狀態(tài)下心肌細(xì)胞自噬仍然增強(qiáng),同時(shí)觀察到酵母自噬基因Atg6的同源基因Beclin1的表達(dá)增強(qiáng),并且隨著再灌注階段自噬的上調(diào),心肌細(xì)胞凋亡增加[23]。再灌注過(guò)程中,在缺血階段表達(dá)不多的Beclin1表達(dá)明顯增多,而AMPK的表達(dá)較缺血階段顯著減少,表明再灌注階段心肌細(xì)胞的自噬與Beclin1上調(diào)關(guān)系密切,而與AMPK激活沒(méi)有直接關(guān)系,即再灌注階段的自噬增強(qiáng)是通過(guò)ClassⅢPI3K/Beclin1途徑進(jìn)一步激活自噬[24],造成心肌細(xì)胞過(guò)度自噬而引起心肌的再灌注損傷。
綜上所述,自噬在心肌梗死的缺血和再灌注兩個(gè)階段均發(fā)揮明顯的調(diào)控作用,缺血階段通過(guò)AMPK/mTOR通路介導(dǎo)的自噬上調(diào)可以維持心肌細(xì)胞穩(wěn)態(tài)、減少細(xì)胞缺失,發(fā)揮心肌保護(hù)作用[17];再灌注階段由Beclin1介導(dǎo)的過(guò)度自噬則通過(guò)結(jié)合Bcl-2家族的保守結(jié)構(gòu)域激活caspase-9和caspase級(jí)聯(lián)反應(yīng),誘導(dǎo)細(xì)胞凋亡或壞死[23]。因此,采用合理有效的手段調(diào)控細(xì)胞自噬,有可能成為心肌梗死患者康復(fù)的新方向。
適宜運(yùn)動(dòng)能提高機(jī)體抗氧化能力,預(yù)防心血管、呼吸及代謝系統(tǒng)疾病。長(zhǎng)期堅(jiān)持適量運(yùn)動(dòng),可以減緩機(jī)體老化速度。對(duì)于某些患者來(lái)說(shuō),運(yùn)動(dòng)甚至可以部分代替藥物[25]。運(yùn)動(dòng)療法作為一種常用康復(fù)手段,廣泛應(yīng)用于物理治療中,在心肌梗死患者的心臟康復(fù)中發(fā)揮關(guān)鍵作用。諸多研究均表明,短期鍛煉在心肌缺血再灌注過(guò)程中可起到心肌保護(hù)作用,盡管其中機(jī)制仍未完全揭曉[26-30]。
3.1主要機(jī)制
He等發(fā)現(xiàn),30 min運(yùn)動(dòng)足以誘導(dǎo)小鼠心肌中自噬小體的形成,80 min后自噬小體的形成達(dá)到平臺(tái)期[31]。經(jīng)過(guò)短時(shí)運(yùn)動(dòng),正常小鼠肌肉中的AMPK也被激活[32]。Oqura等發(fā)現(xiàn),運(yùn)動(dòng)可以通過(guò)mTOR的調(diào)節(jié)誘導(dǎo)心肌細(xì)胞自噬[33]。由此可見,運(yùn)動(dòng)可模擬心臟相對(duì)缺血的狀態(tài),類似心肌梗死早期的缺血階段,心肌細(xì)胞面臨相對(duì)營(yíng)養(yǎng)缺乏,伴隨著ATP的消耗與AMP的增多,通過(guò)AMPK/mTOR通路介導(dǎo)的自噬上調(diào),維持心肌細(xì)胞穩(wěn)態(tài)、發(fā)揮心肌保護(hù)作用[34]。
3.2其他機(jī)制
Quindry等的研究表明,線粒體與肌纖維膜ATP敏感鉀通道,參與運(yùn)動(dòng)介導(dǎo)的自噬對(duì)心肌缺血再灌注大鼠心肌保護(hù)作用,同時(shí)指出,運(yùn)動(dòng)介導(dǎo)的心肌保護(hù)作用可能是通過(guò)保持心肌細(xì)胞的基礎(chǔ)水平自噬實(shí)現(xiàn)的[35]。He等通過(guò)對(duì)BCL2 AAA小鼠(Bcl-2基因敲除小鼠)的研究發(fā)現(xiàn),運(yùn)動(dòng)介導(dǎo)的自噬中,Bcl-2發(fā)揮關(guān)鍵作用[4]。Willis等認(rèn)為,熱休克蛋白70相互作用蛋白(heat shock protein 70-interacting protein, CHIP)的羥基末端,在運(yùn)動(dòng)介導(dǎo)的分子伴侶相關(guān)自噬心肌保護(hù)過(guò)程中扮演重要角色[36]。運(yùn)動(dòng)還可以通過(guò)誘導(dǎo)心肌細(xì)胞積極地自噬性適應(yīng)來(lái)幫助改善心臟功能[5]。更多運(yùn)動(dòng)誘導(dǎo)心肌細(xì)胞自噬的機(jī)制有待進(jìn)一步研究。
綜上所述,自噬參與心肌梗死的缺血-再灌注過(guò)程,AMPK/mTOR介導(dǎo)的自噬激活能有效清除心肌細(xì)胞中受損細(xì)胞器,從而減輕缺血對(duì)心肌細(xì)胞造成的損害;但Beclin1介導(dǎo)的過(guò)度自噬會(huì)誘發(fā)心肌細(xì)胞死亡,導(dǎo)致病情加重??祻?fù)運(yùn)動(dòng)能夠通過(guò)AMPK/mTOR途徑激活自噬,從而有效恢復(fù)心肌梗死患者的心臟功能。
目前,自噬在心肌梗死患者運(yùn)動(dòng)康復(fù)中的作用研究還處于初期階段,許多問(wèn)題亟待解決,有待進(jìn)一步研究。
[參考文獻(xiàn)]
[1]陳偉偉,高潤(rùn)霖,劉力生,等.中國(guó)心血管病報(bào)告2013概要[J].中國(guó)循環(huán)雜志, 2014, 29(7): 487-491.
[2] Heran BS, Chen JM, Enrahim S, et al. Exercise-based cardiac rehabilitation for coronary heart disease [J]. Cochranre Datebase Syst Rev, 2011, (7): CD001800.
[3] Peixoto TC, Begot I, Bolzan DW, et al. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction: a randomized controlled trial [J]. Can J Cardiol, 2015, 31(3): 308-313.
[4] He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis [J]. Nature, 2012, 481(7382): 511-515.
[5] Fiuza-Luces C, Delmiro A, Soares-Miranda L, et al. Exercise training can induce cardiac autophagy at end-stage chronic conditions: insights from a graft-versus-host-disease mouse model [J]. Brain Behav Immun, 2014, 39: 56-60.
[6] Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues [J]. Cell, 2012, 147(4): 728-741.
[7] Mizushima N. Autophagy: process and function [J]. Genes Dev, 2007, 21(22): 2861-2873.
[8] Boya P, Reqqiori F, Codoqno P. Emerging regulation and function of autophagy [J]. Nat Cell Biol, 2013, 15(7): 713-720.
[9] Burman C, Ktistakis NT. Regulation of autophagy by phosphatidylinositol 3-phosphate [J]. FEBS Lett, 2010, 584(7): 1302-1312.
[10] Cell Signaling. Autophagy signaling pathway [DB/OL]. [2015-05-08]. http://www.cellsignal.com/contents/science-cst-pathways-autophagy/autophagy-signaling-pathway/pathways-autophagy?Ntt=autophagy&from-Page=search.
[11] Levine B, Kroemer G. Autophagy in the pathogenesis of disease [J]. Cell, 2008, 132(1): 27-42.
[12] Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer [J]. Nat Rev Cancer, 2007, 7(12): 961-967.
[13] Levine B, Yuan J. Autophagy in cell death: an innocent convict? [J]. J Clin Invest, 2005, 115(10): 2679-2688.
[14] Sybers HD, Ingwall J, DeLuca M. Autophagy in cardiac myocytes [J]. Recent Adv Stud Cardiac Struct Metab, 1976, 12: 453-463.
[15] Vacek TP, Vacek JC, Tyagi N, et al. Autophagy and heart failure: a possible role for homocysteine [J]. Cell Biochem Biophys, 2012, 62(1): 1-11.
[16] Cao DJ, Gillette TG, Hill JA. Cardiomyocyte autophagy: remodeling, repairing, and reconstructing the heart [J]. Curr Hypertens Rep, 2009, 11 (6): 406-411.
[17] Takagi H, Matsui Y, Hirotani S, et al. AMPK mediates autophagy during myocardial ischemia in vivo [J].Autophagy, 2007, 3(4): 405-407.
[18] Decker RS, Wildenthal K. Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes [J]. Am J Pathol, 1980, 98(2): 425-444.
[19] Yan L, Sadoshima J, Vatner DE, et al. Autophagy: a novel protective mechanism in chronic ischemia [J]. Cell Cycle, 2006, 5(11): 13807-13812.
[20] Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium [J]. Proc Natl Acad Sci U SA, 2005, 102(39): 146-157.
[21] Dosenko VE, Nagibin VS, Tumanovska LV, et al. Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyocyte? [J]. Autophagy, 2006, 2(4): 305-306.
[22] Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function [J]. Genes Dev, 2011, 25(18): 1895-1908.
[23] Valentim L, Laurence KM, Townsend PA, et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischemia/reperfusion injury [J]. J Mol Cell Cardiol, 2006, 40(6): 846-852.
[24] Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy [J]. Circ Res, 2007, 100(6): 914-922.
[25] Fiuza-Luces C, Garatachea N, Berger NA, et al. Exercise is the real polypill [J]. Physiology (Bethesda), 2013, 28(5): 330-358.
[26] Quindry JC, Hamilton KL, French JP, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis [J]. J Appl Physiol (1985), 2007, 103(3): 1056-1062.
[27] Starnes JW, Barnes BD, Olsen ME. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction [J]. JAppl Physiol (1985), 2007, 102(5): 1793-1798.
[28] Dickson EW, Hogrefe CP, Ludwig PS, et al. Exercise enhances myocardial ischemic tolerance via an opioid receptor- dependent mechanism [J].Am J Physiol Heart Circ Physiol, 2008, 294(1): H402-H408.
[29] French JP, Hamilton KL, Quindry JC, et al. Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain [J]. FASEB J, 2008, 22(8): 2862-2871.
[30] Quindry JC, Schreiber L, Hosick P, et al. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts [J]. Am J Physiol Heart Circ Physiol, 2010, 299(1): H175-H183.
[31] He C, Sumpter R Jr, Levine B. Exercise induces autophagy in peripheral tissues and in the brain [J].Autophagy, 2012, 8(10): 1548-1551.
[32] Garber K. Autophagy. Explaining exercise [J]. Science, 2012, 335 (6066): 281.
[33] Oqura Y, Iemitsu M, Naito H, et al. Single bout of running exercise changes LC-Ⅱexpression in rat cardiac muscle [J]. Biochem Biophys Res Commun, 2011, 414(4): 756-760.
[34] Klionsky DJ, Saltiel AR. Autophagy works out [J]. Cell Metab, 2012, 15(3): 273-274.
[35] Quindry JC, Miller L, McGinnis G, et al. Ischemia reperfusion injury, KATP channels, and exercise-induced cardioprotection against apoptosis [J]. JAppl Physiol (1985), 2012, 113(3): 498-506.
[36] Willis MS, Min JN, Wang S, et al. Carboxyl terminus of HSP70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise [J]. Cell Biochem Funct, 2013, 31 (8): 724-735.
·綜述·
作者單位:1.武漢體育學(xué)院研究生院,湖北武漢市430079;2.武漢體育學(xué)院健康科學(xué)學(xué)院,湖北武漢市430079。作者簡(jiǎn)介:張濤(1983-),男,漢族,湖北仙桃市人,碩士研究生,主要研究方向:運(yùn)動(dòng)醫(yī)學(xué)運(yùn)動(dòng)康復(fù)方向。通訊作者:楊翼(1973-),女,漢族,浙江余姚市人,博士,教授,博士生導(dǎo)師,主要研究方向:中醫(yī)藥在運(yùn)動(dòng)醫(yī)學(xué)領(lǐng)域的應(yīng)用。E-mail: yangyi999999@foxmail.com。
Role of Autophagy in Sport Rehabilitation for Myocardial Infarction (review)
ZHANG Tao1, YANG Yi2
1. Graduate School, Wuhan Sports University, Wuhan, Hubei 430079, China; 2. Health and Sciences School, Wuhan Sports University, Wuhan, Hubei 430079, China
Abstract:Autophagy generally exists in organisms as a protective mechanism against external pressure, and myocardial autophagy plays a vital role to maintain myocardial function. Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction. This paper summarized the role of autophagy in sport rehabilitation for myocardial infarction and possible mechanisms.
Key words:myocardial infarction; autophagy; sport rehabilitation; review
(收稿日期:2015-06-18修回日期:2015-09-01)
基金項(xiàng)目:1.湖北省自然科學(xué)基金重點(diǎn)項(xiàng)目(No.2015CFA084);2.湖北省高等學(xué)校優(yōu)秀中青年科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(No.T201523)。
DOI:10.3969/j.issn.1006-9771.2015.09.012
[中圖分類號(hào)]R541.4
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1006-9771(2015)09-1042-03