国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

灌漿期高溫對小麥旗葉中SOD和GR活性及相關(guān)基因表達量的影響

2014-11-22 11:14:07王春微孫愛清張杰道
山東農(nóng)業(yè)科學(xué) 2014年10期
關(guān)鍵詞:超氧化物歧化酶基因表達高溫

王春微 孫愛清 張杰道 等

摘要:以山農(nóng)23和濟麥20為試驗材料,研究灌漿期(花后10~20 d)高溫對小麥旗葉中超氧化物歧化酶(SOD)和谷胱甘肽還原酶(GR)活性及相關(guān)基因表達量的影響。結(jié)果表明,在高溫脅迫條件下,山農(nóng)23的SOD活性一直顯著高于對照,而濟麥20的SOD活性變化呈先升高后降低的趨勢。山農(nóng)23中Fe-SOD和Mn-SOD表達量的變化與SOD活性的變化趨勢相似,但Cu/Zn-SOD表達量的變化與SOD活性的變化趨勢不同。濟麥20中3個SOD基因表達量的變化均與SOD活性的變化基本一致。高溫脅迫條件下兩個小麥品種的GR活性均呈現(xiàn)先升高后降低的趨勢,山農(nóng)23中GR表達量的變化與GR活性的變化趨勢基本一致,濟麥20中GR表達量的變化早于GR活性的變化??傮w來看,高溫脅迫條件下山農(nóng)23具有較強的抗氧化能力,F(xiàn)e-SOD和Mn-SOD基因?qū)OD活性起主要作用,抗氧化酶相關(guān)基因?qū)酀{期高溫脅迫的響應(yīng)比酶活性更敏感。

關(guān)鍵詞:小麥;高溫;超氧化物歧化酶;谷胱甘肽還原酶;基因表達

中圖分類號:S512.103.4文獻標(biāo)識號:A文章編號:1001-4942(2014)10-0030-05

3討論與結(jié)論

高溫引起抗氧化酶活性的改變可能因植物物種、品種、脅迫強度和脅迫持續(xù)時間的不同而異。Hu等[18]通過試驗發(fā)現(xiàn)高溫脅迫(42℃,1 h)能增加玉米葉片中SOD和GR的活性。Xue等[19]發(fā)現(xiàn)高溫使水稻苗中SOD活性顯著高于對照。本研究發(fā)現(xiàn),高溫處理過程中山農(nóng)23的SOD活性一直高于對照,濟麥20的SOD活性變化呈現(xiàn)先升高后降低的趨勢;兩個品種的GR活性雖然都呈先升高后降低的趨勢,但是濟麥20開始下降的時間早于山農(nóng)23。表明高溫脅迫對不同耐熱性小麥品種的抗氧化酶活性的影響不同,山農(nóng)23有較高的抗氧化酶活性和較強的耐熱性。

高溫引發(fā)各種植物響應(yīng),包括調(diào)控基因的表達。研究在RNA水平上的基因表達與植物耐熱性的關(guān)系,能對抗氧化酶激活機制有更深入地了解,而不僅僅停留在酶活性方面。本研究發(fā)現(xiàn),濟麥20中三種SOD基因的變化趨勢與酶活性的變化趨勢基本一致。山農(nóng)23中Fe-SOD和Mn-SOD在處理過程中的變化趨勢與高溫處理條件下SOD活性的變化趨勢基本一致,但是Cu/Zn-SOD在處理2 d后表達量一直低于對照,這與SOD活性的變化趨勢不一致。前人許多試驗也發(fā)現(xiàn)非生物脅迫過程中Cu/Zn-SOD的轉(zhuǎn)錄水平的變化與SOD變化不完全一致。Xu等[10]研究發(fā)現(xiàn)早熟禾中葉綠體Cu/Zn-SOD與細胞質(zhì)Cu/Zn-SOD在干旱脅迫后轉(zhuǎn)錄水平顯著升高,但是SOD活性卻呈下降的趨勢。Kurepa等 (1997)[20]通過研究發(fā)現(xiàn)Cu2+過量積累能使葉綠體Cu/Zn-SOD上調(diào),但是SOD活性沒有發(fā)生顯著變化。綜上所述,F(xiàn)e-SOD和Mn-SOD在抵抗高溫損傷方面起重要作用。

山農(nóng)23的GR轉(zhuǎn)錄水平的變化比酶活性的變化早2 d,說明抗氧化酶相關(guān)基因?qū)Ω邷孛{迫的響應(yīng)較酶活性更敏感。值得注意的是,在高溫處理條件下濟麥20的GR基因表達量在處理4 d時開始下調(diào),但酶活性在8 d開始低于對照,原因可能是GR在處理前期超表達或者GR活性的變化不是由轉(zhuǎn)錄水平調(diào)控的,更可能受轉(zhuǎn)錄后水平調(diào)控。

參考文獻:

[1]Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.

[2]Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

[3]Melchiorre M, Robert G A N, Trippi V, et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state[J]. Plant Growth Regulation, 2009, 57(1): 57-68.

[4]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.

[5]De Pinto M C, Locato V, De Gara L. Redox regulation in plant programmed cell death[J]. Plant, Cell & Environment, 2012, 35(2): 234-244.

[6]Farooq M, Aziz T, Hussain M, et al. Glycinebetaine improves chilling tolerance in hybrid maize[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 152-160.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

[7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

[8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進展[J]. 遺傳,2003, 25(2): 225-231.

[9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

[10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

[11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

[12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

[13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

[14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

[15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

[16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

[17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

[18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

[19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

[20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

猜你喜歡
超氧化物歧化酶基因表達高溫
高溫干旱持續(xù) 農(nóng)作物亟須“防護傘”
高溫季蔬菜要如此培“根”固本
全球高溫
高溫來襲,警惕寒濕作祟
抗菌肽對細菌作用機制的研究
基因芯片在胃癌及腫瘤球細胞差異表達基因篩選中的應(yīng)用
美洲大蠊提取液對大鼠難愈合創(chuàng)面VEGF表達影響的研究
二甲基砷酸毒理學(xué)的研究進展
利培酮和氯氮平對精神分裂癥患者PRL和SOD的影響探討
白花敗醬草乙醇提取物對小鼠抗氧化作用的影響
亳州市| 黎平县| 大姚县| 绥中县| 托克逊县| 柳河县| 桂东县| 鲁甸县| 皮山县| 龙门县| 舞钢市| 祁门县| 昭通市| 阿拉善右旗| 忻州市| 安陆市| 永年县| 承德市| 德保县| 江华| 定远县| 蕲春县| 连江县| 邓州市| 华安县| 五常市| 阿瓦提县| 精河县| 长白| 琼结县| 富平县| 甘洛县| 札达县| 通辽市| 区。| 惠州市| 台中县| 济源市| 汽车| 莱阳市| 那曲县|