丁偉平
[摘 要] 甲狀腺癌是最常見的內(nèi)分泌系統(tǒng)腫瘤,術(shù)前診斷的金標(biāo)準(zhǔn)細(xì)針抽吸仍有10%-20%病例不能確診。miRNA具有潛在診斷價(jià)值,對miRNA表達(dá)的檢測可以幫助鑒別病變的良惡性。文章整理近年關(guān)于miRNA與甲狀腺癌研究文獻(xiàn),就miRNA與甲狀腺癌發(fā)生發(fā)展、診斷以及治療的關(guān)系進(jìn)行綜述。
[關(guān)鍵詞] 甲狀腺癌;miRNA;診斷;細(xì)針抽吸
中圖分類號: R736.1 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號:2095-5200(2014)06-020-04
甲狀腺癌是最常見的內(nèi)分泌系統(tǒng)腫瘤,發(fā)病率約占所有惡性腫瘤中的1.7%[1]。孫嘉偉等[2]統(tǒng)計(jì),1988~2009年我國甲狀腺癌的發(fā)病率呈上升趨勢。甲狀腺癌可從兩種內(nèi)分泌細(xì)胞演變而來:濾泡細(xì)胞和濾泡旁C細(xì)胞。超過95%的甲狀腺癌來源于濾泡細(xì)胞,可分為乳頭狀癌(papillary thyroid carcinoma, PTC)、濾泡狀甲狀腺癌(follicular thyroid carcinoma,F(xiàn)TC)和未分化型甲狀腺癌(anaplastic thyroid carcinoma, ATC)。診斷甲狀腺結(jié)節(jié)的金標(biāo)準(zhǔn)是細(xì)針抽吸(fine needle aspiration, FNA)活檢,但結(jié)果中良性占60%-70%,惡性占5%-7%,可疑惡性占不到10%,意義不明的濾泡樣病變或新生物占10%,濾泡樣病變或新生物占10%-20%,仍有5%-15%的病例不能診斷[3]。為進(jìn)一步確診,則需行偏側(cè)甲狀腺切除術(shù)以進(jìn)行組織學(xué)診斷。所以,需要引入新的技術(shù)來協(xié)助診斷甲狀腺結(jié)節(jié),從而減少有創(chuàng)的偏側(cè)甲狀腺切除術(shù)。
為提高FNA細(xì)胞學(xué)檢查的診斷準(zhǔn)確性,將突變分析用于結(jié)果不確定的FNA活檢。而當(dāng)前突變分析的特異性可達(dá)95%-100%,但敏感性只有38%-86%[4]。對無甲狀腺癌沒有胞體突變病例,無法應(yīng)用突變分析。另一具有潛在診斷價(jià)值的分子——miRNA(miR,microRNA),是一類長約22個(gè)核苷酸的基因調(diào)節(jié)因子。某些特殊的miRNA可作為致癌基因或抑癌因子[5]。在肺癌和結(jié)直腸癌研究中,miRNA的潛在診斷能力已被證實(shí)。對miRNA表達(dá)的檢測可幫助鑒別病變的良惡性,且有助于評估治療的有效程度[6-8]。
本文回顧目前關(guān)于miRNA與甲狀腺癌的研究,就miRNA與甲狀腺癌發(fā)生發(fā)展、診斷以及治療的關(guān)系進(jìn)行綜述。
1 miRNA與甲狀腺癌的病理過程
1.1 miRNA與PTC
PTC是甲狀腺癌中最常見類型,大部分的研究都包括了PTC患者組織樣本。幾乎所有基因芯片研究均證實(shí)了在PTC中,miRNA-221與222在PTC中較良性組織(正常組織、濾泡腺癌或結(jié)節(jié)性甲狀腺腫)中表達(dá)均明顯上調(diào)[6, 9-12]。He等[9]發(fā)現(xiàn),miRNA-146b、miRNA-211、miRNA-222在癌組織表達(dá)比正常組織高10倍以上,通過分析,推測miRNA-146b、miRNA-211、miRNA-222的靶基因?yàn)閏-KIT,可能通過下調(diào)KIT基因,參與PTC的發(fā)生。在移植大鼠人源PTC模型中,發(fā)現(xiàn)miRNA-221、miRNA-222、miRNA-181b均過表達(dá),而阻斷miRNA-221后,PTC生長受到抑制[10]。Visone等[13]證實(shí)了在PTC細(xì)胞中,miRNA-221、miRNA-222通過抑制p27Kip1的表達(dá),解除p27(Kip1)對細(xì)胞周期的控制,從而參與PTC的發(fā)生和發(fā)展。戴璇璇等[14]采用RNA印記雜交法證實(shí)了miRNA-221在PTC中的表達(dá)水平明顯高于癌旁正常組織,并且在分組分析中發(fā)現(xiàn),miRNA-221過表達(dá)與腫瘤侵襲性的臨床病理特征(如包膜侵犯、 淋巴結(jié)轉(zhuǎn)移)有關(guān)。Chou等[15]評價(jià)了100例PTC患者的TNM分期和miRNA-221、miRNA-222、miRNA-146b的相關(guān)性,認(rèn)為這3個(gè)miRNA與甲狀腺外侵襲顯著相關(guān),且miRNA-221、miRNA-146b在高風(fēng)險(xiǎn)組表達(dá)水平顯著提高。BRAF基因突變可通過NF-κB通路上調(diào)miRNA-221的表達(dá),并且提高PTC的侵襲性,故這可能是miRNA-221與PTC侵襲性有關(guān)的分子機(jī)制之一[16-19]。
miRNA不但在乳頭狀甲狀腺癌的發(fā)生發(fā)展的過程中有著重要意義,對PTC復(fù)發(fā)也具有一定預(yù)測價(jià)值。LeeJC等[20]回顧性分析了復(fù)發(fā)以及未復(fù)發(fā)PTC病例,miRNA-222與miRNA-146b的表達(dá)在手術(shù)后顯著下降,復(fù)發(fā)后再顯著上升, miRNA-222及miRNA-146b具有作為預(yù)測PTC復(fù)發(fā)標(biāo)志物的潛力。
1.2 miRNA與FTC
濾泡狀甲狀腺癌的惡性程度要高于PTC,且多與PTC伴隨發(fā)生。在FTC的發(fā)生過程中,多種microRNA均有不同程度高表達(dá)。這種細(xì)胞表達(dá)與細(xì)胞類型有一定關(guān)系。Weber等[21]證明了過表達(dá)miRNA-197、miRNA-346能夠誘導(dǎo)HEK293T細(xì)胞的增殖,而抑制miRNA-197、miRNA-346則會(huì)導(dǎo)致FTC133和K5細(xì)胞系(人FTC細(xì)胞系)增長停滯,而對NPA87細(xì)胞系(人PTC細(xì)胞系)并無影響。他們還證實(shí)了miRNA-346通過抑制EFEMP2,miRNA-197通過抑制ACVR1和TSPAN3來促進(jìn)癌細(xì)胞生長。故沉默miRNA-197、miRNA-346基因可以成為治療FTC的新方向。Nikiforova等[22]發(fā)現(xiàn)miRNA-187在PTC和FTC中高表達(dá),但在甲狀腺濾泡狀腺瘤(follicle adenoma, FA)中表達(dá)水平不變,故可通過測量miRNA-187的水平來鑒別FTC和FA,卻不能鑒別FTC和其他濾泡細(xì)胞來源腫瘤。FTC與miRNA相關(guān)研究較少,在國內(nèi)尚無該領(lǐng)域研究。可能是此種病例相對較少,且多與PTC伴發(fā),限制了FTC與miRNA相關(guān)研究進(jìn)展。
1.3 miRNA與ATC
ATC是卵泡起源的甲狀腺癌,其侵襲性和死亡率在所有甲狀腺癌中最高,發(fā)病人數(shù)占所有甲狀腺癌的10%-15%,其生長迅速,極易產(chǎn)生局部癥狀。ATC對化療和放療均不敏感,所以明確miRNA在ATC增殖和凋亡中的作用對治療有重要意義,可能帶來治療ATC的新方法。Takakura等[23]發(fā)現(xiàn),抑制miRNA-17-3p可能通過活化caspase-3和9,導(dǎo)致細(xì)胞生長停滯,使細(xì)胞凋亡。抑制MiRNA-17-5p或miRNA19a也可誘導(dǎo)出強(qiáng)烈的生長受限,但只有miRNA-17-5p能使細(xì)胞衰老。因抑制miRNA-17-5p和miRNA19a 后RB1和PTEN的表達(dá)增加,所以miRNA17-5p和miRNA19a的靶點(diǎn)被確定位于RB1和PTEN基因。有報(bào)道顯示,PTEN去活化可出現(xiàn)于高度惡性或晚期甲狀腺癌,特別是在ATC中[24]。Mitomo等[25]發(fā)現(xiàn),相比于正常甲狀腺組織,甲狀腺癌中分別有5種miRNA的表達(dá)上調(diào)和下調(diào)。相比于PTC中,MiRNA-138是其中唯一在ATC中表達(dá)顯著下調(diào)的miRNA,且發(fā)現(xiàn)其靶基因是hTERT 基因(human telomerase reverse transcriptase gene,人端粒酶反轉(zhuǎn)錄酶基因),該靶基因表達(dá)產(chǎn)物蛋白在ATC中過表達(dá)。確定的特異靶點(diǎn)是miRNA-138和hTERT 3未翻譯區(qū),失去miRNA抑制的細(xì)胞中hTERT蛋白表達(dá)增加,導(dǎo)致甲狀腺癌的發(fā)生。此外,hTERT表達(dá)上調(diào)和序貫的miRNA-138表達(dá)下調(diào),可能是高分化PTC進(jìn)展為ATC的機(jī)制之一[26-27]。2010年,Braun等[28]證實(shí):miRNA-200和miRNA-30在ATC中表達(dá)顯著降低,從而可區(qū)別于PTC和FTC。ATC衍生的間質(zhì)細(xì)胞中這些miRNA的表達(dá)減少了細(xì)胞的侵襲能力,并通過調(diào)節(jié)MET(mesenchymal-epithelial transition,間質(zhì)-上皮轉(zhuǎn)換)標(biāo)記蛋白誘導(dǎo)了MET。支持TGF-β信號通路在MET/EMT(epithelial-mesenchymal transition,上皮-間質(zhì)轉(zhuǎn)換)的作用,SMAD2和TGF-βR1的表達(dá)在大多數(shù)ATC中都上調(diào),并在ATC衍生的細(xì)胞中受到miRNA-30和/或miRNA-200家族中成員的調(diào)控。某些特征MiRNA可作為潛在的ATC生物標(biāo)志物。Visone等[29]在ATC細(xì)胞系中誘導(dǎo)miRNA-26a和miRNA-125b高表達(dá),導(dǎo)致細(xì)胞生長抑制,解釋了這兩種miRNA對細(xì)胞周期的負(fù)向調(diào)節(jié)和其在甲狀腺腫瘤發(fā)生中的下調(diào)原因。Pacifico等[30]提出,NF-κB通過上調(diào)miRNA-146a的表達(dá),參與ATC的發(fā)生。MiRNA表達(dá)的調(diào)節(jié)受到RNA多聚酶II依賴的轉(zhuǎn)錄因子控制,NF-κB在ATC來源的FRO細(xì)胞系中被失活,miRNA-146a在人ATC標(biāo)本中比正常甲狀腺組織要高表達(dá)。NF-κB通過上調(diào)miRNA-146a的表達(dá)參與ATC的發(fā)生發(fā)展。綜上可見microRNA的表達(dá)研究對于ATC的治療有著積極的意義,抑制某些蛋白的表達(dá)對ATCs的治療有借鑒意義。
1.4 miRNA與MTC
目前只有兩個(gè)關(guān)于MTC中miRNA表達(dá)的研究。Nikiforova等[22]發(fā)現(xiàn)了一組共10個(gè)miRNA在MTC中表達(dá)上調(diào)。2011年Abraham等[31]試圖通過分析miRNA表達(dá)來確定MTC的預(yù)后生物標(biāo)志物和治療靶點(diǎn)。MiRNA-183和miRNA-375在MTC中高表達(dá),且預(yù)示著外側(cè)淋巴結(jié)轉(zhuǎn)移,與殘余癌細(xì)胞載量、遠(yuǎn)處轉(zhuǎn)移和死亡率有關(guān)。在TT細(xì)胞(人MTC細(xì)胞系)中敲低miRNA-183的表達(dá)能誘導(dǎo)增殖細(xì)胞減少,且LC3B蛋白表達(dá)上調(diào),LC3B與細(xì)胞自噬活動(dòng)有關(guān)。
2 miRNA與甲狀腺癌的診斷
在FFPE樣本中檢測miRNA的能力使miRNA成為非常吸引人的生物標(biāo)志物[7, 32]。與mRNA相反,miRNA受固定的影響較小,且因其體積小、穩(wěn)定性高,故易于從FFPE樣本中提取出[33]。此外,由于miRNA體積小、質(zhì)量輕,miRNA也可通過FNA抽出。無論如何,關(guān)鍵是最終結(jié)果與FFPE對照樣本一致[34]。有試驗(yàn)證實(shí),使用一系列miRNA檢測甲狀腺癌的敏感性或陰性預(yù)測值為100%,他們的研究設(shè)計(jì)是可靠的[3, 22, 35, 36]。而miRNA檢測甲狀腺癌的特異性,各個(gè)研究中的結(jié)果不一,從29%至94%不等[22, 33, 35, 36]。Mazeh等[37]以FNA活檢作為對照,分析了單miRNA鑒別確診的惡性結(jié)節(jié)和對側(cè)甲狀腺葉的能力。他們的預(yù)測值結(jié)果非常高,但他們卻忽略了患者間的異質(zhì)性。Shen等[38]和Vriens等[39]分析了一組miRNA,敏感性和陰性預(yù)測值接近100%,但臨床適用性差。
3 miRNA的靶點(diǎn)
miRNA-21在多種腫瘤類型中均上調(diào),是較佳的評價(jià)腫瘤指標(biāo)。通過抑制PTEN和PDCD4這兩種抑癌蛋白,在腫瘤發(fā)生、發(fā)展、轉(zhuǎn)移和抗腫瘤藥物抵抗中起重要作用[40-41]。MiRNA-146b通常在濾泡來源的甲狀腺癌中高表達(dá),而在其他腫瘤類型中則并不高。它作為原癌因子與SMAD4 3非轉(zhuǎn)錄區(qū)結(jié)合,抑制TGFβ信號通路[42]。MiRNA-221和miRNA-222直接作用于p27Kip1mRNA轉(zhuǎn)錄,作用于細(xì)胞周期中的靜止細(xì)胞,使它們進(jìn)入S期[13]。確認(rèn)miRNA的靶點(diǎn)能夠使我們更深入理解miRNA在細(xì)胞周期中的作用,從而通過控制miRNA的表達(dá),抑制腫瘤的生長。
4 小結(jié)
甲狀腺FNA是術(shù)前診斷、評價(jià)甲狀腺結(jié)節(jié)的重要方法,但仍有10%-20%的樣本不能確定。所以需要額外的手段來提高術(shù)前診斷率。在不同類型的甲狀腺癌中,miRNA的表達(dá)均有著顯著的差異,使得我們不僅能鑒別甲狀腺腫瘤的良惡性,而且能區(qū)分腫瘤類型。已有研究報(bào)道了使用循環(huán)中miRNA作為新一類的生物標(biāo)志物來診斷甲狀腺癌。通過miRNA靶向治療甲狀腺癌,還需更多有關(guān)miRNA靶基因作用的研究。
參 考 文 獻(xiàn)
[1] Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008[J]. Int J Cancer,2010,127(12):2893-2917.
[2] 孫嘉偉, 許曉君, 蔡秋茂, 等. 中國甲狀腺癌發(fā)病趨勢分析[J]. 中國腫瘤,2013,22(9): 690-693.
[3] Baloch Z W, Livolsi V A, Asa S L, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference[J]. Diagn Cytopathol.2008,36(6):425-437.
[4] Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules[J]. J Clin Endocrinol Metab.2011,96(7):2016-2026.
[5] Zhang B, Pan X, Cobb G P, et al. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol. 2007,302(1):1-12.
[6] Yip L, Kelly L, Shuai Y, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma[J]. Ann Surg Oncol,2011,18(7):2035-2041.
[7] Hui A, How C, Ito E, et al. Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies[J]. BMC Cancer. 2011, 500.
[8] de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer[J]. J Clin Endocrinol Metab. 2011,96(11):3326-3336.
[9] He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma[J]. Proc Natl Acad Sci U S A. 2005,102(52):19075-19080.
[10] Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas[J]. Endocr Relat Cancer. 2006,13(2):497-508.
[11] Nikiforova M N, Chiosea S I, Nikiforov Y E. MicroRNA expression profiles in thyroid tumors[J]. Endocr Pathol. 2009,20(2):85-91.
[12] Tetzlaff M T, Liu A, Xu X, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues[J]. Endocr Pathol. 2007,18(3):163-173.
[13] Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle[J]. Endocr Relat Cancer.2007,14(3):791-798.
[14] 戴璇璇, 周毅力, 劉超, 等. miRNAs在甲狀腺乳頭狀癌中的表達(dá)及臨床病理意義[J]. 浙江醫(yī)學(xué).2013,(20):1802-1806.
[15] Chou C K, Chen R F, Chou F F, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation[J]. Thyroid. 2010,20(5):489-494.
[16] Kim J, Giuliano A E, Turner R R, et al. Lymphatic mapping establishes the role of BRAF gene mutation in papillary thyroid carcinoma[J]. Ann Surg. 2006,244(5):799-804.
[17] Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1[J]. J Biol Chem.2007, 282(32): 23716-23724.
[18] Xing M, Westra W H, Tufano R P, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer[J]. J Clin Endocrinol Metab.2005, 90(12):6373-6379.
[19] Kim T Y, Kim W B, Rhee Y S, et al. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma[J]. Clin Endocrinol (Oxf). 2006,65(3):364-368.
[20] Lee J C, Zhao J T, Clifton-Bligh R J, et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid cancer[J]. Cancer.2013,19(24):4358-4365.
[21] Weber F, Teresi R E, Broelsch C E, et al. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma[J]. J Clin Endocrinol Metab.2006, 91(9):3584-3591.
[22] Nikiforova M N, Tseng G C, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility[J]. J Clin Endocrinol Metab. 2008,93(5): 1600-1608.
[23] Takakura S, Mitsutake N, Nakashima M, et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells[J]. Cancer Sci.2008,99(6):1147-1154.
[24] Frisk T, Foukakis T, Dwight T, et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer[J]. Genes Chromosomes Cancer.2002,35(1):74-80.
[25] Mitomo S, Maesawa C, Ogasawara S, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines[J]. Cancer Sci.2008,99(2):280-286.
[26] Wang Y, Kowalski J, Tsai H L, et al. Differentiating alternative splice variant patterns of human telomerase reverse transcriptase in thyroid neoplasms[J]. Thyroid.2008,18(10):1055-1063.
[27] Ito Y, Yoshida H, Tomoda C, et al. Telomerase activity in thyroid neoplasms evaluated by the expression of human telomerase reverse transcriptase (hTERT)[J]. Anticancer Res. 2005,25(1B): 509-514.
[28] Braun J, Hoang-Vu C, Dralle H, et al. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas[J]. Oncogene. 2010,29(29):4237-4244.
[29] Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas[J]. Oncogene. 2007,26(54):7590-7595.
[30] Pacifico F, Crescenzi E, Mellone S, et al. Nuclear factor-{kappa}B contributes to anaplastic thyroid carcinomas through up-regulation of miR-146a[J]. J Clin Endocrinol Metab.2010,95(3): 1421-1430.
[31] Abraham D, Jackson N, Gundara J S, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets[J]. Clin Cancer Res. 2011,17(14):4772-4781.
[32] Osaki M, Takeshita F, Ochiya T. MicroRNAs as biomarkers and therapeutic drugs in human cancer[J]. Biomarkers. 2008,13(7):658-670.
[33] Zhang X, Chen J, Radcliffe T, et al. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples[J]. J Mol Diagn.2008, 10(6):513-519.
[34] Chen Y T, Kitabayashi N, Zhou X K, et al. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma[J]. Mod Pathol. 2008,21(9):1139-1146.
[35] Keutgen X M, Filicori F, Crowley M J, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration[J]. Clin Cancer Res. 2012,18(7):2032-2038.
[36] Kitano M, Rahbari R, Patterson E E, et al. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples[J]. Thyroid.2012,22(3):285-291.
[37] Mazeh H, Mizrahi I, Halle D, et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples[J]. Thyroid. 2011,21(2): 111-118.
[38] Shen R, Liyanarachchi S, Li W, et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases[J]. Thyroid.2012,22(1):9-16.
[39] Vriens M R, Weng J, Suh I, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer[J]. Cancer.2012,118(13):3426-3432.
[40] Pan X, Wang Z X, Wang R. MicroRNA-21: a novel therapeutic target in human cancer[J]. Cancer Biol Ther. 2010,10(12):1224-1232.
[41] Talotta F, Cimmino A, Matarazzo M R, et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation[J]. Oncogene.2009,28(1):73-84.
[42] Geraldo M V, Yamashita A S, Kimura E T. MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer[J]. Oncogene.2012,31(15):1910-1922.