孫愛平,孫書明,張國俊,王艷華,宋向鳳
(新鄉(xiāng)醫(yī)學(xué)院 免疫學(xué)研究中心, 河南 新鄉(xiāng) 453003)
研究論文
熊果酸減輕LPS誘導(dǎo)的THP-1細(xì)胞損傷
孫愛平,孫書明,張國俊,王艷華,宋向鳳*
(新鄉(xiāng)醫(yī)學(xué)院 免疫學(xué)研究中心, 河南 新鄉(xiāng) 453003)
目的探討熊果酸減輕脂多糖誘導(dǎo)的THP-1細(xì)胞損傷的作用及其機(jī)制。方法以脂多糖誘導(dǎo)的THP-1 炎性細(xì)胞為模型,MTT法檢測(cè)不同濃度的熊果酸(0.1、1、5、10、20、40和80 μmol/L) 對(duì)細(xì)胞增殖的影響,RT-PCR 法檢測(cè)TLR4、MCP-1和IL-6 mRNA 的表達(dá),ELISA法檢測(cè)MCP-1和IL-6表達(dá),Western blot法檢測(cè)P65、磷酸化P65蛋白表達(dá),熒光素酶報(bào)告系統(tǒng)檢測(cè)核轉(zhuǎn)錄因子κB(NF-κB)活性。結(jié)果與對(duì)照組比較,LPS作用組能顯著增高M(jìn)CP-1、TLR4、IL-6 mRNA 和MCP-1、IL-6、P65、磷酸化P65蛋白的表達(dá)并上調(diào)NF-κB 活性(Plt;0.05);與LPS單獨(dú)作用組比較,熊果酸(1和5 μmol/L)干預(yù)組能夠顯著降低MCP-1、TLR4、IL-6 mRNA 和MCP-1、IL-6表達(dá)水平并下調(diào)NF-κB 活性(Plt;0.05)。結(jié)論熊果酸可能是通過下調(diào)NF-κB 活化減輕脂多糖誘導(dǎo)的THP-1 細(xì)胞的損傷。
熊果酸; THP-1細(xì)胞; TLR4;MCP-1; IL-6; NF-κB
熊果酸(ursolic acid,UA,3β-hydroxy-12-urs-12-en-28-oic acid) 又名烏索酸、烏蘇酸,屬于α-香樹脂烷(α-amyrin)型五環(huán)三萜類化合物[1-2]。它在自然界分布很廣,研究表明UA 具有廣泛的生物學(xué)效應(yīng),其中抗腫瘤方面的報(bào)道最多[3-5],而抗炎方面的作用及其相關(guān)機(jī)制研究卻報(bào)道較少[6]。
炎性反應(yīng),俗稱發(fā)炎,對(duì)機(jī)體而言如一把“雙刃劍”[7]。它是機(jī)體的重要防御機(jī)制,同時(shí)也可產(chǎn)生大量的促炎性細(xì)胞因子,如IL-6、TNF-α、IFN-γ、MCP-1等[8]。單核細(xì)胞趨化蛋白-1(MCP-1)和白細(xì)胞介素(IL)-6是參與機(jī)體炎性反應(yīng)和一系列病理生理過程的重要介質(zhì)[9-10]。
本研究在細(xì)胞及分子水平探討了熊果酸對(duì)脂多糖(lipopolysaccharide,LPS)誘導(dǎo)的THP-1 單核細(xì)胞增殖作用的影響,并從TLR4、MCP-1和IL-6的mRNA水平及NF-κB信號(hào)途徑的蛋白水平對(duì)其相關(guān)機(jī)制作了初步探討。
1.1 材料
人單核細(xì)胞系THP-1 細(xì)胞(免疫學(xué)研究中心保存);熊果酸(Sigma公司,純度大于90%);RPMI-1640 液體培養(yǎng)基(roswell park memorial institute-1640,Gibco公司);小牛血清(中國醫(yī)學(xué)科學(xué)院血液病研究所);噻唑藍(lán)(MTT)和脂多糖(Sigma公司);RNA提取試劑盒(Omega公司);MCP-1和IL-6 ELISA試劑盒(Abcam公司);一抗(兔抗人NF-κB P65和磷酸化P65)(北京博奧森生物技術(shù)有限公司),二抗(HRP標(biāo)記羊抗兔IgG)(武漢博士德生物工程有限公司);報(bào)告基因質(zhì)粒pNF-κB-luc(美國NIH欒好江博士惠贈(zèng));Lipofecter脂質(zhì)體轉(zhuǎn)染試劑(碧云天生物技術(shù)有限公司)。
1.2 方法
1.2.1 細(xì)胞培養(yǎng):THP-1細(xì)胞用含體積分?jǐn)?shù)為10%胎牛血清的新鮮RPMI-1640培養(yǎng)基培養(yǎng),內(nèi)含各100 U/mL青霉素和鏈霉素,在37 ℃、體積分?jǐn)?shù)為5% CO2、飽和濕度培養(yǎng)箱中培養(yǎng),細(xì)胞濃度不超過1×109/L,2~3 d傳代1次。實(shí)驗(yàn)前換無血清培養(yǎng)基饑餓1 h,在實(shí)驗(yàn)中空白對(duì)照組均給予等體積RPMI-1640培養(yǎng)基。取生長狀態(tài)良好的、對(duì)數(shù)生長期細(xì)胞進(jìn)行實(shí)驗(yàn)。
1.2.2 細(xì)胞增殖實(shí)驗(yàn):將THP-1細(xì)胞以5×105個(gè)/mL接種于96孔板,200 μL/孔,分別加入不同濃度的UA(0.1、1、5、10、20、40和80 μmol/L)和不同濃度的LPS(1、10、100和1 000 μg/L),另設(shè)空白對(duì)照組,每組設(shè)3個(gè)復(fù)孔,重復(fù)3次。在培養(yǎng)箱中作用24 h后,加入無血清RPMI-1640 培養(yǎng)基和5 μg/L MTT 溶液(9∶1),37 ℃、5% CO2細(xì)胞培養(yǎng)箱中孵育3 h;棄去上述培養(yǎng)液,加入二甲基亞砜(dimethyl sulfoxide,DMSO),微量振蕩器振蕩10 min 溶解藍(lán)紫色結(jié)晶,酶標(biāo)儀測(cè)定吸光度(測(cè)定波長570 nm,參比波長650 nm)并記錄A570。
1.2.3 TLR4、MCP-1和IL-6 mRNA表達(dá)的測(cè)定:將THP-1細(xì)胞以5×105/mL個(gè)接種于6孔板,3 mL/孔,加入10 μg/L的LPS,在培養(yǎng)箱中作用20 h后,給藥組給予不同濃度的UA(0.1、1、5,和10 μmol/L)誘導(dǎo)4 h。用RNA提取試劑盒提取總RNA,A260/280測(cè)定RNA純度。反轉(zhuǎn)錄合成cDNA。于PCR反應(yīng)體系10 μL中加入模板cDNA 2 μL進(jìn)行PCR擴(kuò)增,GAPDH作為內(nèi)參,實(shí)驗(yàn)重復(fù)3次。引物由蘇州金唯智生物科技有限公司合成,各引物序列見表1。PCR 產(chǎn)物經(jīng)含1.0 μg/mL 溴化乙錠(ethidium bromide,EB) 染色液的1.5%瓊脂糖凝膠電泳,分別以目的基因擴(kuò)增產(chǎn)物電泳條帶總灰度與GAPDH電泳條帶總灰度之比表示各自mRNA的相對(duì)強(qiáng)度。
1.2.4 ELISA法檢測(cè)MCP-1和IL-6:按試劑盒操作說明進(jìn)行。
1.2.5 蛋白質(zhì)印跡(Western blot)法檢測(cè)P65蛋白的表達(dá): 將THP-1細(xì)胞以5×105/mL個(gè)接種于6 孔板,3 mL/孔,加入10 μg/L的LPS,在培養(yǎng)箱中作用20 h后,給藥組給予不同濃度的UA(0.1、1、5和10 μmol/L)誘導(dǎo)4 h。裂解細(xì)胞提取總蛋白,用G-250法進(jìn)行定量后,將含有等量蛋白的細(xì)胞裂解液用樣品緩沖液溶解,行SDS-PAGE電泳,用半干電轉(zhuǎn)方法轉(zhuǎn)移至硝酸纖維素膜。用含質(zhì)量分?jǐn)?shù)為5%脫脂奶粉的TBST封閉,結(jié)合一抗(兔抗人)。TBST漂洗,結(jié)合二抗(羊抗兔)。TBST再次漂洗,洗后的膜加入化學(xué)發(fā)光試劑(ECL),反應(yīng)2 min,暗室曝光顯影后沖洗膠片,后用激光掃描儀掃描,分別以目的蛋白總吸光度與β-actin蛋白總吸光度之比表示各自蛋白的相對(duì)強(qiáng)度。
表1 用于RT-PCR的引物序列Table 1 The primers used in RT-PCR
1.2.6 熒光素酶報(bào)告系統(tǒng)檢測(cè)NF-κB表達(dá):將THP-1細(xì)胞用無血清培養(yǎng)基洗滌,并調(diào)整細(xì)胞水平至2.5×106/mL待用。1 μg質(zhì)粒需要3.0 μL Lipofecter試劑,將其按比例混合入不完全RPMI 1640培養(yǎng)基中,渦旋劇烈振蕩30 s,室溫放置10 min后,每孔加入200 μL Lipofecter、質(zhì)粒DNA和無血清培養(yǎng)基混合物,再加入20 μL 2.5×109/L的細(xì)胞懸液,37 ℃ CO2培養(yǎng)箱中培養(yǎng)。1 h后每孔補(bǔ)充1 mL完全培養(yǎng)基,繼續(xù)培養(yǎng)32 h;之后,加入10 μg/L的LPS,在培養(yǎng)箱中作用20 h后,給藥組給予不同濃度的UA(0.1、1、5和10 μmol/L)誘導(dǎo)4 h后,收集細(xì)胞進(jìn)行熒光素酶活性檢測(cè)。
1.3 統(tǒng)計(jì)學(xué)分析
2.1 UA對(duì)THP-1細(xì)胞增殖的影響
熊果酸20、40和80 μmol/L可抑制THP-1細(xì)胞增殖(Plt;0.05)(圖1),后續(xù)實(shí)驗(yàn)只使用0.1、1、5和10 μmol/L濃度(圖1)。用同樣方法檢測(cè)LPS對(duì)THP-1細(xì)胞增殖的影響發(fā)現(xiàn)10 μg/L的LPS對(duì)THP-1細(xì)胞的增殖作用最為明顯(Plt;0.05),因此后續(xù)LPS誘導(dǎo)的THP-1細(xì)胞實(shí)驗(yàn)均用此濃度。
THP-1細(xì)胞經(jīng)LPS刺激后,TLR4、MCP-1和IL-6 mRNA表達(dá)均有顯著增加(Plt;0.05);與LPS組相比,UA(0.1、1和5 μmol/L)干預(yù)組TLR4、MCP-1和IL-6 mRNA表達(dá)明顯降低(Plt;0.05)(圖2)。
*Plt;0.05 compared with control group圖1 不同濃度熊果酸對(duì)THP-1細(xì)胞增殖作用的影響Fig 1 Effect of ursolic acid on THP-1 proliferation
#Plt;0.05 compared with control group; *Plt;0.05 compared with LPS group圖2 不同濃度熊果酸對(duì)LPS誘導(dǎo)的THP-1細(xì)胞 TLR4、MCP-1和IL-6 mRNA的影響Fig 2 Effect of UA on TLR4、MCP-1 and IL-6 expressions of THP-1 cells induced by LPS(±s,n=3)
THP-1細(xì)胞經(jīng)LPS刺激后,MCP-1和IL-6顯著增加(Plt;0.05);與LPS組相比,UA(0.1、1和5 μmol/L干預(yù)組可顯著降低MCP-1和IL-6水平(Plt;0.05)(圖3)。
#Plt;0.05 compared with control group; *Plt;0.05 compared with LPS group圖3 不同濃度熊果酸對(duì)LPS誘導(dǎo)的THP-1細(xì)胞MCP-1和IL-6的影響Fig 3 Effect of UA on MCP-1 and IL-6 expressions of THP-1 cells induced by LPS(±s,n=3)
THP-1細(xì)胞經(jīng)LPS 刺激后,NF-κB家族中P65和phospho-P65的活性顯著增加(Plt;0.05);與LPS組相比,UA(0.1、1和5 μmol/L)干預(yù)組可顯著降低P65和phospho-P65的活性(Plt;0.05)(圖4)。
THP-1細(xì)胞經(jīng)LPS刺激后,NF-κB活性檢測(cè)值增高(Plt;0.05);與LPS組相比,UA(1和5 μmol/L)干預(yù)組NF-κB活性檢測(cè)值明顯降低(Plt;0.05)(圖5)。
炎性反應(yīng)對(duì)機(jī)體的影響具有雙面性[11]。在炎性反應(yīng)發(fā)生初期,當(dāng)巨噬細(xì)胞受到相應(yīng)刺激后便會(huì)被激活,這些活化的巨噬細(xì)胞可分泌MCP-1和IL-6,而MCP-1和IL-6又可通過特異性地作用于外周血中的單核細(xì)胞和細(xì)胞信號(hào)傳導(dǎo)激活核因子-κB(nuclear factor,NF-κB),造成單核細(xì)胞的進(jìn)一步募集和活化,進(jìn)而更多的炎性介質(zhì)釋放,這樣一個(gè)MCP-1和IL-6-NF-κB-MCP-1和IL-6惡性循環(huán)最終導(dǎo)致炎癥的進(jìn)一步發(fā)展[12-13]。因此,MCP-1和IL-6在炎性反應(yīng)的發(fā)生發(fā)展中起著舉足輕重的作用,降低MCP-1和IL-6的表達(dá)水平有助于阻止早期炎性反應(yīng)。NF-κB是一個(gè)經(jīng)典的核轉(zhuǎn)錄因子,在哺乳動(dòng)物細(xì)胞中有5個(gè)家庭成員。生理狀態(tài)下,NF-κB通過對(duì)相關(guān)基因的適時(shí)準(zhǔn)確的轉(zhuǎn)錄調(diào)控,維持各種免疫細(xì)胞的正常功能[14]。研究發(fā)現(xiàn),UA 可抑制佛波酯、TNF-α和H2O2對(duì)NF-κB 的激活作用,并且無細(xì)胞特異性[15],另外,絕大多數(shù)炎性反應(yīng)通過NF-κB 途徑介導(dǎo)[16]。本研究表明LPS刺激而活化的THP-1細(xì)胞,在經(jīng)UA作用后,其合成的炎性反應(yīng)因子MCP-1、IL-6在mRNA和蛋白水平會(huì)有所降低,說明UA能減輕LPS誘導(dǎo)的THP-1細(xì)胞的損傷,而對(duì)P65、磷酸化P65蛋白水平和熒光素酶報(bào)告基因的檢測(cè),提示熊果酸對(duì)LPS刺激THP-1細(xì)胞損傷減輕作用可能是通過影響NF-κB通路的活性來實(shí)現(xiàn)的。Toll樣受體4(Toll-1ike receptor 4, TLR4)是Toll樣受體家族(Toll-1ike receptors, TLRs)的成員之一,是哺乳動(dòng)物將細(xì)胞外抗原識(shí)別信息向細(xì)胞內(nèi)傳遞并引發(fā)炎性反應(yīng)的關(guān)鍵跨膜蛋白[17]。TLR4廣泛分布于各類與免疫相關(guān)細(xì)胞,本實(shí)驗(yàn)通過對(duì)TLR4的檢測(cè),發(fā)現(xiàn)UA減輕LPS對(duì)THP-1細(xì)胞的損傷作用可能是通過TLR4,進(jìn)而影響NF-κB通路活性而實(shí)現(xiàn)的。
#Plt;0.05 compared with control group;*Plt;0.05 compared with LPS group圖4 不同濃度熊果酸對(duì)LPS誘導(dǎo)的THP-1細(xì)胞P65和phospho-P65的影響Fig 4 Effect of UA on p65 and phospho-p65 expressions of THP-1 cells induced
#Plt;0.05 compared with control group;*Plt;0.05 compared with LPS group圖5 不同濃度熊果酸對(duì)LPS 誘導(dǎo)的THP-1細(xì)胞NF-κB影響Fig 5 Effect of UA on the NF-κB activation of THP-1 cells induced by LPS(±s,n=3)
總之,THP-1細(xì)胞經(jīng)LPS作用后,LPS能通過細(xì)胞膜上的TLR4,活化NF-κB,進(jìn)而促進(jìn)炎性反應(yīng)因子MCP-1和IL-6的合成和釋放;而在UA干預(yù)后,相應(yīng)指標(biāo)會(huì)相對(duì)降低,說明UA可能是通過抑制TLR4-NF-κB通路而減輕LPS誘導(dǎo)的THP-1細(xì)胞損傷,這為臨床上預(yù)防和治療炎癥提供了一定的理論依據(jù)。
[1] 孟艷秋, 陳瑜, 王趲, 等. 熊果酸的研究進(jìn)展[J]. 中國新藥雜志, 2007, 16: 25-28.
[2] 鄭開波, 孫成斌, 毛海立, 等. 熊果酸化學(xué)結(jié)構(gòu)修飾與構(gòu)效關(guān)系的研究進(jìn)展[J].中國藥科大學(xué)學(xué)報(bào), 2009, 40:580-584.
[3] Shin SW, Park JW. Ursolic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis[J]. Biochim Biophys Acta, 2013, 1833:723-730.
[4] Li J, Liang X, Yang X. Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/ NF-κB pathways[J]. Oncol Rep, 2012, 28:501-510.
[5] Wang J, Li Y, Wang X,etal. Ursolic acid inhibits proliferation and induces apoptosis in human glioblastoma cell lines U251 by suppressing TGF-β1/miR-21/PDCD4 pathway [J]. Basic Clin Pharmacol Toxicol, 2012, 1:106-112.
[6] Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma[J]. Eur J Pharmacol, 2013, 701:131-143.
[8] Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity[J]. J Invest Dermatol, 2005, 125:615-628.
[9] Yoshimura T, Leonard EJ. Human monocyte chemoattractant protein-1: structure and function[J].Cytokines, 1992, 4:131-152.
[10] Cavaillon JM. Interleukins and inflammation[J].Pathol Biol, 1990,38:36-42.
[11] Guerra C, Collado M, Navas C, et a1.Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence[J]. Cancer Cell,2011, 19: 728-739.
[12] Gupta M, Chatur vedi R, Jain A. Enhancement of gingival inflammation induced by synergism of IL-1β and IL-6[J]. Biomed Res, 2013, 34:31-40.
[13] Youqi H an, Marschall S, Runge,etal. Role of monocyte chemoattractant protein-1 (MCP-1) as an immune-diagnostic biomarker in the pathogenesis of chronic periodontal disease[J]. Cytokine, 2013, 61:892-897.
[14] Huang WC, Hung MC. Beyond NF-κB activation: nuclear functions of IκB kinase α[J]. J Biomed Sci, 2013, 20:1-13.
[15] Shishodia S, Majumdar S, Banerjee S,etal. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaB alpha kinase and p65 phosphorylation:correlation with down-regulation of cyclooxygenase 2,matrix metalloproteinase 9,and cyclin D1[J]. Cancer Res,2003, 63: 4375-4383.
[16] Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis[J].J Atheroscler Thromb, 2003, 10: 63-71.
[17] Gordon S. Pattern recognition receptors: doubling up for the innate immune response[J]. Cell, 2002, 111:927-930.
Ursolic acid alleviated the LPS-induced damage in THP-1 cells
SUN Ai-ping, SUN Shu-ming, ZHANG Guo-jun, WANG Yan-hua, SONG Xiang-feng*
(Research Center for Immunology, Xinxiang Medical University, Xinxiang 453003,China)
ObjectiveTo investigate the alleviating effect and mechanism of ursolic acid against LPS-induced damage in THP-1 cells.MethodsTHP-1 cells were exposed to 10 μg/L LPS for 20 h, ursolic acid of different concentrations were added. Cell proliferation was tested by MTT, the expressions of TLR4,MCP-1 and IL-6 mRNA were detected by RT-PCR, enzyme-linked immunosorbent assay(ELISA) was applied to detect the production of monocyte chemoattractant protein1 (MCP-1) and interleukin-6 (IL-6), P65 and Phosphorylation-P65 were detected on protein level using Western blot, the nuclear transcription factor kappa B (NF-kappa B) activity was detected by luciferase report system.ResultsLPS group significantly increased MCP-1, TLR4, IL-6 mRNA and MCP-1, IL-6, P65, Phosphorylation-P65 proteins expression and enhanced NF-κB activity. Ursolic acid (1, 5 μmol/L) intervention groups significantly reduced MCP-1, TLR4, IL-6 mRNA expression and MCP-1, IL-6 proteins expression and inhibited NF-κB activity.ConclusionsUrsolic acid may alleviate LPS-induced damage of THP-1 cells by reducing the NF-κB activity.
ursolic acid;THP-1; TLR4;MCP-1; IL-6; NF-κB
2013-03-25
2013-06-27
新鄉(xiāng)醫(yī)學(xué)院博士啟動(dòng)基金(BSQDJJ201208)
*通信作者(correspondingauthor): xfsong@xxmu.edu.cn
1001-6325(2014)01-0088-05
R392.5
A