蘇云云
摘要: 太赫茲波可以與極性液體中的氫鍵網(wǎng)絡(luò)產(chǎn)生強(qiáng)的相互作用,作用越強(qiáng)吸收越強(qiáng)。鑒于此性質(zhì),利用太赫茲時(shí)域光譜技術(shù)對甲醇、乙醇、正丙醇在0.1~1 THz波段內(nèi)的太赫茲光譜進(jìn)行了檢測,發(fā)現(xiàn)其吸收光譜隨分子極性的差異有顯著的區(qū)別,并從中提取出了一元醇的吸收系數(shù)、折射率、介電常數(shù)等光學(xué)參數(shù)。在此基礎(chǔ)上還利用對樣品介電常數(shù)敏感的微孔金屬片,通過產(chǎn)生的共振峰漂移進(jìn)一步對不同一元醇進(jìn)行了檢測,結(jié)果表明太赫茲光譜技術(shù)結(jié)合微結(jié)構(gòu)器件在液態(tài)化學(xué)及生物樣品檢測方面有潛在的應(yīng)用價(jià)值。
關(guān)鍵詞: 太赫茲光譜; 一元醇; 微孔金屬片
中圖分類號(hào): TN 29文獻(xiàn)標(biāo)志碼: Adoi: 10.3969/j.issn.10055630.2014.06.007
引言太赫茲波(Terahertz wave)是介于微波和紅外輻射之間,振蕩頻率為0.1~10 THz(1 THz=1012 Hz)的一種電磁輻射。近幾十年超快飛秒激光技術(shù)的迅速發(fā)展,為THz脈沖的產(chǎn)生提供了穩(wěn)定、可靠的激光光源,使得太赫茲技術(shù)作為一種新的光譜手段在實(shí)際應(yīng)用方面取得了很大的進(jìn)展。許多分子之間弱的相互作用如氫鍵、范德華力、生物大分子的偶極旋轉(zhuǎn)和振動(dòng)躍遷都處于THz頻帶范圍,這使得太赫茲技術(shù)在生物、醫(yī)藥檢測、化學(xué)材料分析等方面有著廣泛的應(yīng)用[15]。醇類物質(zhì)是常見的一類重要有機(jī)物質(zhì),在食品、化工、生物制藥等領(lǐng)域有廣泛的應(yīng)用,同時(shí)由于醇分子的自身特點(diǎn)也常被用來作為研究氫鍵網(wǎng)絡(luò)的理想模型。1996年Kindt等[6]研究了極性液體包括水和一些醇以及氨水等在遠(yuǎn)紅外波段(2~50 cm-1)的介電常數(shù)等介電性質(zhì),并通過德拜模型進(jìn)一步提取其內(nèi)部的微觀弛豫過程,提示太赫茲時(shí)域光譜技術(shù)可用于研究液態(tài)物質(zhì)微觀結(jié)構(gòu)和動(dòng)力學(xué)。2005年Woods等[7]利用遠(yuǎn)紅外光譜檢測甲醇液體,反映了其太赫茲頻段的低頻振動(dòng)與液體內(nèi)部氫鍵結(jié)構(gòu)以及分子間相互作用有關(guān)。2007年,Jepsen等[8]采用反射式太赫茲時(shí)域光譜技術(shù)檢測了一些含醇液體樣品在0.1~1 THz的介電信息,提示該技術(shù)可在一系列商業(yè)飲品中鑒別出其所含醇、糖的濃度。2010年Yomogida等[9]報(bào)道了一系列不同結(jié)構(gòu)一元醇在太赫茲波段的介電響應(yīng)及溫度效應(yīng),發(fā)現(xiàn)其介電弛豫包括三個(gè)部分:介電弛豫過程的高頻階段、1.2~1.5 THz處的振動(dòng)模式、低頻分子間的振動(dòng)模式。其中寬的振動(dòng)模式峰不隨溫度變化,其介電性質(zhì)與一元醇的分子結(jié)構(gòu)有著密切的關(guān)系。隨著太赫茲技術(shù)應(yīng)用研究的不斷發(fā)展,結(jié)合傳感器件對液體樣品檢測的需求十分突出。最近,基于表面等離子體效應(yīng)的超材料結(jié)構(gòu)已作為傳感器應(yīng)用于液體樣品檢測方面。2009年,Tian等[10]采用微孔金屬片器件通過表面共振增強(qiáng)效應(yīng)成功區(qū)分出甲醇中氫的同位素。2012年,Hasebe等[11]研究表明特定結(jié)構(gòu)的帶孔金屬網(wǎng)柵可有效區(qū)分微量的單、雙鏈DNA分子。2009年,Mendis等[12]在可激發(fā)出TE(transverse electric wave)模式的平行板波導(dǎo)中鑲嵌矩形槽形成高靈敏度的光學(xué)共振器,并通過監(jiān)測折射率變化有效區(qū)分出微量的辛烷等一系列烷類物質(zhì)。本文以甲醇、乙醇、正丙醇一元醇體系為研究模型,利用太赫茲時(shí)域光譜技術(shù)并結(jié)合特定結(jié)構(gòu)的微孔金屬器件,對樣品進(jìn)行檢測,提取一系列如吸收系數(shù)、折射率、介電常數(shù)等光學(xué)參數(shù),并對經(jīng)微孔陣列金屬器件產(chǎn)生的共振吸收進(jìn)行分析和討論。
1實(shí)驗(yàn)實(shí)驗(yàn)所用的甲醇(純度>99.5%)、乙醇(純度>99.7%)、正丙醇(純度>99.5%)均購于國藥科技有限公司。實(shí)驗(yàn)采用透射式時(shí)域太赫茲光譜裝置(Terahertz time domain spectroscopy,THzTDS)[1315],該系統(tǒng)采用光電導(dǎo)天線發(fā)射和接收THz波,Toptic飛秒激光器用于產(chǎn)生和檢測太赫茲波。激光器的中心波長為780 nm,輸出功率為150 mW,脈沖寬度為90 fs,重復(fù)頻率為80 MHz。系統(tǒng)的發(fā)射器、接收器均為低溫生長的砷化鎵光電導(dǎo)天線,系統(tǒng)在0.4 THz處的信噪比超過105∶1,太赫茲的光斑半徑約為5 mm。實(shí)驗(yàn)中,通入干燥空氣,使?jié)穸冉抵?%以下,以減小環(huán)境中水蒸氣對太赫茲信號(hào)的吸收,同時(shí)環(huán)境溫度維持在23.0~25.0 ℃。實(shí)驗(yàn)中利用液體樣品厚度差的方式處理數(shù)據(jù),通過選用不同厚度(400 μm、600 μm)的石英樣品池可以減小樣品容器對實(shí)驗(yàn)造成的誤差[16]。2實(shí)驗(yàn)結(jié)果與分析利用太赫茲時(shí)域光譜裝置,可以獲得樣品的時(shí)域光譜信息,再經(jīng)傅里葉變換后進(jìn)行樣品光學(xué)參數(shù)的提取,其參數(shù)表達(dá)式為α(ω)=2[lnI(d1,ω)-lnI(d2,ω)]d2-鑒于表面等離子體效應(yīng)的超材料結(jié)構(gòu)在液體檢測方面的敏感性,本文利用特定結(jié)構(gòu)的微孔金屬器件,對不同結(jié)構(gòu)的一元醇液體樣品進(jìn)行檢測,所采用的微孔金屬片結(jié)構(gòu)如圖2所示。該微孔金屬片為鋁制材料,長寬為100 mm×100 mm、厚度250 μm,分布有超過5 000個(gè)亞波長小孔,其中小孔直徑為700 μm,六角晶格周期是1 130 μm[1921]。其工作原理為:當(dāng)入射波照射到金屬孔表面時(shí),在金屬介質(zhì)界面可以激發(fā)出表面等離子體激元(SPPs)效應(yīng),透射譜中將會(huì)出現(xiàn)共振峰。該現(xiàn)象可以采用Drude模型對SPPs效應(yīng)做進(jìn)一步分析,SPPs的波矢和頻率之間存在以下關(guān)系[22]kSPPs=ωcεdεmεd+εm=ωcεm-ε2mεd+εm(5)式中,εm、εd分別為金屬與樣品的介電常數(shù),ω為電磁波的角頻率,c為自由空間的光速。當(dāng)周圍樣品的介電常數(shù)發(fā)生改變,則對應(yīng)的金屬樣品界面的SPPs波數(shù)發(fā)生改變,共振峰發(fā)生漂移。本實(shí)驗(yàn)中不同的醇產(chǎn)生不同的共振峰,并且隨著介電常數(shù)的增加,共振頻點(diǎn)發(fā)生藍(lán)移。實(shí)驗(yàn)中,通過裝有液體的石英樣品池后的太赫茲信號(hào)作為參考信號(hào)Ein(ω),通過裝有液體及金屬片的石英比色皿后的信號(hào)作為樣品信號(hào)Eout(ω),透過率t(ω)=Eout(ω)/Ein(ω)。圖3為微孔金屬片存在情況下所獲得的甲醇、乙醇及正丙醇的透過譜,其中產(chǎn)生的共振峰頻點(diǎn)分別為0.133 THz、0.138 THz、0.143 THz。由此可見,采用微孔金屬片區(qū)分樣品優(yōu)點(diǎn)主要是可以產(chǎn)生共振峰,通過樣品介電常數(shù)的不同可以看出其對應(yīng)共振頻點(diǎn)發(fā)生藍(lán)移。同時(shí),和常規(guī)太赫茲時(shí)域透射光譜所探測到的無特征吸收光譜相比,共振峰的體現(xiàn)使檢測更顯直觀,所使用的樣品量也大大減少,此外,在數(shù)據(jù)處理方面也更簡單方便。因此該類器件作為傳感器在生物化學(xué)領(lǐng)域有著潛在的應(yīng)用價(jià)值。
3結(jié)論本文利用太赫茲時(shí)域光譜技術(shù)結(jié)合特定結(jié)構(gòu)的微孔金屬器件,對一元醇液體樣品進(jìn)行了檢測,從中提取出了吸收系數(shù)、折射率、介電常數(shù)等一系列重要的光學(xué)參數(shù)。研究表明,太赫茲時(shí)域光譜對液體樣品的極性和結(jié)構(gòu)特點(diǎn)非常敏感,結(jié)合微結(jié)構(gòu)器件在液態(tài)化學(xué)和生物樣品檢測方面具有潛在的應(yīng)用價(jià)值。
參考文獻(xiàn):
[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.
[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.
[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.
[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.
[5]朱亦鳴,高春梅,陳麟.基于平行板波導(dǎo)的雙槽諧振腔的特性研究[J].光學(xué)儀器,2014,36(4):323327.
[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.
[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.
[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.
[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.
[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.
[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.
[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.
[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.
[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.
[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.
[16]劉丹,吳勝偉,馬明旺,等.水和二氧六環(huán)水溶液的THz波段介電性質(zhì)[J].核技術(shù),2010,33(9):688692.
[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.
[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.
[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.
[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.
[21]陳麟,高春梅,徐嘉明,等.鋁質(zhì)亞波長圓孔陣列與牛眼結(jié)構(gòu)的太赫茲波傳輸特性[J].光學(xué)儀器,2013,35(6):16.
3結(jié)論本文利用太赫茲時(shí)域光譜技術(shù)結(jié)合特定結(jié)構(gòu)的微孔金屬器件,對一元醇液體樣品進(jìn)行了檢測,從中提取出了吸收系數(shù)、折射率、介電常數(shù)等一系列重要的光學(xué)參數(shù)。研究表明,太赫茲時(shí)域光譜對液體樣品的極性和結(jié)構(gòu)特點(diǎn)非常敏感,結(jié)合微結(jié)構(gòu)器件在液態(tài)化學(xué)和生物樣品檢測方面具有潛在的應(yīng)用價(jià)值。
參考文獻(xiàn):
[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.
[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.
[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.
[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.
[5]朱亦鳴,高春梅,陳麟.基于平行板波導(dǎo)的雙槽諧振腔的特性研究[J].光學(xué)儀器,2014,36(4):323327.
[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.
[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.
[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.
[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.
[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.
[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.
[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.
[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.
[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.
[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.
[16]劉丹,吳勝偉,馬明旺,等.水和二氧六環(huán)水溶液的THz波段介電性質(zhì)[J].核技術(shù),2010,33(9):688692.
[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.
[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.
[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.
[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.
[21]陳麟,高春梅,徐嘉明,等.鋁質(zhì)亞波長圓孔陣列與牛眼結(jié)構(gòu)的太赫茲波傳輸特性[J].光學(xué)儀器,2013,35(6):16.
3結(jié)論本文利用太赫茲時(shí)域光譜技術(shù)結(jié)合特定結(jié)構(gòu)的微孔金屬器件,對一元醇液體樣品進(jìn)行了檢測,從中提取出了吸收系數(shù)、折射率、介電常數(shù)等一系列重要的光學(xué)參數(shù)。研究表明,太赫茲時(shí)域光譜對液體樣品的極性和結(jié)構(gòu)特點(diǎn)非常敏感,結(jié)合微結(jié)構(gòu)器件在液態(tài)化學(xué)和生物樣品檢測方面具有潛在的應(yīng)用價(jià)值。
參考文獻(xiàn):
[1]FERGUSON B,ZHANG X C.Materials for terahertz science and technology[J].Nature Materials,2002,1(1):2633.
[2]WOODWARD R M,COLE B E,WALLACE V P,et al.Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue[J].Physics in Medicine and Biology,2002,47(21):3853.
[3]DU S Q,LI H,XIE L,et al.Vibrational frequencies of antidiabetic drug studied by terahertz timedomain spectroscopy[J].Applied Physics Letters,2012,100(14):143702.
[4]YAMAMOTO K,KABIR M H,TOMINAGA K.Terahertz timedomain spectroscopy of sulfurcontaining biomolecules[J].JOSA B,2005,22(11):24172426.
[5]朱亦鳴,高春梅,陳麟.基于平行板波導(dǎo)的雙槽諧振腔的特性研究[J].光學(xué)儀器,2014,36(4):323327.
[6]KINDT J T,SCHMUTTENMAER C A.Farinfrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J].The Journal of Physical Chemistry,1996,100(24):1037310379.
[7]WOODS K N,WIEDEMANN H.The influence of chain dynamics on the farinfrared spectrum of liquid methanol[J].The Journal of Chemical Physics,2005,123(13):134506.
[8]JEPSEN P U,MOLLER U,MERBOLD H.Investigation of aqueous alcohol and sugar solutions with reflection terahertz timedomain spectroscopy[J].Optics Express,2007,15(22):1471714737.
[9]YOMOGIDA Y,SATO Y,NOZAKI R,et al.Comparative dielectric study of monohydric alcohols with terahertz timedomain spectroscopy[J].Journal of Molecular Structure,2010,981(1):173178.
[10]TIAN Z,HAN J G,LU X C,et al.Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes[J].Chemical Physics Letters,2009,475(1/3):132134.
[11]HASEBE T,KAWABE S,MATSUI H,et al.Metallic meshbased terahertz biosensing of singleand doublestranded DNA[J].Journal of Applied Physics,2012,112(9):09470210947027.
[12]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J].Applied Physics Letters,2009,95(17):171113.
[13]ULLAH R,LI H,ZHU Y M.Terahertz and FTIR spectroscopy of ‘Bisphenol A[J].Journal of Molecular Structure,2014,1059:255259.
[14]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.
[15]CHEN L,XU J M,GAO C M,et al.Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities[J].Applied Physics Letters,2013,103(25):25110512511054.
[16]劉丹,吳勝偉,馬明旺,等.水和二氧六環(huán)水溶液的THz波段介電性質(zhì)[J].核技術(shù),2010,33(9):688692.
[17]INDIRA T,PARTHIPAN G,ASWATHAMAN H,et al.Dipole moment studies of complexes of alcohols with ethyl bromide[J].Journal of Molecular Liquids,2009,150(1/3):2224.
[18]BERTERO N M,TRASARTI A F,APESTEGUA C R,et al.Solvent effect in the liquidphase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon[J].Applied Catalysis A:General,2011,394(1/2):228238.
[19]XU J M,CHEN L,XIE L,et al.Effect of boundary condition and periodical extension on transmission characteristics of terahertz filters with periodical hole array structure fabricated on aluminum slab[J].Plasmonics,2013,8(3):12931297.
[20]CHEN L,ZHU Y M,ZANG X F,et al.Mode splitting transmission effect of surface wave excitation through a metal hole array[J].Light:Science & Applications,2013,2(3):e60.
[21]陳麟,高春梅,徐嘉明,等.鋁質(zhì)亞波長圓孔陣列與牛眼結(jié)構(gòu)的太赫茲波傳輸特性[J].光學(xué)儀器,2013,35(6):16.