孫飛史宏?duì)N
組織工程氣管替代治療的臨床轉(zhuǎn)化研究進(jìn)展
孫飛1,2史宏?duì)N1,3
氣管疾病可由多種病因引起并具有顯著臨床癥狀,治療包括外科手術(shù)治療乃至整個(gè)器官重建。組織工程主要通過(guò)細(xì)胞或組織修復(fù),從而進(jìn)行組織再生或替代,有望成為氣管替代治療的新途徑。組織工程成功的關(guān)鍵因素包括天然或合成支架;自體或異體細(xì)胞;模擬(體內(nèi)或體外)生理環(huán)境的生物反應(yīng)器;通過(guò)分子生物或藥物干預(yù)進(jìn)行特定組織保護(hù)。該文旨在綜述組織工程氣管構(gòu)建的研究現(xiàn)狀及臨床替代治療的新進(jìn)展。
組織工程; 氣管; 臨床移植
氣管病損可因狹窄、感染、癌癥、先天畸形、創(chuàng)傷、異物吸入等引起。長(zhǎng)段氣管病損可威脅生命且難以治愈,仍然是氣管重建外科最具挑戰(zhàn)性的難題。半個(gè)多世紀(jì)以來(lái),一直嘗試用不同移植物材料作為氣管代用品進(jìn)行氣管重建,如自體移植物、同種異體移植物、假體材料以及復(fù)合組織材料,然而僅有少數(shù)在臨床應(yīng)用中獲得成功[1]。這些移植物的臨床應(yīng)用因肉芽組織、再狹窄、感染、材料失效、需要終生免疫抑制治療、缺乏供體、缺乏生長(zhǎng)潛能(尤其對(duì)兒童而言)而受到限制[2]。
組織工程[3]有望通過(guò)將自體細(xì)胞結(jié)合3D生物支架再生成為新的組織結(jié)構(gòu)而進(jìn)行器官重建,被認(rèn)為是一種有效避免供體稀缺及終身服用免疫抑制劑等缺陷而創(chuàng)建功能氣管代用品的理想技術(shù),而且組織工程氣管與宿主具有良好的生物相容性及體內(nèi)生長(zhǎng)潛能。構(gòu)建組織工程氣管需要三個(gè)要素:細(xì)胞、支架與培養(yǎng)環(huán)境。
1.上皮細(xì)胞:原生上皮細(xì)胞遷移到組織工程結(jié)構(gòu)內(nèi)腔,然后再上皮化及黏膜化需要很長(zhǎng)時(shí)間。如果沒(méi)有上皮細(xì)胞,支架將對(duì)細(xì)胞入侵十分敏感,且易形成肉芽組織甚至再狹窄[4]。呼吸道上皮細(xì)胞具有炎癥屏障功能,并具有加濕吸入氣體及清除氣道分泌物等重要生理作用[5]。原代上皮細(xì)胞難以培養(yǎng),
2.軟骨細(xì)胞:主要來(lái)源于耳、鼻中隔、肋骨、關(guān)節(jié)軟骨、氣管軟骨。Komura等[10]將兔耳軟骨細(xì)胞種植于生物可降解支架材料行氣管缺損修補(bǔ),在移植3個(gè)月后依然保持完整的氣管結(jié)構(gòu)。Tani等[11]使用兔耳軟骨制備軟骨細(xì)胞片,隨后貼附于硅膠管表面并體外培育,成功制備出組織工程軟骨。Weidenbecher等[12]將軟骨細(xì)胞片制備的支架成功用于兔模型氣管段的重建。Hong等[13]將兔關(guān)節(jié)軟骨與纖維蛋白和透明質(zhì)酸水凝膠于體外擴(kuò)張、培養(yǎng),種植在多孔可降解聚乙烯[poly(L-lactic-co-glycolic acid),PLGA]氣管支架,體外培養(yǎng)4周后移植到兔氣管缺損部位,結(jié)果顯示重建氣管并未出現(xiàn)狹窄并具有正常氣管功能。Komura等[14]將人體氣管軟骨細(xì)胞作為組織工程氣管軟骨來(lái)源,結(jié)果顯示其與原生氣管軟骨沒(méi)有明顯差異。然而,軟骨細(xì)胞的取材困難且有創(chuàng),因此在臨床應(yīng)用具有一定的局限性。最好的辦法是獲取少量供體軟骨細(xì)胞,隨后進(jìn)行體外培養(yǎng)或者直接在術(shù)中將細(xì)胞種植在支架,從而最大限度減少對(duì)供體的傷害。
3.干細(xì)胞:最理想的細(xì)胞類型是來(lái)源單一且能分化為各種所需的細(xì)胞類型。目前應(yīng)用于在組織工程氣管干細(xì)胞有:間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)(可從多種組織中分離,包括骨髓[15]、脂肪[16]、臍帶[17]、羊水[18]等)、骨髓單個(gè)核細(xì)胞(mononuclear cell,MNCc)、胚胎干細(xì)胞(embryonic stem cells,ESCs)、誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)。MSCs不僅具有較強(qiáng)的自我更新能力,且具有較長(zhǎng)的存活能力,可分化為骨、軟骨、脂肪、肌肉等不同細(xì)胞系,為組織工程氣管再生提供了有效的細(xì)胞來(lái)源[19]。Nakamura等[20]通過(guò)對(duì)氣管假體不同處理的比較證實(shí),將自體BMSCs覆蓋在假體然后植入比格犬氣管缺損部位能夠促進(jìn)氣管黏膜再生。Jungebluth等[21]將動(dòng)物自體MNCc與上皮細(xì)胞種植于脫細(xì)胞氣管支架表面,隨后進(jìn)行體內(nèi)原位移植,并通過(guò)特異性因子誘導(dǎo)干細(xì)胞動(dòng)員促進(jìn)組織再生,具有良好的移植效果。Fecek等[22]研究發(fā)現(xiàn)將ESCs直接注射到小鼠體內(nèi)易產(chǎn)生畸胎瘤,而將ESCs衍生的分化細(xì)胞種植在支架上進(jìn)行移植并沒(méi)有畸胎瘤形成,說(shuō)明將ESCs種植在支架上對(duì)軟骨再生至關(guān)重要。最近研究顯示,iPSCs無(wú)須傳代,能夠誘導(dǎo)細(xì)胞系產(chǎn)生穩(wěn)定均勻的透明軟骨樣組織[23]。
1.天然衍生材料:多種天然材料已被證實(shí)具有為細(xì)胞黏附和培養(yǎng)提供合適基質(zhì)的潛能,如明膠、殼聚糖、透明質(zhì)酸、藻朊酸鹽、纖維蛋白膠和脫細(xì)胞組織[24]。通過(guò)脫細(xì)胞方法能夠獲得一種低(或無(wú))免疫原性的氣管材料基質(zhì),并能構(gòu)建組織支架。目前,脫細(xì)胞方法主要包括使用各種洗滌劑和溶液(如離子、非離子、堿性、酸性、兩性離子、溶劑、螯合和酶制劑)和物理技術(shù)[25]。由于細(xì)胞外基質(zhì)(extracellular matrix,ECM)對(duì)組織再生、細(xì)胞歸巢、分化具有極其重要的意義,當(dāng)選擇最合適的組織脫細(xì)胞化進(jìn)程中必須考慮到ECM的結(jié)構(gòu)變化。因此,必須慎重選擇合適的脫細(xì)胞化方法。在脫細(xì)胞后能夠完整保存支架ECM結(jié)構(gòu),且滿足移植物的基本要求,即無(wú)免疫原性、無(wú)毒性、支持細(xì)胞移植,并能夠促進(jìn)組織重建、血管再生和細(xì)胞歸巢。Zang等[26]采用去污劑-聯(lián)合酶(detrgent-enzymatic method,DEM)法行氣管支架脫細(xì)胞處理,結(jié)果顯示通過(guò)恰當(dāng)?shù)拿摷?xì)胞處理,能夠完整去除氣管基質(zhì)相關(guān)抗原及細(xì)胞成分,同時(shí)保留有主要組織結(jié)構(gòu)及適當(dāng)?shù)纳锪W(xué)性能,且利于軟骨細(xì)胞和上皮細(xì)胞黏附生長(zhǎng)。
2.合成材料:自從進(jìn)行氣管替代開始,人工與合成材質(zhì)就被進(jìn)行研究與應(yīng)用。由于一些材料存在無(wú)血管化、完整性較差以及材料易遷移、僵硬、污染等不良特性,最終導(dǎo)致合成移植物的失敗。然而,由于合成材料也具有其重要的優(yōu)勢(shì),如無(wú)須供體組織、可根據(jù)特殊患者的需求進(jìn)行修飾和定制、可被消毒等,使得各種合成材料在目前組織工程氣管研究中亦得到廣泛應(yīng)用[27]。目前,已用于組織工程氣管的合成支架包括聚乙醇酸(polyglycolic acid,PGA)[28]、聚乳酸/聚乙醇酸(polyactic acid/polyglycolic acid,PLA/PGA)[29]、PLGA[30]、聚對(duì)苯二甲酸乙酯(polyethylene terephthalate,PET)[31]等。關(guān)注焦點(diǎn)主要在于生物相容性及免疫反應(yīng)。Luo等[29]研究發(fā)現(xiàn),在兔體內(nèi)直接種植PLA/PGA支架材料發(fā)現(xiàn)有免疫應(yīng)答反應(yīng),而在移植前2周將PLA/PGA結(jié)構(gòu)預(yù)先培養(yǎng)以便ECM形成及細(xì)胞生長(zhǎng),能夠清除支架炎性酸性降解產(chǎn)物并使細(xì)胞開始在支架上生長(zhǎng),從而阻止血細(xì)胞入侵而引起的免疫反應(yīng)。Tsao等[30]將軟骨細(xì)胞及骨髓干細(xì)胞種植在PLGA支架表面共培養(yǎng),隨后植入兔腹壁帶蒂肌皮瓣,結(jié)果發(fā)現(xiàn)有軟骨形成、適合上皮細(xì)胞生長(zhǎng)并且具有較好的力學(xué)性能。
1.生長(zhǎng)因子:是組織工程氣管研究中細(xì)胞與支架培養(yǎng)的重要成分,通過(guò)恰當(dāng)藥物干預(yù)能夠促進(jìn)、活化局部或系統(tǒng)的自我再生能力,從而支撐移植物的完整性。一些研究將生長(zhǎng)因子添加到支架材料中使用,一種方法是將含有生長(zhǎng)因子的明膠微粒[32]或明膠海綿[33]覆蓋在氣管支架上;另一種方法是直接將生長(zhǎng)因子灌注到支架內(nèi)[34]。將血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)直接灌注到支架材料中,能夠增強(qiáng)組織內(nèi)生性,并促進(jìn)其在絨毛膜尿囊膜內(nèi)的毛細(xì)血管形成[35]。在這些研究中應(yīng)用VEGF主要作用是為了增強(qiáng)血管生成。
大量實(shí)驗(yàn)研究表明,軟骨細(xì)胞是保持氣管力學(xué)性能的必須元素。軟骨細(xì)胞分化不同于軟骨基質(zhì)沉積,膠原Ⅱ、Ⅳ、Ⅵ及聚集蛋白聚糖是軟骨細(xì)胞相關(guān)成分。這些軟骨特異性蛋白需要早期標(biāo)記SOX-9的表達(dá)。軟骨發(fā)育相關(guān)的一些生長(zhǎng)因子能夠有效促進(jìn)軟骨形成,如堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)[32]、轉(zhuǎn)化生長(zhǎng)因子β2(transforming growth factor-β,TGF-β2)[36]、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP-2)[33]等。
2.體外培養(yǎng)與體內(nèi)移植:在靜態(tài)或動(dòng)態(tài)條件下將細(xì)胞種植到支架表面,隨后在移植前將支架置于體外或體內(nèi)條件下培養(yǎng)。有研究顯示生物反應(yīng)器與靜態(tài)培養(yǎng)對(duì)脫細(xì)胞支架糖胺聚糖含量及軟骨細(xì)胞的生物力學(xué)性能無(wú)明顯影響[37]。
生物反應(yīng)器通過(guò)為細(xì)胞提供生物化學(xué)及物理調(diào)控信號(hào)而促進(jìn)組織工程基質(zhì)在體外發(fā)育、生長(zhǎng)、增殖、分化為適于體內(nèi)移植的細(xì)胞外基質(zhì)。與靜態(tài)相比,動(dòng)態(tài)培養(yǎng)具有重要優(yōu)勢(shì)性:細(xì)胞在支架分布更加均勻,流體流動(dòng)有助于物質(zhì)傳遞、營(yíng)養(yǎng)供應(yīng)及廢物排泄,流體動(dòng)力學(xué)增強(qiáng)細(xì)胞新陳代謝與適當(dāng)分化,對(duì)組織生長(zhǎng)具有積極作用。Lin等[38]研究表明:用氣—液生物反應(yīng)器提供基本力學(xué)刺激對(duì)促進(jìn)軟骨細(xì)胞增殖和基質(zhì)分泌具有重要意義。Weidenbecher等[12]用定制的生物反應(yīng)器在體內(nèi)仿造兔子近端氣管獲得成功。然而,這種生物反應(yīng)器只適用于短小氣管移植物(1~2cm),且僅適用于軟骨細(xì)胞培養(yǎng)而無(wú)上皮細(xì)胞種植。Tan等[34]認(rèn)為將移植支架在生物反應(yīng)器預(yù)先培養(yǎng),即在體外將移植物、種子細(xì)胞、培養(yǎng)基有機(jī)結(jié)合,培育成熟后進(jìn)行體內(nèi)移植,從而能夠提高術(shù)后早期存活率。
然而,上述方法體外細(xì)胞培養(yǎng)周期較長(zhǎng),需要大量藥品生產(chǎn)質(zhì)量管理規(guī)范(good manufacturing practice,GMP)認(rèn)證的實(shí)驗(yàn)設(shè)備、特殊操作技術(shù)以及高昂的費(fèi)用,且具有細(xì)菌及其他污染以及分化不穩(wěn)定性的風(fēng)險(xiǎn)。Baiguera等[1]提出組織工程新觀念:原位體內(nèi)組織工程方法。這種觀念基于避免移植物任何體外操作,而將支架直接替代身體病損部位,并用受體自身充當(dāng)體內(nèi)生物反應(yīng)器,進(jìn)行體內(nèi)組織再生,從而避開體外細(xì)胞培養(yǎng)[39]。Jungebluth等[21]實(shí)驗(yàn)以豬自體作為生物反應(yīng)器,在術(shù)中將種子細(xì)胞及分化因子種植在支架表面進(jìn)行體內(nèi)原位移植,術(shù)后給予生物活性分子促進(jìn)外周細(xì)胞動(dòng)員及干細(xì)胞分化,有效減少移植物及細(xì)胞培養(yǎng)污染的風(fēng)險(xiǎn),縮減處理時(shí)間,并具有良好的移植效果。
3.血管再生:組織工程失敗最常見的原因是植入組織污染或壞死。單一或復(fù)合組織未能持續(xù)存活,是由于缺乏有效的再血管化和由此造成的細(xì)胞移行受損所引起的壞死。Luo等[40]將人工合成組織工程氣管植入鄰近氣管部位的肌肉皮瓣4周,促進(jìn)體內(nèi)軟骨發(fā)育及移植物血管生成,隨后連同帶蒂肌瓣進(jìn)行原位移植,為移植物提供了穩(wěn)定血供,從而實(shí)現(xiàn)節(jié)段氣管缺損的長(zhǎng)期功能重建。
Schanz等[41]通過(guò)保留脫細(xì)胞小腸移植物的血管蒂,并從血管蒂灌注內(nèi)皮細(xì)胞生長(zhǎng)因子,從而促進(jìn)血管新生。Kim等[42]在PLGA-膠原/聚丙烯假體覆蓋網(wǎng)膜(高度血管化組織),隨后植入圓周氣管缺損的犬體內(nèi),在1個(gè)月后便形成適當(dāng)?shù)膬?nèi)徑及穩(wěn)定的表面。Baiguera等[43]研究發(fā)現(xiàn),脫細(xì)胞人類氣管基質(zhì)保留有部分血管再生因子bFGF,并行雞胚絨毛尿囊膜實(shí)驗(yàn)顯示脫細(xì)胞基質(zhì)材料具有強(qiáng)烈的血管生成反應(yīng)。Sun等[44]研究也進(jìn)一步證實(shí)了這一結(jié)論。
初期實(shí)驗(yàn)研究及臨床應(yīng)用為組織工程氣管臨床移植提供了可靠參考,證實(shí)了將組織工程氣管進(jìn)行臨床移植治療的可行性。Macchiarini等[45]利用脫細(xì)胞氣管基質(zhì)材料種植自體MSCs衍生的軟骨細(xì)胞和呼吸上皮細(xì)胞,置于特制生物反應(yīng)器預(yù)先增殖、分化,隨后植入一例支氣管軟化晚期患者體內(nèi),成功完成世界首例組織工程氣管人體移植。Gonfiotti等[46]對(duì)此例患者進(jìn)行了5年動(dòng)態(tài)隨訪,結(jié)果顯示在未使用免疫抑制治療的情況下,該受體患者既沒(méi)有免疫學(xué)排斥反應(yīng),也沒(méi)有血清學(xué)排異反應(yīng)指證。自體干細(xì)胞在生物反應(yīng)器種植及體內(nèi)分化過(guò)程中,并未出現(xiàn)致癌等風(fēng)險(xiǎn)。細(xì)胞學(xué)分析顯示,移植氣管表面逐漸出現(xiàn)自體細(xì)胞生長(zhǎng),未受殘余細(xì)胞明顯影響。
為促進(jìn)移植物血管再生,Delaere等[47]將一段長(zhǎng)8cm的捐獻(xiàn)氣管段預(yù)植入受體左前臂皮下,用筋膜和皮下組織包裹,隨后采用免疫抑制治療。皮下移植4個(gè)月后,氣管移植物內(nèi)側(cè)形成完整黏膜,隨后將4.5cm長(zhǎng)的氣管移植物進(jìn)行原位替代治療。結(jié)果顯示移植物具有良好的再血管化,并具有良好的移植效果。
2010年,Laurance等[48]報(bào)道了一例患先天性氣管狹窄的10歲男性患兒,急診情況下接受了組織工程氣管替代治療,在DEM脫細(xì)胞支架表面注入患者上皮細(xì)胞、骨髓MSC以及生長(zhǎng)因子,隨后以自體充當(dāng)生物反應(yīng)器,進(jìn)行體內(nèi)原位移植,術(shù)后局部應(yīng)用重組人促紅細(xì)胞生成素(recombinant human erythropoietin,rhEPO)刺激血管生成、應(yīng)用TGF-β促進(jìn)軟骨形成,并連續(xù)靜脈輸注rhEPO。Elliott等[49]對(duì)其進(jìn)行了2年動(dòng)態(tài)隨訪,結(jié)果顯示術(shù)后1周移植物觀察到血管再生,術(shù)后8周局部有強(qiáng)烈的中性粒細(xì)胞表達(dá),術(shù)后12個(gè)月上皮細(xì)胞明顯恢復(fù),術(shù)后18個(gè)月移植物具有較強(qiáng)的生物力學(xué)強(qiáng)度,此后無(wú)須任何藥物干預(yù),2年后完全恢復(fù)正常。Berg等[50]對(duì)一例76歲喉中下部及氣管狹窄患者進(jìn)行了脫細(xì)胞組織工程氣管替代治療,移植后能夠有效提供氣道開放,術(shù)后1周氣管出現(xiàn)明顯的真菌感染,需要予以抗真菌藥物治療,術(shù)后第23天患者不幸去世。尸檢病理結(jié)果顯示,氣管移植物表面具有上皮生長(zhǎng)、血管新生及軟骨細(xì)胞與肌細(xì)胞表達(dá)。
Jungebluth等[51]采用人工生物納米復(fù)合材料氣管支氣管作為支架材料,與自體骨髓單個(gè)核細(xì)胞一同在生物反應(yīng)器內(nèi)種植36h,隨后進(jìn)行原位移植,術(shù)后給予粒細(xì)胞集落刺激因子非格司亭(10μg/kg)和紅細(xì)胞生成素β(40 000IU)治療。結(jié)果顯示,患者術(shù)后未發(fā)生嚴(yán)重并發(fā)癥,在移植后5個(gè)月內(nèi)無(wú)異常癥狀和腫瘤生長(zhǎng),并且部分移植物被基本健康的上皮覆蓋。以上研究結(jié)果提示間充質(zhì)基質(zhì)細(xì)胞表型能夠增加外周細(xì)胞動(dòng)員,并上調(diào)rhEPO受體、抗細(xì)胞凋亡基因、miR-34和miR-449生物標(biāo)志物的表達(dá)水平,從而促進(jìn)干細(xì)胞歸巢和細(xì)胞介導(dǎo)的創(chuàng)面修復(fù)、細(xì)胞外基質(zhì)重塑及植入物的新生血管化。
通過(guò)將自體細(xì)胞種植在根據(jù)患者特異性解剖需求的仿生組織工程支架材料表面,隨后置于生物反應(yīng)器培育成熟或直接進(jìn)行體內(nèi)原位移植,并輔以生長(zhǎng)因子促進(jìn)細(xì)胞動(dòng)員、分化、增殖,能夠有效進(jìn)行病損氣管替代治療,從而極大提高患者的生存質(zhì)量。
1 Baiguera S,DInnocenzo B,Macchiarini P.Current status of regenerative replacement of the airway[J].Expert Rev Respir Med,2011,5(4):487-494.
2 He X,F(xiàn)u W,Zheng J.Cell sources for trachea tissue engineering past present and future[J].Regen Med,2012,7 (6):851-863.
3 Hinderer S,Schenke-Layland K.Tracheal tissue engineering:building on a strong foundation[J].Expert Rev Med Devices,2013,10(1):33-35.
4 Ott LM,Weatherly RA,Detamore MS.Overview of tracheal tissue engineering:clinical need drives the laboratory approach [J].Ann Biomed Eng,2011,39(8):2091-2113.
5 Hamilton N,Bullock AJ,Macneil S,et al.Tissue engineering airway mucosa:a systematic review[J].Laryngoscope,2014,124(4):961-968.
6 Nomoto Y,Kobayashi K,Tada Y,et al.Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea [J].Ann Otol Rhinol Laryngol,2008,117(1):59-64.
7 Okano W,Nomoto Y,Wada I,et al.Bioengineered trachea with fibroblasts in a rabbit model[J].Ann Otol Rhinol Laryngol,2009,118(11):796-804.
8 Mohd-Heikal MY,Aminuddin BS,Jeevanan J,et al.Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model[J].Cells Tissues Organs,2010,192(5):292-302.
9 Kim JH,Kong WH,Kim JG,et al.Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction[J].ArtifOrgans,2011,35(2):122-130.
10 Komura M,Komura H,Kanamori Y,et al.An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J].J Pediatr Surg,2008,43(12):2141-2146.
11 Tani G,Usui N,Kamiyama M,et al.In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J].Pediatr Surg Int,2010,26(2):179-185.
12 Weidenbecher M,Tucker HM,Gilpin DA,et al.Tissue-engineered trachea for airway reconstruction[J].Laryngoscope,2009,119 (11):2118-2123.
13 Hong HJ,Chang JW,Park JK,et al.Tracheal reconstruction using chondrocytes seeded on a poly(l-lactic-co-glycolic acid)-fibrin/hyaluronan[J].J Biomed Mater Res A,2014,102(11):4142-4150.
14 Komura M,Komura H,Tanaka Y,et al.Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments:the first feasibility study in an in vivo culture system [J].Pediatr Surg Int,2008,24(10):1117-1121.
15 Go T,Jungebluth P,Baiguero S,et al.Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs[J].J Thorc Cardiovasc Surg,2010,139(2):437-443.
16 Martlnez-Gonzalez I,Moreno R,Petriz J,et al.Engraftment potential of adipose tissue-derived human mesenchymal stem cells after transplantation in the fetal rabbit[J].Stem Cells Dev,2012,21(18):3270-3277.
17 Zeng Y,Rong M,Liu Y,et al.Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium[J].Neurochem Res,2013,38(12):2483-2489.
18 Weber B,Kehl D,Bleul U,et al.In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells[J].J Tissue Eng Regen Med,2013,doi:10.1002/term.1781.[Epub ahead of print].
19 Baiguera S,Jungebluth P,Mazzanti B,et al.Mesenchymal stromal cells for tissue-engineered tissue and organ replacements [J].Transpl Int,2012,25(4):369-382.
20 Nakamura T,Sato T,Araki M,et al.In situtissue engineering for tracheal reconstruction using a luminar remodeling type of artiflcial trachea[J].J Thorc Cardiovasc Surg,2009,138(4):811-819.
21 Jungebluth P,Bader A,Baiguera S,et al.The concept of in vivo airway tissue engineering[J].Biomaterials,2012,33(17):4319-4326.
22 Fecek C,Yao D,Kacorri A,et al.Chondrogenic derivatives of embryonic stem cells seeded into 3Dpolycaprolactone scaffolds generated cartilage tissue in vivo[J].Tissue Eng Part A 2008,14(8):1403-1413.
23 Hiramatsu K,Sasagawa S,Outani H,et al.Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors[J].J Clin Invest,2011,121(2):640-657.
24 Jungebluth P,Moll G,Baiguera S,et al.Tissue-engineered airway:a regenerative solution[J].Clin Pharmacol Ther,2012,91(1):81-93.
25 Crapo PM,Gilbert TW,Badylak SF.An overview of tissue and whole organ decellularization processes[J].Biomaterials,2011,32(12):3233-3243.
26 Zang M,Zhang Q,Chang EI,et al.Decellularized tracheal matrix scaffold for tissue engineering[J].Plast Reconstr Surg,2012,130(3):532-540.
27 Del Gaudio C,Baiguera S,Ajalloueian F,et al.Are synthetic scaffolds suitable for the development of clinical tissueengineered tubular organs?[J]J Biomed Mater Res A,2014,102(7):2427-2447.
28 Grimmer JF,Gunnlaugsson CB,Alsberg E,et al.Tracheal reconstruction using tissue-engineered cartilage[J].Arch Otolaryngol Head Neck Surg,2004,130(10):1191-1196.
29 Luo X,Zhou G,Liu W,et al.In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage[J].Biomed Mater,2009,4 (2):025006.
30 Tsao CK,Ko CY,Yang SR,et al.An ectopic approach for engineering a vascularized tracheal substitute[J].Biomaterials,2014,35(4):1163-1175.
31 Ajalloueian F,Lim ML,Lemon G,et al.Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds[J].Biomaterials,2014,35(20):5307-5315.
32 Komura M,Komura H,Kanamori Y,et al.An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J].J Pediatr Surg,2008,43(12):2141-2146.
33 Igai H,Chang SS,Gotoh M,et al.Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein(BMP)-2[J].ASAIO J,2008,54(1):104-108.
34 Tana Q,Hillingera S,Blitterswijkc CAv,et al.Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction[J].Interact Cardiovasc Thorac Surg,2009,8(1):27-30.
35 Tan Q,Steiner R,Yang L,et al.Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea[J].Eur J Cardiothorac Surg,2007,31(5):806-811.
36 Ronzière MC,Perrier E,Mallein-Gerin F,et al.Chondrogenicpotential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells[J].Biomed Mater Eng,2010,20(3):145-158.
37 Tani G,Usui N,Kamiyama M,et al.In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J].Pediatr Surg Int,2010,26(2):179-185.
38 Lin CH,Hsu SH,Huang CE,et al.A scaffold-bioreactor system for a tissue-engineered trachea[J].Biomaterials,2009,30(25):4117-4126.
39 Furlani D,Li W,Pittermann E,et al.A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart[J].Cell Transplant,2009,18(3):319-331.
40 Luo X,Liu Y,Zhang Z,et al.Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits[J].Biomaterials,2013,34(13):3336-3344.41 Schanz J,Pusch J,Hansmann J,et al.Vascularised human tissue models:a new approach for the refinement of biomedical research[J].J Biotechnol,2010,148(1):56-63.
42 Kim JH,Kim J,Kong WH,et al.Factors affecting tissue culture and transplantation using omentum[J].ASAIO J,2010,56(4):349-355.
43 Baiguera S,Jungebluth P,Burns A,et al.Tissue engineered human tracheas for in vivo implantation[J].Biomaterials,2010,31(34):8931-8938.
44 Sun F,Pan S,Shi HC,et al.Structural integrity,immunogenicity and biomechanical evaluation of rabbit decelluarized tracheal matrix[J].J Biomed Mater Res A,2015,103(4):1509-1519.45 Macchiarini P,Jungebluth P,Go T,et al.Clinical transplantation of a tissue-engineered airway[J].Lancet,2008,372(9655):2023-2031.
46 Gonfiotti A,Jaus MO,Barale D,et al.The first tissueengineered airway transplantation:5-year follow-up results[J].Lancet,2014,383(9913):238-244.
47 Delaere P,Vranckx J,Verleden G,et al.Tracheal allotransplantation after withdrawal of immunosuppressive therapy[J].N Engl J Med,2010,362(2):138-145.
48 Laurance J.British boy receives trachea transplant built with his own stem cells[J].BMJ,2010,340:c1633.
49 Elliott MJ,De Coppi P,Speggiorin S,et al.Stem-cell-based,tissue engineered tracheal replacement in a child:a 2-year follow-up study[J].Lancet,2012,380(9846):994-1000.
50 Berg M,Ejnell H,Kovacs A,et al.Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells-a case report[J].Tissue Eng Part A,2014,20(1-2):389-397.
51 Jungebluth P,Alici E,Baiguera S,et al.Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite a proof-of-concept study[J].Lancet,2011,378(9808):1997-2004.
(本文編輯:周珠鳳)
孫飛,史宏?duì)N.組織工程氣管替代治療的臨床轉(zhuǎn)化研究進(jìn)展[J/CD].中華胸部外科電子雜志,2015,2(2):88-93.
Research progress of clinical translating tissue-engineered tracheal replacement
Sun Fei,Shi Hongcan.1Department of General Thoracic Surgery,Yangzhou University,Yangzhou 225001,China;2Taizhou Peoples Hospital,Taizhou 225300,China;3Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases,Yangzhou 225001,China
Shi Hongcan,Email:shihongcan@hotmail.com
Objective There are a variety of trachea diseases with different clinical settings,which may extend from a surgical approach to total organ replacement.Tissue engineering involves modifying cells or tissues in order to repair,regenerate,or replace tissues in the body,which seems to be a promising approach for tracheareplacement.It has now become evident that the key factors for successful clinical tissue engineering include a scaffold or matrix of natural or synthetic origin,autologous or allogeneic cells,a bioreactor to mimic the physiologic environment(in vitro or in vivo),as well as sitespecific tissue protection by means of biomolecule/pharmacologic intervention.This review elaborates on the essential components of the tissue-engineering approach,and discusses the progress of the revolutionary trachea clinical transplantation.
Tissue engineering; Trachea; Clinical transplantation
10.3877/cma.j.issn.2095-8773.2015.02.003
國(guó)家自然科學(xué)基金資助項(xiàng)目(81370118、81170014);揚(yáng)州大學(xué)“高端人才支持計(jì)劃”資助項(xiàng)目(201431)
225001 揚(yáng)州大學(xué)臨床醫(yī)學(xué)院胸外科1,泰州市人民醫(yī)院2,江蘇省中西醫(yī)結(jié)合老年病防治重點(diǎn)實(shí)驗(yàn)室3
史宏?duì)N,E-mail:shihongcan@hotmail.com且上皮細(xì)胞分化傳代較快。將氣管上皮細(xì)胞與成纖維細(xì)胞進(jìn)行共培養(yǎng),能夠促進(jìn)具有一定形態(tài)和功能的上皮再生[6]。Okano等[7]將僅覆蓋有成纖維細(xì)胞的生物工程支架植入兔氣管缺損部位后,能夠有效促進(jìn)氣管上皮再生。Mohd-Heikal等[8]將鼻上皮細(xì)胞與成纖維細(xì)胞共培養(yǎng),可促進(jìn)氣管呼吸上皮的生成,從而有效治療氣管缺損。Kin等[9]利用皮膚上皮細(xì)胞作為細(xì)胞來(lái)源進(jìn)行氣管缺損重建,結(jié)果證實(shí)皮膚上皮細(xì)胞能夠在氣管表面保持活性達(dá)數(shù)月之久,并可有效分化為氣管上皮細(xì)胞。
2015-03-12)