朱萬(wàn)龍,王政昆
(云南省高校西南山地生態(tài)系統(tǒng)動(dòng)植物生態(tài)適應(yīng)進(jìn)化及保護(hù)重點(diǎn)實(shí)驗(yàn)室/云南師范大學(xué) 生命科學(xué)學(xué)院,云南 昆明 650500)
不同腎上腺能受體激動(dòng)劑對(duì)冷暴露中緬樹(shù)鼩產(chǎn)熱能力的影響
朱萬(wàn)龍,王政昆
(云南省高校西南山地生態(tài)系統(tǒng)動(dòng)植物生態(tài)適應(yīng)進(jìn)化及保護(hù)重點(diǎn)實(shí)驗(yàn)室/云南師范大學(xué) 生命科學(xué)學(xué)院,云南 昆明 650500)
研究了冷馴化條件下不同腎上腺能受體激動(dòng)劑對(duì)中緬樹(shù)鼩產(chǎn)熱能力的影響,測(cè)定了其靜止代謝率和非顫抖性產(chǎn)熱。結(jié)果表明:冷馴化組中緬樹(shù)鼩的靜止代謝率(Resting metabolic rate,RMR)較對(duì)照組增加,β3-NST(注射β3-腎上腺素激動(dòng)劑BRL37344)和NST(注射N(xiāo)E)較對(duì)照組均極顯著增加。冷馴化組和對(duì)照組在注射N(xiāo)E和BRL37344后其耗氧量均有極顯著的增加。對(duì)照組中緬樹(shù)鼩的NST高于β3-NST,但兩者之間差異不顯著。冷馴化組中緬樹(shù)鼩NST與β3-NST差異極顯著。以上結(jié)果說(shuō)明冷馴化可使中緬樹(shù)鼩的產(chǎn)熱能力顯著增強(qiáng),其BAT中可能存在有β3-腎上腺能受體(β3-adrenergic receptor,β3-AR),推測(cè)β3-AR可能并不是中緬樹(shù)鼩BAT中唯一的腎上腺能受體,NE可能通過(guò)多種腎上腺能途徑來(lái)增加產(chǎn)熱,腎上腺能受體通路在中緬樹(shù)鼩適應(yīng)性產(chǎn)熱中起到了重要作用。
中緬樹(shù)鼩;腎上腺能激素;產(chǎn)熱
低溫脅迫是刺激小型哺乳動(dòng)物產(chǎn)熱能力增加的主要環(huán)境因子之一[1]。低溫條件下小型哺乳動(dòng)物往往會(huì)增加其靜止代謝率(Resting metabolic rate, RMR)和非顫抖性產(chǎn)熱(Nonshivering thermogenesis, NST)[2]來(lái)適應(yīng)這樣的環(huán)境。低溫脅迫刺激靜止代謝率和非顫抖性產(chǎn)熱增加的產(chǎn)熱機(jī)理是不同的,刺激靜止代謝率的增加主要來(lái)自內(nèi)臟器官產(chǎn)熱能力的增加,如肝臟[3],非顫抖性產(chǎn)熱的增加則主要是通過(guò)褐色脂肪組織(Brown adipose tissue, BAT)中解偶聯(lián)蛋白(Uncouping protein, UCP)的數(shù)量和活性的增加,從而使得非顫抖性產(chǎn)熱增加[4]。
靜止代謝率是動(dòng)物維持正常生存的最低代謝水平[5],能反映不同種群或物種的能量消耗水平,對(duì)動(dòng)物適應(yīng)環(huán)境的理解具有重要的意義[6]。動(dòng)物主要是通過(guò)交感神經(jīng)釋放去甲腎上腺素(norepinephrine, NE)來(lái)參與非顫抖性產(chǎn)熱的調(diào)節(jié),之前的研究認(rèn)為非顫抖性產(chǎn)熱是腎上腺能受體刺激的產(chǎn)熱[7],非顫抖性產(chǎn)熱對(duì)于小型哺乳動(dòng)物適應(yīng)低溫環(huán)境具有重要的意義[8]。β3-腎上腺能受體(β3-adrenergic receptor, β3-AR)特異性激動(dòng)劑BRL37344能有效激活BAT產(chǎn)熱系統(tǒng),導(dǎo)致非顫抖性產(chǎn)熱產(chǎn)熱顯著增加[9]。中緬樹(shù)鼩(Tupaiabelangeri)屬攀鼩目(Scandentia)樹(shù)鼩科(Tupaiidae),為東洋界特有的小型哺乳動(dòng)物,我國(guó)云貴高原及其附近的橫斷山區(qū)可能是中緬樹(shù)鼩的分布的北限[10]。對(duì)中緬樹(shù)鼩冷馴化條件下的RMR和NST的研究有助于了解中緬樹(shù)鼩在低溫脅迫條件下的適應(yīng)對(duì)策,從而進(jìn)一步闡述該動(dòng)物對(duì)環(huán)境變化的適應(yīng)性。
2.1 動(dòng)物來(lái)源
實(shí)驗(yàn)動(dòng)物捕自冬季大理青光山,動(dòng)物滅蚤后,帶回云南師范大學(xué)動(dòng)物飼養(yǎng)房飼養(yǎng),單籠飼養(yǎng)(300 mm×200 mm×120 mm),無(wú)巢材,光照條件12L:12D,每日喂以標(biāo)準(zhǔn)飼料和加少許水果和面包蟲(chóng)[11],塑料瓶供水,自由取食和進(jìn)水。實(shí)驗(yàn)用中緬樹(shù)鼩均為成年非繁殖期個(gè)體。實(shí)驗(yàn)前適應(yīng)30 d后開(kāi)始實(shí)驗(yàn),實(shí)驗(yàn)分為3組:未注射組、注射β3-腎上腺素激動(dòng)劑組和注射N(xiāo)E組。實(shí)驗(yàn)0 d測(cè)定3組的RMR、β3-NST和NST,然后將3組動(dòng)物放入馴化房,進(jìn)行冷馴化實(shí)驗(yàn),溫度為5±1 ℃,光照條件12L:12D,馴化28 d。28 d后,再次測(cè)定RMR、β3-NST和NST。實(shí)驗(yàn)前3組實(shí)驗(yàn)動(dòng)物的體重差異不顯著(P>0.05)。
2.2 RMR測(cè)定
用開(kāi)放式呼吸儀(ADML870型,澳大利亞生產(chǎn))測(cè)定動(dòng)物的RMR,具體的測(cè)定方法參照Z(yǔ)hu[12],代謝率的計(jì)算方法參照Hill[13]。
2.3 NST測(cè)定
皮下注射去甲腎上腺素(norepinephrine, NE),測(cè)定NST。誘導(dǎo)NST的NE劑量為0.8 mg/kg,NST測(cè)定時(shí)間為30 min,期間出現(xiàn)的最大持續(xù)耗氧量視為動(dòng)物的NST[11]。
2.4 β3-NST的測(cè)定
肩腳部位皮下注射β3腎上腺素激動(dòng)劑BRL37344,測(cè)定其呼吸率的變化情況。注射劑量經(jīng)預(yù)備實(shí)驗(yàn)確定為0.4 mg/kg。以注射BRL37344后的最大持續(xù)耗氧量為動(dòng)物的β3-NST。
2.5 數(shù)據(jù)處理
采用SPSS16.0軟件包進(jìn)行實(shí)驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)。數(shù)據(jù)經(jīng)過(guò)正態(tài)分布和方差齊性檢驗(yàn),符合參數(shù)檢驗(yàn)條件。馴化前、馴化后動(dòng)物的BMR、β3-NST和NST的差異采用單因素方差分析(one-way ANOVA)檢驗(yàn),并采用Duncan多重比較。組間同一指標(biāo)的差異采用獨(dú)立樣本t檢驗(yàn)。結(jié)果均以平均值±標(biāo)準(zhǔn)誤(Mean±SE)表示,P<0.05為差異顯著,P<0.01為差異極顯著。
實(shí)驗(yàn)后,對(duì)照組中緬樹(shù)鼩的RMR較0 d時(shí)增加,但是兩者之間差異不顯著(t=-0.752,P>0.05, 表1)。與對(duì)照組相比較,無(wú)論是馴化0 d還是馴化后28 d,β3-NST和NST較對(duì)照組(0 d)均極顯著的增加(馴化0 d:β3-NST,t=-1.635,P<0.01;NST,t=-1.986,P<0.01;馴化28 d:β3-NST,t=-2.356,P<0.01;NST,t=-2.871,P<0.01,圖1)。馴化0 d時(shí)NST組的產(chǎn)熱能力高于β3-NST組,但是兩者之間差異不顯著(t=-0.236,P>0.05)。冷馴化28 d后中緬樹(shù)鼩NST組的產(chǎn)熱能力高于β3-NST組,且兩者之間差異極顯著(t=1.843,P<0.01)。
圖1 不同腎上腺能受體激動(dòng)劑對(duì)中緬樹(shù)鼩產(chǎn)熱能力的影響(與對(duì)照組比較)
表1 不同腎上腺能受體激動(dòng)劑對(duì)中緬樹(shù)鼩產(chǎn)熱能力的影響
本研究組先前的研究表明:隨著中緬樹(shù)鼩棲息地緯度和海拔高度的增加,中緬樹(shù)鼩RMR和NST出現(xiàn)明顯的季節(jié)性變化[14],低溫[15]和短照[16]脅迫可以顯著刺激產(chǎn)熱能力的增加,而且在低溫馴化條件下中緬樹(shù)鼩的RMR增加的比例大于NST增加[17],本研究在此基礎(chǔ)上,對(duì)冷馴化條件下不同腎上腺能受體激動(dòng)劑對(duì)中緬樹(shù)鼩產(chǎn)熱能力的影響進(jìn)行了研究。
產(chǎn)熱能力的增加是小型哺乳動(dòng)物應(yīng)對(duì)低溫脅迫的一種重要生理適應(yīng)對(duì)策[1]。NST產(chǎn)熱能力的大小是決定動(dòng)物抵抗低溫能力的主要影響因子之一[4],具有重要的生物學(xué)意義[5]。低溫暴露可使小型哺乳動(dòng)物的NST顯著增加[7]。BRL37344是β3-AR受體特異性激動(dòng)劑,而NE是一種非特異性的腎上腺能受體激動(dòng)劑,兩者都可誘導(dǎo)NST產(chǎn)熱[18]。本文的實(shí)驗(yàn)結(jié)果表明,冷馴化后中緬樹(shù)鼩的RMR,β3-NST和NST均比對(duì)照組(未冷馴化)增加,表明低溫可使中緬樹(shù)鼩的產(chǎn)熱能力顯著增強(qiáng),這與本研究組之前的實(shí)驗(yàn)結(jié)果一致[15]。這與其他一些小型哺乳動(dòng)物在低溫條件下的適應(yīng)策略相似[19]。
BAT的產(chǎn)熱主要是由β3-AR介導(dǎo),研究表明低濃度的NE也能刺激BAT的產(chǎn)熱反應(yīng)[20]。本研究結(jié)果表明,與對(duì)照組相比較,無(wú)論是馴化前還是馴化28 d后,注射N(xiāo)E后其N(xiāo)ST增加極顯著,可能說(shuō)明β3-AR在中緬樹(shù)鼩NST產(chǎn)熱過(guò)程中的非常重要的作用。對(duì)布氏田鼠的研究也表明,BAT的β-AR在低溫條件下也起到重要的作用[21]。另外,注射BRL37344組不論無(wú)論是馴化前還是馴化28 d后其N(xiāo)ST誘導(dǎo)的產(chǎn)熱顯著增加,說(shuō)明這兩種藥物的作用是相互獨(dú)立的。這一特征與其他實(shí)驗(yàn)嚙齒動(dòng)物相似[21],如金黃倉(cāng)鼠[22]。此外,本研究還發(fā)現(xiàn),無(wú)論是馴化0 d還是冷馴化28 d,在注射BRL37344后,與未注射的對(duì)照組相比較,其N(xiāo)ST產(chǎn)熱增加極顯著,這可能說(shuō)明β3-AR確實(shí)能使中緬樹(shù)鼩產(chǎn)熱能力顯著增加,中緬樹(shù)鼩BAT中存在有β3-AR。已有研究表明BAT中存在有兩種腎上腺能受體:α-AR和β-AR,其中β-AR的三種亞型,即β1-AR、β2-AR和β3-AR[22]。因?yàn)镹E是一種非特異性的腎上腺能受體激動(dòng)劑,它可以刺激多種腎上腺能受體,并誘導(dǎo)相應(yīng)的生理反應(yīng),而本研究中β3-AR誘導(dǎo)中緬樹(shù)鼩的NST顯著低于NE誘導(dǎo)產(chǎn)熱,這可能說(shuō)明β3-AR并不是中緬樹(shù)鼩BAT中唯一的腎上腺能受體。
冷馴化可使中緬樹(shù)鼩的產(chǎn)熱能力顯著增強(qiáng),其BAT中可能存在有β3-AR,并且β3-AR可能并不是BAT中唯一的腎上腺能受體,腎上腺能受體通路在中緬樹(shù)韻適應(yīng)性產(chǎn)熱中起到了重要作用。
[1]Zhao Z J, Cao J, Liu Z C,et al. Seasonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis) [J]. Therm Biol,2010,35(1):401~405.
[2]Zhu W L, Wang Z K. Seasonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor[J]. Comparative Biochemistry and Physiology,2015,184(1):83~89
[3]Zhu W L, Cai J H, Lian X, et al. Adaptive character of metabolism in Eothenomys miletus in Hengduan Mountains region during cold acclimation[J]. Journal of Thermal Biology,2010,35(8):417~421.
[4]Zhang Z Q, Wang D H. Seasonal changes in thermogenesis and body mass in wild Mongolian gerbils (Meriones unguiculatus)[J]. Comp Biochem Physiol, 2007(148):346~353.
[5]MaNab B K. On the utility of uniformity in the definition of basal rate of metabolism[J]. Physiol Zool,1997(70):718~720.
[6]Bozinovic F, Gallardo P. The water economy of South American desert rodents: from integrative to molecular physiological ecology[J]. Comp Biochem Physiol,2006(142):163~172.
[7]Speakman J R. The energy cost of reproduction in small rodents[J]. Acta Ther Sin,2007(27):1~13.
[8]Tang G B, Cui J G, Wang D H. Role of hypoleptinemia during cold adaptation in Brandt's voles (Lasiopodomys brandtii)[J]. Am J Physiol Regul Integr Comp Physiol, 2009,297(5):1293~1301.
[9]Strosberg A D. Strueture and function of the adrenergic receptor[J]. Annu Rev Pharmacol Toxicol,1997(37):421~450.
[10]Sloan Wilson D, Clark A B, Coleman K. Shyness and boldness in humans and other animals[J]. Trends Ecol Evol,1994,9(11):442~446.
[11]Zhu W L, Jia T, Huang C M, et al. Changes of energy metabolism, thermogenesis and body mass in the tree shrew (Tupaia belangeri chinensis) during cold exposure[J]. Italian Journal of Zoology,2012,79(2):175~181.
[12]Zhu W L, Mu Y, Liu J H, et al. Energy requirements during lactation in female Apodemus chevrieri (Mammalia: Rodentia: Muridae) in Hengduan mountain region[J]. Italian Journal of Zoology,2015,82(2):165~171.
[13]Hill R W. Determination of oxygen consumption by use of the paramagnetic oxygen analyser[J]. Appl Physiol,1972(33):261~263.
[14]Zhu W L, Zhang H, Wang Z K. Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri) the roles of photoperiod and cold[J]. Journal of Thermal Biology,2012(37):479~484.
[15]Zhang L, Zhu W L, Wang Z K. Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri[J]. Comparative Biochemistry and Physiology,2012(163):253~259.
[16]Zhang L, Zhang H, Zhu W L, et al. Energy metabolism, thermogenesis and body mass regulation in tree shrew (Tupaia belangeri) during subsequent cold and warm acclimation[J]. Comparative Biochemistry and Physiology,2012(162):437~442.
[17]Zhang L, Liu P F, Zhu W L, et al. Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation[J]. Journal of Comparative Physiology,2012(182):167~176.
[18]Heldmaier D. Source if heat during nonshivering thermogenesis in Djungarian hamster[J]. Comp Physiol,1985(156):237~245.
[19]王政昆,李慶芬,孫儒泳.褐色脂肪組織產(chǎn)熱及其調(diào)節(jié)機(jī)理[J].生理科學(xué)進(jìn)展,27(4):353~355.
[20]Nedergaard J, Valeria G, Anita M, et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency[J]. Biochimica et Biophysica Acta, 2001(1504):82~106.
[21]李慶芬,劉小團(tuán),黃晨西.長(zhǎng)爪沙鼠冷馴化過(guò)程眾褐色脂肪組織產(chǎn)熱活性及解偶聯(lián)蛋白基因表達(dá)[J].動(dòng)物學(xué)報(bào),2001,47(4):388~393.
[22]Zhao J, Cannon B, Nedergaard J. Thermogenes is β3-but not βl-adrenergically mediated in rat brown fat cells, even after cold acclimation[J]. Am J Physiol,1998,275(6):2002~2011.
Study on the Effects of Different Adrenergic Agonistson the Thermogenic Capacity of Tupaia BelangeriUnder Cold Exposure
Zhu Wanlong, Wang Zhengkun
(KeyLaboratoryofEcologicalAdaptiveEvolutionandConservationonAnimals-PlantsinSouthwestMountainEcosystemofYunnanProvinceHigherInstitutesCollege,SchoolofLifeSciences,YunnanNormalUniversity,Kunming650500,China)
his article mainly studies oneffect of different β-AR agonists on the thermogenic capacity ofTupaia belangeri under the condition of cold exposure and tests Tupaia belangeri's resting metabolic rate (RMR) and nonshivering thermogenesis (NST). The results show that RMR increasesin the group ofcold exposure compared with control group (out of cold exposure).But β3-NST and NST increase significantly compared with control group. After the injection of NE and BRL37344, the oxygen consumption increases obviously in both groups. NST is higher thanβ3-NST in control group, but the differences are not obvious. In the group of cold exposure, the differences between NST and β3-NST are obvious. All of results indicate that the cold exposure makes theTupaia belangeri's thermogenic capacity stronger and there exists β3-AR in BAT. The article speculates thatβ3-AR is not the only AR in BAT. Perhaps, and NE may enhance thermogenesis by many adrenergic approaches, which may play an important role in the adaptive thermogenesis in T. belangeri.
Tupaia belangeri; adrenaline; thermogenesis
2015-09-30
國(guó)家國(guó)際科技合作項(xiàng)目(編號(hào):2014DFR31040) ;十二五國(guó)家支撐計(jì)劃(編號(hào):2014BAI01B00);國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31360096)資助
朱萬(wàn)龍(1983—),男,江蘇南京人,博士,副教授,主要從事動(dòng)物生理生態(tài)學(xué)研究。
Q953
A
1674-9944(2015)12-0001-03