李花妮,路俊勇
(1.西安工業(yè)大學(xué) 理學(xué)院,西安710021;2.西安高壓電器研究所,西安710000)
自文獻(xiàn)[1-2]提出不變凸函數(shù)以來(lái),不變凸性在最優(yōu)化理論中扮演了很重要的角色.對(duì)于約束非線性優(yōu)化問(wèn)題,不變凸性假設(shè)條件是臨界點(diǎn)為最優(yōu)點(diǎn)的充分條件,但不是必要條件.文獻(xiàn)[3]提出了一個(gè)更弱的概念,稱之為 KKT-不變凸性,他證明了該條件是Kuhn-Tucker點(diǎn)成為最優(yōu)點(diǎn)的充分必要條件.文獻(xiàn)[4-6]將KKT-不變凸性概念及最優(yōu)性結(jié)果推廣到了多目標(biāo)規(guī)劃中,并刻畫(huà)了弱有效解.
近年來(lái),文獻(xiàn)[7]提出一種新的可微函數(shù)——G-不變凸函數(shù).他的研究表明,大多不變凸函數(shù)的全局最優(yōu)性質(zhì)同樣對(duì)于G-不變凸函數(shù)也擁有,并且在很多情況下,函數(shù)f關(guān)于η的G-不變凸函數(shù)的形式更為簡(jiǎn)單,這一點(diǎn)在求解最優(yōu)點(diǎn)時(shí)是非常重要的,可以大大簡(jiǎn)化計(jì)算量.
考慮以下可微非線性優(yōu)化問(wèn)題(NP)為
本文為可微非線性規(guī)劃問(wèn)題提出了G-KKT-不變凸性的條件,并證明了G-KKT-不變凸性是G-KKT成為最優(yōu)解的充分必要條件,推廣了文獻(xiàn)[3,7]的結(jié)果.
[1] HANSON M A.On Sufficiency of Kuhn-Tucker Conditions[J].J Math Anal Appl,1981,80:545.
[2] CRAVEN B D.Invex Functions and Constraint Local Minima[J].J Aust Math Soc Ser B,1981,24:357.
[3] MARTIN D M.The Essence of Invexity[J].J Optim Theory Appl,1985,47:65.
[4] OSUNA R,RUFIAN A,RUIZ P.Invex Functions and Generalized Convexity in Multiobjective Programming[J].J Optim Theory Appl,1998,98:651S.
[5] OSUNA R,BEATO A,RUFIAN A.Generalized Convexity in Multiobjective Programming[J].J Math Anal Appl,1999,233:205.
[6] ARANA M,RUFIAN A,OSUNA R,et al.Pseudoinvexity,Optimality Conditions and Efficiency in Multiobjective Problems;Duality[J].Nonlinear Anal,TMA,2008,68:24.
[7] ANTCZAK T.New Optimality Conditions and Duality Results of G-Type in Differentiable Mathematical Programming[J].Nonlinear Anal,2007,66:1617.
[8] MANGASARIAN O L.Nonlinear Programming[M].New York:McGraw-Hill,1969.