張霞等
摘要:從海島棉Pima S-6中鑒定了一個(gè)1號(hào)染色體上穩(wěn)定表達(dá)的纖維長(zhǎng)度QTL(qFL-chr1),針對(duì)這一目標(biāo)QTL,通過(guò)標(biāo)記輔助選擇得到近等基因系R01-40-08。近等性分析結(jié)果表明,該近等基因系其他7條染色體上仍含有 Pima S-6 的漸滲片段。以Tamcot 2111(輪回親本)與R01-40-08(供體親本)構(gòu)建了1個(gè)含有1 672個(gè)單株的F2群體,分析了其他染色體上Pima S-6漸滲片段對(duì)纖維長(zhǎng)度的遺傳效應(yīng),單標(biāo)記分析結(jié)果表明,位于14號(hào)染色體上的2個(gè)標(biāo)記(NAU2190 和NAU5465)對(duì)纖維長(zhǎng)度有顯著的影響。
關(guān)鍵詞:纖維長(zhǎng)度;漸滲系;近等基因系
中圖分類號(hào): S562.032文獻(xiàn)標(biāo)志碼: A文章編號(hào):1002-1302(2014)10-0085-03
收稿日期:2014-04-16
基金項(xiàng)目:國(guó)家自然科學(xué)基金(編號(hào):31171595);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金[編號(hào):CX(12)5039]。
作者簡(jiǎn)介:張霞(1988—),女,山東莒縣人,碩士研究生,主要從事棉花分子育種研究。Tel:(025)84390291;E-mail:zxia_1988@163.com。
通信作者:沈新蓮,博士,研究員,主要從事棉花分子育種研究。Tel:(025)84390291;E-mail:xlshen68@126.com。棉花是世界上重要的纖維作物,纖維品質(zhì)是評(píng)價(jià)棉花品種的重要指標(biāo)之一。纖維長(zhǎng)度、纖維強(qiáng)度等重要品質(zhì)指標(biāo)與棉花產(chǎn)量及產(chǎn)量構(gòu)成因素存在顯著的負(fù)相關(guān)關(guān)系[1-5],這些因素制約了棉纖維品質(zhì)的遺傳改良。分子標(biāo)記技術(shù)的發(fā)展為研究纖維品質(zhì)的遺傳和改良提供了一條新途徑,迄今為止,國(guó)內(nèi)外學(xué)者利用不同的優(yōu)質(zhì)纖維材料篩選并鑒定了100多個(gè)與纖維長(zhǎng)度相關(guān)的數(shù)量性狀位點(diǎn)[6]。目前,這些研究所用的群體都為F2、BC1和重組自交系群體,群體遺傳背景較復(fù)雜,存在如QTL間的互作與QTL與環(huán)境的互作,導(dǎo)致所估計(jì)的QTL的效應(yīng)與位置的精確性有限。由這些群體獲得的QTL的分辨率通常在10~30 cM之間[7-8]。在這樣大的區(qū)間內(nèi),可能存在多個(gè)連鎖的QTL,無(wú)法分解緊密連鎖的負(fù)相關(guān)性狀QTL,影響標(biāo)記輔助選擇的效率以及對(duì)分子機(jī)理的研究。
近年來(lái),近等基因系被廣泛用于植物數(shù)量性狀QTL的精細(xì)定位研究中[9-11],因?yàn)榻然蛳抵缓泄w的1個(gè)至幾個(gè)漸滲片段,性狀的復(fù)雜性被降低到類似于由單基因控制的性狀,可以更精確地估計(jì)QTL的效應(yīng)、研究QTL之間的互作及QTL與環(huán)境的互作,在目標(biāo)QTL區(qū)域形成的重疊漸滲系可以促進(jìn)數(shù)量性狀基因的精細(xì)作圖,降低連鎖累贅程度,最終完成QTL圖位克隆。除了目標(biāo)染色體區(qū)域外,近等基因系通常含有一定數(shù)量的供體染色體片段,這些遺傳背景對(duì)目標(biāo)QTL的效應(yīng)具有影響,影響目標(biāo)QTL的精細(xì)定位及遺傳效應(yīng)估計(jì)。
在前期研究中,美國(guó)佐治亞大學(xué)通過(guò)回交高代QTL作圖方法,從海島棉Pima S-6中篩選、鑒定了1個(gè)1號(hào)染色體上的纖維長(zhǎng)度QTL(qFL-chr1),該QTL解釋的表型變異較高(12%~24%),而且在多個(gè)群體中均能檢測(cè)到[12]。針對(duì)這一目標(biāo)QTL,江蘇省農(nóng)業(yè)科學(xué)院與美國(guó)佐治亞大學(xué)通過(guò)標(biāo)記輔助選擇共同培育了近等基因系R01-40-08,該近等基因系在美國(guó)、中國(guó)南京的多年多點(diǎn)試驗(yàn)中纖維長(zhǎng)度均顯著高于輪回親本Tamcot 2111[13]。本研究以Tamcot 2111與R01-40-08為親本構(gòu)建了1個(gè)F2群體,分析了其他染色體上Pima S-6漸滲位點(diǎn)對(duì)纖維長(zhǎng)度的遺傳效應(yīng),以期構(gòu)建高遺傳相似度的纖維長(zhǎng)度單QTL近等基因系,為后期纖維長(zhǎng)度QTL圖位克隆提供重要的材料基礎(chǔ)。
1材料與方法
1.1材料
江蘇省農(nóng)業(yè)科學(xué)院與美國(guó)佐治亞大學(xué)通過(guò)標(biāo)記輔助選擇共同培育了1個(gè)增效基因來(lái)源于海島棉Pima S-6的纖維長(zhǎng)度QTL單片段漸滲系R01-40-08。
1.2群體構(gòu)建
2008年,將R01-40-08種植在江蘇省農(nóng)業(yè)科學(xué)院溧水植物試驗(yàn)基地,以Tamcot 2111為母本與R01-40-08供體親本雜交獲F1;同年冬季將F1種植在海南試驗(yàn)基地,自交得F2;2009年將F2群體(共1 672個(gè)單株)種植在江蘇省農(nóng)業(yè)科學(xué)院溧水植物科學(xué)試驗(yàn)基地,收獲重組個(gè)體單株籽棉,棉樣送交農(nóng)業(yè)部纖維檢測(cè)實(shí)驗(yàn)室檢測(cè)纖維品質(zhì)。2010年重組個(gè)體家系種植在江蘇省農(nóng)業(yè)科學(xué)院溧水植物科學(xué)試驗(yàn)基地,重復(fù)2次,按家系收獲籽棉,棉樣送交農(nóng)業(yè)部纖維檢測(cè)實(shí)驗(yàn)室檢測(cè)纖維長(zhǎng)度(FL)。纖維長(zhǎng)度由HVI900纖維品質(zhì)測(cè)試儀檢測(cè)。
1.3SSR分析
DNA采用改進(jìn)的CTAB法提取[14]。引物參照Guo等發(fā)表的遺傳圖譜選擇[15-16]。SSR參照文獻(xiàn)[17]分析。
1.4單標(biāo)記分析
根據(jù)分子標(biāo)記結(jié)果將數(shù)據(jù)分組,利用方差相同的t測(cè)驗(yàn)檢驗(yàn)組間平均數(shù)的差異,確定標(biāo)記與性狀的連鎖關(guān)系[18]。把性狀與標(biāo)記的回歸方程中的決定系數(shù)作為標(biāo)記能夠解釋性狀的效應(yīng)[19]。
2結(jié)果與分析
2.1近等基因系R01-40-08的近等性分析
為了分析近等基因系R01-40-08與輪回親本的遺傳相似度,根據(jù)已發(fā)表的2個(gè)棉花遺傳連鎖圖譜[15-16],選擇534個(gè)分布于棉花整個(gè)基因組的SSR引物分析漸滲系R01-40-08與供體親本Pima S-6和輪回親本Tamcot 2111之間的多態(tài)性。結(jié)果表明,供體親本Pima S-6和輪回親本Tamcot 2111呈現(xiàn)多態(tài)性的引物有413個(gè),其中R01-40-08和輪回親本Tamcot 2111之間呈現(xiàn)多態(tài)性的引物23個(gè)。其中1號(hào)染色體11個(gè)(BNL2921、JESPR240、NAU422、MUSS84、MUSS422、CIR018、JESPR56、NAU2182、TMD03以及BNL3090和STS引物(STS38)1對(duì)、2號(hào)染色體1個(gè)(NAU2858)、3號(hào)染色體2個(gè)(NAU1167和NAU5445)、14號(hào)染色體3個(gè)(NAU2190、NAU3820、NAU5465)、15號(hào)染色體1個(gè)(NAU2573)、19號(hào)染色體3個(gè)(NAU3110、NAU1221、NAU1042)、20號(hào)染色體1個(gè)(NAU3407)、23號(hào)染色體1個(gè)(NAU3732)。遺傳背景相似性估計(jì)=N/S×100%,式中:N表示R01-40-08和輪回親本Tamcot 2111之間為單態(tài)的標(biāo)記數(shù),S表示供體親本Pima S-6和輪回親本Tamcot 2111之間呈現(xiàn)多態(tài)性的引物總數(shù)(390/413=94.43%),因此漸滲系含有輪回親本Tamcot 2111的94.43%基因組。
前期研究中在回交高代QTL分析中發(fā)現(xiàn),除了1號(hào)染色體外,14、15、20、23號(hào)染色體上也存在纖維長(zhǎng)度QTL[12]?;赗FLP和SSR的遺傳圖譜[20]和SSR標(biāo)記的遺傳圖譜[15]中的橋梁標(biāo)記,由此推斷14、15、23號(hào)染色體上的Pima S-6遺傳位點(diǎn)與纖維長(zhǎng)度QTL連鎖較緊密,可能這些位點(diǎn)對(duì)纖維長(zhǎng)度QTL依然存在遺傳效應(yīng)。
2.2Pima S-6背景遺傳位點(diǎn)對(duì)纖維長(zhǎng)度的影響
為了進(jìn)一步證實(shí)Pima S-6遺傳背景對(duì)纖維長(zhǎng)度的影響,本研究以Tamcot 2111為母本與R01-40-08供體親本構(gòu)建了1個(gè)含有1 672個(gè)單株的F2群體。根據(jù)目標(biāo)QTL區(qū)間分子標(biāo)記基因型的篩選,共鑒定了432個(gè)重組個(gè)體,用上述12對(duì)位于非目標(biāo)QTL區(qū)間上的引物對(duì)F2群體的重組個(gè)體進(jìn)行基因型鑒定并進(jìn)行單標(biāo)記分析,根據(jù)基因型鑒定結(jié)果,對(duì)單標(biāo)記帶型含有Pima S-6片段與不含有Pima S-6片段進(jìn)行方差分析。對(duì)2009年F2群體背景標(biāo)記對(duì)纖維長(zhǎng)度單標(biāo)記分析結(jié)果,遺傳背景中Pima S-6位點(diǎn)對(duì)纖維長(zhǎng)度影響不顯著;對(duì)2010年F3群體單標(biāo)記分析結(jié)果,14號(hào)染色體上的2個(gè)標(biāo)記NAU2190 和NAU5465對(duì)纖維長(zhǎng)度有顯著的影響(表1)。15、23號(hào)上的Pima S-6遺傳位點(diǎn)對(duì)纖維長(zhǎng)度沒(méi)有影響,可能在回交的過(guò)程中Pima S-6遺傳位點(diǎn)與纖維長(zhǎng)度QTL已發(fā)生重組,不存在連鎖關(guān)系。
表1Pima S-6遺傳背景單標(biāo)記方差分析
標(biāo)記染色體貢獻(xiàn)率(%)P值2009年2010年2009年2010年NAU1167Chr.33.65.40.870.20NAU3820Chr.142.21.90.630.48NAU5465Chr.1400.30.240.022NAU2190Chr.140. 21.80.110.005NAU1221Chr.196.83.50.890.22NAU3110Chr.191.43.70.160.31NAU3407Chr.201.900.640.16NAU3732Chr.231.70.10.630.81
3結(jié)論與討論
隨著QTL定位技術(shù)在各種作物中的廣泛應(yīng)用,借助分子連鎖圖譜進(jìn)行QTL分析以及對(duì)目標(biāo)QTL構(gòu)建近等基因系,通過(guò)構(gòu)建NIL群體來(lái)進(jìn)行QTL的精確定位,可以使復(fù)雜的數(shù)量性狀也能像孟德?tīng)栆蜃右粯舆M(jìn)行分析,進(jìn)而通過(guò)圖位克隆來(lái)獲得數(shù)量性狀位點(diǎn)基因,最大限度挖掘有利基因位。近等基因系可通過(guò)連續(xù)多次回交法[21]、從突變體中分離獲得[22]和雜交高世代群體中分離選育[23]等方法。利用分子標(biāo)記輔助選擇結(jié)合連續(xù)回交選育法是獲得近等基因系最有效的手段。在回交過(guò)程中,除了目標(biāo)性狀基因轉(zhuǎn)移外,盡快恢復(fù)輪回親本的基因組是構(gòu)建近等基因系的關(guān)鍵。除了目標(biāo)染色體區(qū)域外,近等基因系通常含有一定數(shù)量的供體染色體片段,這些遺傳背景對(duì)目標(biāo)QTL效應(yīng)產(chǎn)生影響,從而影響目標(biāo)QTL的精細(xì)定位及遺傳效應(yīng)的估計(jì)。
本研究中的近等基因系R01-40-08是通過(guò)回交高代QTL作圖方法并結(jié)合分子標(biāo)記輔助選擇創(chuàng)造獲得的。Yamamoto等曾使用經(jīng)典的高世代回交方法獲得近等基因系并精細(xì)定位和克隆了水稻抽穗期QTL[24-25]。盡管該方法獲得近等基因系耗時(shí)較長(zhǎng),但由于近等基因系與輪回親本背景高度相似,所以極適合微效QTL遺傳效應(yīng)的估計(jì)。近等性分析表明,R01-40-08 已含有輪回親本94.43%的基因組,背景中仍含有少量Pima S-6漸滲位點(diǎn)。在對(duì)棉花1號(hào)染色體上纖維長(zhǎng)度QTL精細(xì)定位的基礎(chǔ)上,繼續(xù)選擇在目標(biāo)QTL區(qū)間含有較小漸滲片段的重組個(gè)體,與輪回親本回交,并結(jié)合前景與背景分子標(biāo)記輔助選擇以及表型鑒定,可以獲得遺傳背景與輪回親本高度相似的單QTL近等基因系。這些纖維長(zhǎng)度單QTL近等基因系的獲得為數(shù)量性狀位點(diǎn)圖位克隆和基于單個(gè)數(shù)量性狀位點(diǎn)下纖維發(fā)育的分子機(jī)制研究創(chuàng)造重要的材料。
參考文獻(xiàn):
[1]潘家駒. 棉花育種學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,1998.
[2]Miller P A,Williams J C,Robinson H F,et al. Estimate of genotypic and environmental variances and covariances in upland cotton and their implication in selection[J]. Agronomy Journal,1958,50:126-131.
[3]Miller P A,Rawlings J O. Breakup of initial linkage blocks through intermating in a cotton breeding population[J]. Crop Science,1967,7:199-204.
[4]Meredith W R,Bridge R R. Break up of linkage blocks in cotton,Gossypium hirsutum L.[J]. Crop Science,1971,11:695-698.
[5]May O L. Genetic variation for fiber quality[M]//Basra A S. Cotton fibers-developmental biology,quality improvement,and textile processing. New York:Food Products Press,1999:183-229.
[6]Chee P W,Campbell B T. Bridging classical and molecular genetics of cotton fiber quality and development[J]. Plant Genetics and Genomics:Crops and Models,2009,3:283-311.
[7]Paterson A H,Saranga Y,Menz M,et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality[J]. Theoretical and Applied Genetics,2003,106(3):384-396.
[8]Shen X L,Guo W Z,Lu Q X,et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007,155(3):371-380.
[9]Xie X B,Song M H,Jin F X,et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon[J]. Theoretical and Applied Genetics,2006,113(5):885-894.
[10]Shan J X,Zhu M Z,Shi M,et al. Fine mapping and candidate gene analysis of spd6,responsible for small panicle and dwarfness in wild rice(Oryza rufipogon Griff.)[J]. Theoretical and Applied Gene-tics,2009,119(5):827-836.
[11]Zhou L,Zeng Y W,Zheng W W,et al. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]. Theoretical and Applied Genetics,2010,121(5):895-905.
[12]Chee P,Draye X,Jiang C X,et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense(cotton)by a backcross-self approach:Ⅲ.Fiber length[J]. Theoretical and Applied Genetics,2005,111:772-781.
[13]Shen X L,Cao Z B,Singh R,et al. Efficacy of qFL-chr1,a quantitative trait locus for fiber length in cotton(Gossypium spp.)[J]. Crop Science,2011,51(5):2005-2010.
[14]Paterson A H,Brubaker C L,Wendel J F. A rapid method for extraction of cotton(Gossypium spp.)genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter,1993,11:122-127.
[15]Guo W Z,Cai C P,Wang C B,et al. A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossipium[J]. Genetics,2007,176:527-541.
[16]Xiao J,Wu K,F(xiàn)ang D D,et al. New SSR markers for use in cotton(Gossypium spp.)improvement[J]. Journal of Cotton Science,2009,13:75-157.
[17]Zhang J,Wu Y T,Guo W Z,et al. Fast screening of SSR markers in cotton with PAGE/Silver staining[J]. Cotton Sci Sin,2000,12:267-269.
[18]王慧,喻德躍,吳巧娟,等. 大豆對(duì)斜紋夜蛾抗生性基因的微衛(wèi)星標(biāo)記(SSR)的研究[J]. 大豆科學(xué),2004,23(2):91-95.
[19]徐吉臣,鄒亮星. 利用相關(guān)性分析鑒定與水稻根部性狀表達(dá)相關(guān)的分子標(biāo)記[J]. 遺傳學(xué)報(bào),2002,29(3):245-249.
[20]Rong J K,Abbey C,Bowers J E,et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization,transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166(1):389-417.
[21]劉立峰,張洪亮,穆平,等. 水、旱稻根基粗、千粒重主效QTL近等基因系的構(gòu)建及鑒評(píng)[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2007,15(3):469-476.
[22]章清杞,黃榮華,張書(shū)標(biāo),等. 長(zhǎng)穗頸不育系協(xié)青早eA(1)的選育[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,29(4):411-415.
[23]Muehlbauer G J,Specht J E,Thomas-Compton M A,et al. Near-isogenic lines-a potential resource in the integration of conventional and linkage maps[J]. Crop Science,1988,28(2):729-735.
[24]Yamamoto T,Kuboki Y,Lin S Y,et al. Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors[J]. Theoretische und Angewandte Genetik,1998,97(1/2):37-44.
[25]Takahashi Y,Shomura A,Sasaki T,et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the alpha subunit of protein kinase CK2[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(14):7922-7927.
[7]Paterson A H,Saranga Y,Menz M,et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality[J]. Theoretical and Applied Genetics,2003,106(3):384-396.
[8]Shen X L,Guo W Z,Lu Q X,et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007,155(3):371-380.
[9]Xie X B,Song M H,Jin F X,et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon[J]. Theoretical and Applied Genetics,2006,113(5):885-894.
[10]Shan J X,Zhu M Z,Shi M,et al. Fine mapping and candidate gene analysis of spd6,responsible for small panicle and dwarfness in wild rice(Oryza rufipogon Griff.)[J]. Theoretical and Applied Gene-tics,2009,119(5):827-836.
[11]Zhou L,Zeng Y W,Zheng W W,et al. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]. Theoretical and Applied Genetics,2010,121(5):895-905.
[12]Chee P,Draye X,Jiang C X,et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense(cotton)by a backcross-self approach:Ⅲ.Fiber length[J]. Theoretical and Applied Genetics,2005,111:772-781.
[13]Shen X L,Cao Z B,Singh R,et al. Efficacy of qFL-chr1,a quantitative trait locus for fiber length in cotton(Gossypium spp.)[J]. Crop Science,2011,51(5):2005-2010.
[14]Paterson A H,Brubaker C L,Wendel J F. A rapid method for extraction of cotton(Gossypium spp.)genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter,1993,11:122-127.
[15]Guo W Z,Cai C P,Wang C B,et al. A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossipium[J]. Genetics,2007,176:527-541.
[16]Xiao J,Wu K,F(xiàn)ang D D,et al. New SSR markers for use in cotton(Gossypium spp.)improvement[J]. Journal of Cotton Science,2009,13:75-157.
[17]Zhang J,Wu Y T,Guo W Z,et al. Fast screening of SSR markers in cotton with PAGE/Silver staining[J]. Cotton Sci Sin,2000,12:267-269.
[18]王慧,喻德躍,吳巧娟,等. 大豆對(duì)斜紋夜蛾抗生性基因的微衛(wèi)星標(biāo)記(SSR)的研究[J]. 大豆科學(xué),2004,23(2):91-95.
[19]徐吉臣,鄒亮星. 利用相關(guān)性分析鑒定與水稻根部性狀表達(dá)相關(guān)的分子標(biāo)記[J]. 遺傳學(xué)報(bào),2002,29(3):245-249.
[20]Rong J K,Abbey C,Bowers J E,et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization,transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166(1):389-417.
[21]劉立峰,張洪亮,穆平,等. 水、旱稻根基粗、千粒重主效QTL近等基因系的構(gòu)建及鑒評(píng)[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2007,15(3):469-476.
[22]章清杞,黃榮華,張書(shū)標(biāo),等. 長(zhǎng)穗頸不育系協(xié)青早eA(1)的選育[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,29(4):411-415.
[23]Muehlbauer G J,Specht J E,Thomas-Compton M A,et al. Near-isogenic lines-a potential resource in the integration of conventional and linkage maps[J]. Crop Science,1988,28(2):729-735.
[24]Yamamoto T,Kuboki Y,Lin S Y,et al. Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors[J]. Theoretische und Angewandte Genetik,1998,97(1/2):37-44.
[25]Takahashi Y,Shomura A,Sasaki T,et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the alpha subunit of protein kinase CK2[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(14):7922-7927.
[7]Paterson A H,Saranga Y,Menz M,et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality[J]. Theoretical and Applied Genetics,2003,106(3):384-396.
[8]Shen X L,Guo W Z,Lu Q X,et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007,155(3):371-380.
[9]Xie X B,Song M H,Jin F X,et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon[J]. Theoretical and Applied Genetics,2006,113(5):885-894.
[10]Shan J X,Zhu M Z,Shi M,et al. Fine mapping and candidate gene analysis of spd6,responsible for small panicle and dwarfness in wild rice(Oryza rufipogon Griff.)[J]. Theoretical and Applied Gene-tics,2009,119(5):827-836.
[11]Zhou L,Zeng Y W,Zheng W W,et al. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]. Theoretical and Applied Genetics,2010,121(5):895-905.
[12]Chee P,Draye X,Jiang C X,et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense(cotton)by a backcross-self approach:Ⅲ.Fiber length[J]. Theoretical and Applied Genetics,2005,111:772-781.
[13]Shen X L,Cao Z B,Singh R,et al. Efficacy of qFL-chr1,a quantitative trait locus for fiber length in cotton(Gossypium spp.)[J]. Crop Science,2011,51(5):2005-2010.
[14]Paterson A H,Brubaker C L,Wendel J F. A rapid method for extraction of cotton(Gossypium spp.)genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter,1993,11:122-127.
[15]Guo W Z,Cai C P,Wang C B,et al. A microsatellite-based,gene-rich linkage map reveals genome structure,function and evolution in Gossipium[J]. Genetics,2007,176:527-541.
[16]Xiao J,Wu K,F(xiàn)ang D D,et al. New SSR markers for use in cotton(Gossypium spp.)improvement[J]. Journal of Cotton Science,2009,13:75-157.
[17]Zhang J,Wu Y T,Guo W Z,et al. Fast screening of SSR markers in cotton with PAGE/Silver staining[J]. Cotton Sci Sin,2000,12:267-269.
[18]王慧,喻德躍,吳巧娟,等. 大豆對(duì)斜紋夜蛾抗生性基因的微衛(wèi)星標(biāo)記(SSR)的研究[J]. 大豆科學(xué),2004,23(2):91-95.
[19]徐吉臣,鄒亮星. 利用相關(guān)性分析鑒定與水稻根部性狀表達(dá)相關(guān)的分子標(biāo)記[J]. 遺傳學(xué)報(bào),2002,29(3):245-249.
[20]Rong J K,Abbey C,Bowers J E,et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization,transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166(1):389-417.
[21]劉立峰,張洪亮,穆平,等. 水、旱稻根基粗、千粒重主效QTL近等基因系的構(gòu)建及鑒評(píng)[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2007,15(3):469-476.
[22]章清杞,黃榮華,張書(shū)標(biāo),等. 長(zhǎng)穗頸不育系協(xié)青早eA(1)的選育[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,29(4):411-415.
[23]Muehlbauer G J,Specht J E,Thomas-Compton M A,et al. Near-isogenic lines-a potential resource in the integration of conventional and linkage maps[J]. Crop Science,1988,28(2):729-735.
[24]Yamamoto T,Kuboki Y,Lin S Y,et al. Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors[J]. Theoretische und Angewandte Genetik,1998,97(1/2):37-44.
[25]Takahashi Y,Shomura A,Sasaki T,et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the alpha subunit of protein kinase CK2[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(14):7922-7927.