萬鳳至+朱少波
摘 要:文章比較了Co3O4/GO及Mn3O4/GO兩種催化劑催化Oxone對NOx氧化效果的影響,考察了pH、Oxone投加量及溫度等因素對催化Oxone氧化NOx效果的影響。研究結(jié)果表明:在相同的試驗(yàn)情況下,Co3O4/GO催化Oxone氧化NOx的效果要優(yōu)于Mn3O4/GO。
關(guān)鍵詞:Co3O4/GO M3O4/GO Oxone NOx
中圖分類號:G64 文獻(xiàn)標(biāo)識碼:A 文章編號:1672-3791(2014)04(c)-0076-03
氮氧化物(NOx)對環(huán)境的污染已經(jīng)受到全世界的普遍關(guān)注,如何有效地消除氮氧化物是當(dāng)前研究的熱點(diǎn)問題[1]。而催化氧化法成為了消除NOx有效的方法之一[2]。
SO4·-是一種高活性的自由基,SO4·-與 ·OH類似,主要是通過電子轉(zhuǎn)移、氫提取以及加成3種方式與有機(jī)物發(fā)生反應(yīng)。研究認(rèn)為,SO4·-具有更強(qiáng)的電子傳遞能力,不僅可在更寬的pH范圍產(chǎn)生,而且在中性和堿性范圍內(nèi),其氧化性均強(qiáng)于·OH,即使在酸性條件,兩者也有相近的氧化能力,因此,大多數(shù)的有機(jī)污染物都能被其完全氧化從而達(dá)到最終的降解[3~5]。SO4·-的標(biāo)準(zhǔn)氧化還原電位為E0=+2.5~+3.1 V,接近于甚至超過了氧化性極強(qiáng)的羥基自由基(E·OH=+1.8~+2.7 V),它是一種高活性的自由基[6~8]。
本文在以往的工作基礎(chǔ)上,以GO為載體制備Co3O4/GO和Mn3O4/GO兩種催化劑,研究了pH、催化劑濃度、Oxone投加量、溫度對催化Oxone氧化NOx的影響。
1 材料和方法
1.1 實(shí)驗(yàn)試劑
Oxone(2KHSO5·KHSO4·K2SO4),上海安而信化學(xué)有限公司;KMnO4、Mn(NO3)·4H2O、Co(NO3)2·6H2O,NaOH、NaNO2和濃H2SO4均為國產(chǎn)分析純。
1.2 Co3O4/GO和Mn3O4/GO催化劑的制備
將氧化石墨粉末(25 mg)加入到正己醇(15 ml),通過超聲15 min使其形成均勻分散的懸浮液,分別取0.2186 g的六水合硝酸鈷和硝酸錳溶液到另一份正己醇(15 ml)。形成紅色的溶液后與含有氧化石墨的懸浮液進(jìn)行混合,并在室溫下攪拌15 min使兩種物質(zhì)均勻的混合。然后再將混合物在140 ℃下加熱5 h。反應(yīng)結(jié)束后將反應(yīng)體系冷卻到室溫,離心洗滌并用乙醇反復(fù)洗滌幾次以除去其中的雜物。最后所獲得的產(chǎn)物在60℃真空烘箱中烘干,即得產(chǎn)物Co3O4/GO和Mn3O4/GO。
1.3 實(shí)驗(yàn)方法
先用橡膠管把各個(gè)系統(tǒng)連接起來,形成一個(gè)封閉的氣路。發(fā)生裝置4的出氣口連接到氣體緩沖罐6的進(jìn)氣口,給系統(tǒng)提供足夠的NOx。溫控儀11的傳感儀12纏在反應(yīng)器9的筒壁上,溫控儀11的加熱帶13也綁在其上,通過調(diào)節(jié)溫控儀11給體系加熱到所需的溫度。在實(shí)驗(yàn)開始時(shí),先準(zhǔn)備好實(shí)驗(yàn)所需,連接好管路,關(guān)上發(fā)生裝置的閥門2,把實(shí)驗(yàn)所用亞硝酸鈉通過進(jìn)料口1加到貯料室2中,蓋上進(jìn)料口的蓋子,打開溫控儀11給反應(yīng)器9加熱,當(dāng)溫度計(jì)指示達(dá)到預(yù)設(shè)定的溫度,打開發(fā)生裝置出氣閥門3,讓亞硝酸鈉溶液均勻地流出,同時(shí)啟動大氣采樣器26,使氣體在封閉系統(tǒng)中運(yùn)動,氣相、液相和固相在反應(yīng)器9中混合,形成懸浮流化狀態(tài),這個(gè)過程中催化氧化NOx。當(dāng)達(dá)到設(shè)定的反應(yīng)時(shí)間,先停止加熱,關(guān)上大氣采樣器26,把反應(yīng)液從反應(yīng)器9中取出,同時(shí)把吸收液從一級吸收系統(tǒng)17、二級吸收系統(tǒng)20中取出,一次反應(yīng)終止。其裝置圖如圖1所示。
1.4 測定方法
以靛藍(lán)二磺酸鈉為指示劑測定NO3-含量。由于各個(gè)管道中含有的NO難以計(jì)算,實(shí)驗(yàn)結(jié)果中NO氧化率的計(jì)算按照下式計(jì)算。
NOx%=n1/n1+n2
式中:NOx%為NOx的氧化率;n1為Oxone氧化的NOx的量,mmol;n2為NaOH吸收的NOx的量,mmol。
2 結(jié)果與討論
2.1 pH對NOx氧化效果的影響
pH影響著溶液中SO4·-的產(chǎn)生量,所以說pH是一個(gè)重要的影響因素。從圖2可以看出,實(shí)驗(yàn)條件下,兩種催化劑催化Oxone氧化NOx的最適宜pH為2~4的范圍內(nèi),其中Co3O4/GO催化Oxone氧化NOx的最佳pH為4,而Mn3O4/GO催化Oxone氧化NOx的最佳pH為3.01。pH>4時(shí)氧化效率有所下降。研究表明這是由于Co3O4/GO在pH≤4時(shí)Co2+浸出最多[9~10],對Mn3O4/GO而言則是由于Mn2+生成三羥化物和四羥化物造成的[11~14]。
2.2 Oxone投加量對NOx氧化效果的影響
從圖3可知,隨著Oxone濃度的增加,Co3O4/GO、Mn3O4/GO催化Oxone氧化NOx的氧化效率并不是一直增加的。對于Mn3O4/GO而言,Oxone濃度達(dá)到6 mmol/L時(shí),氧化效率最高,而Co3O4/GO催化Oxone的最佳濃度則為2 mmol/L,這也從另一方面說明氧化效率是由Oxone濃度和催化劑濃度共同決定的。
2.3 溫度對NOx氧化效果的影響
從圖4可以看出,隨著溫度的升高,Co3O4/GO、Mn3O4/GO催化Oxone氧化NOx的氧化效率反而有所下降,Mn3O4/GO隨溫度升高下降的效果比Co3O4/GO更明顯。這可能是因?yàn)橐环矫娓邷叵赂狈磻?yīng)速率加快;另一方面Co3O4/GO、Mn3O4/GO催化Oxone氧化NOx是放熱反應(yīng),動力學(xué)研究也說明了這一點(diǎn)[16]。
3 結(jié)論
(1)Mn3O4/GO和Co3O4/GO均可以催化Oxone氧化NOx,但在相同條件下,Co3O4/GO催化Oxone氧化NOx的效果比Mn3O4/GO催化Oxone氧化NOx的效果好。endprint
(2)提高pH可提高氧化NOx的效率,但是過高的pH不僅增加處理成本反而還會抑制NOx的氧化,實(shí)驗(yàn)條件下,Co3O4/GO催化Oxone氧化NO的最佳pH為4,而Mn3O4/GO催化Oxone氧化NOx的最佳pH為3.01。
(3)Oxone投加量對NOx的氧化效果的影響是由Oxone投加量和催化劑濃度共同決定的,實(shí)驗(yàn)條件下,對于Mn3O4/GO和Co3O4/GO的催化效果,Oxone的最佳投加量分別為6 mmol/L及2 mmol/L。
(4)溫度對Co3O4/GO和Mn3O4/GO催化Oxone氧化NOx的效果不是很明顯,隨著溫度的升高,氧化效率明顯下降。
參考文獻(xiàn)
[1] 吳越.催化研究的新機(jī)遇—— 環(huán)保催化[J].科技導(dǎo)報(bào),1994,5:57-59.
Wu Y.The new Opportunities of Catalytic Researcher-Environmental Catalysis[J].Scinece and Technology Review,1994,5:57-59 (in Chinese).
[2] Bosch H, Janssen F.Formation and control of nitrogen oxides[J].Catalysis Today,1988,2(4):369-379.
[3] Fernandez J.,Maruthamuthu P., Kiwi J.Photobleachingand mineralization of Orange II by oxone and metal–ions involving Fenton–like chemistry under visible light[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,161(2-3):185-192.
[4] Yu Z.Y.,Bensimon M.,Laub D.,Kiwi Minsker L.,Jardim W.,Mielzarski E., Mielczarski J.,Kiwi J.Accelerated photodegradation (minute range) of the commercial azo–dye Orange II mediated by Co3O4/Raschig rings in the presence of oxone[J].Journal of Molecular Catalysis A:Chemical,2007,272(1-2):11-19.
[5] 陳曉旸,王衛(wèi)平,朱鳳香,等.UV/K2S2O8降解偶氮染料AO7的研究:動力學(xué)及反應(yīng)途徑[J].環(huán)境科學(xué),2010,31(7):1533-1537.
Chen X.T.,Wang W.P.,Zhu F.X.,et al. The study on the degradation of azo dye AO7)by UV/K2S2O8:Kinetics and Reaction pathways[J].Environmental Science,2010,31(7):1533-1537(in Chinese).
[6] Anipsitakis G.P.,Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J].Envir.Sci.Technol.,2003,37:4790-4797.
[7] Anipsitakis G.P.,Dionysiou D.D.Transitionmetal/UV–based advanced oxidation technologies for water decontamination[J].Applied Catalysis B: Environmental,2004,54:155-163.
[8] Anipsitakis G.P.,Dionysiou D.D.Radical generation by the interaction of transition metals with common oxidants[J].Environmental Science & Technology,2004,38:3705-3712.
[9] Huang Y.F., Huang Y.H. Identification of produced powerful radicals involved in the mineralization of Bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process[J].Journal of Hazardous Materials,2009,162(2-3):1211-1216.
[10] Huang Y.F.,Huang Y.H. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process[J].Journal of Hazardous Materials,2009,167(1-3):418-426.endprint
[11] Kozawa A.,YeagerJ.F..The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte[J].Journal of the Electrochemical Society,1965,112(10):959-963.
[12] Kozawa A.,Powers R.A. Mechanisms for the discharge of manganese-dioxide[J].Journal of the Electrochemical Society,1987,134(3):107.
[13] Limburg J.,Crabtree R.H., Brudvig G.W.Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H2O)Mn(III) (O)2Mn(IV) (OH)2 (terpy)](NO3)3(terpy=2,2:6,2"-terpyridine)[J]. Journal of the American Chemical Society,2001,123(3):423-430.
[14] Limburg J.,Crabtree R.H., Brudvig G.W.Two new terpyridinedimanganese complexes: A manganese (III,III) complex with a single unsupported oxo bridge and a manganese(III,IV) complex with a dioxo bridge[J].Synthesis, structure, and redox properties.Inorg-anicChimistry,2002,41(6):1404-1411.
[15] Kutti Rani S.,Easwaramoorthy D., Mohammed Bilal I.,Palanichamy M. Studies on Mn(II)-catalyzed oxidation of a-amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation:A kinetic approach[J].Applied Catalysis A:General,2009,369(1-2):1-7.
[16] SundarM.,Easwaramoorthy D.,Kutti Rani S.,Mohammed Bilal I.Mn(II)catalysed decomposition of peroxomonosulphate Kinetic and mechanistic study[J].Catalysis Communications,2008,9:2340-2344.endprint
[11] Kozawa A.,YeagerJ.F..The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte[J].Journal of the Electrochemical Society,1965,112(10):959-963.
[12] Kozawa A.,Powers R.A. Mechanisms for the discharge of manganese-dioxide[J].Journal of the Electrochemical Society,1987,134(3):107.
[13] Limburg J.,Crabtree R.H., Brudvig G.W.Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H2O)Mn(III) (O)2Mn(IV) (OH)2 (terpy)](NO3)3(terpy=2,2:6,2"-terpyridine)[J]. Journal of the American Chemical Society,2001,123(3):423-430.
[14] Limburg J.,Crabtree R.H., Brudvig G.W.Two new terpyridinedimanganese complexes: A manganese (III,III) complex with a single unsupported oxo bridge and a manganese(III,IV) complex with a dioxo bridge[J].Synthesis, structure, and redox properties.Inorg-anicChimistry,2002,41(6):1404-1411.
[15] Kutti Rani S.,Easwaramoorthy D., Mohammed Bilal I.,Palanichamy M. Studies on Mn(II)-catalyzed oxidation of a-amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation:A kinetic approach[J].Applied Catalysis A:General,2009,369(1-2):1-7.
[16] SundarM.,Easwaramoorthy D.,Kutti Rani S.,Mohammed Bilal I.Mn(II)catalysed decomposition of peroxomonosulphate Kinetic and mechanistic study[J].Catalysis Communications,2008,9:2340-2344.endprint
[11] Kozawa A.,YeagerJ.F..The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte[J].Journal of the Electrochemical Society,1965,112(10):959-963.
[12] Kozawa A.,Powers R.A. Mechanisms for the discharge of manganese-dioxide[J].Journal of the Electrochemical Society,1987,134(3):107.
[13] Limburg J.,Crabtree R.H., Brudvig G.W.Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H2O)Mn(III) (O)2Mn(IV) (OH)2 (terpy)](NO3)3(terpy=2,2:6,2"-terpyridine)[J]. Journal of the American Chemical Society,2001,123(3):423-430.
[14] Limburg J.,Crabtree R.H., Brudvig G.W.Two new terpyridinedimanganese complexes: A manganese (III,III) complex with a single unsupported oxo bridge and a manganese(III,IV) complex with a dioxo bridge[J].Synthesis, structure, and redox properties.Inorg-anicChimistry,2002,41(6):1404-1411.
[15] Kutti Rani S.,Easwaramoorthy D., Mohammed Bilal I.,Palanichamy M. Studies on Mn(II)-catalyzed oxidation of a-amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation:A kinetic approach[J].Applied Catalysis A:General,2009,369(1-2):1-7.
[16] SundarM.,Easwaramoorthy D.,Kutti Rani S.,Mohammed Bilal I.Mn(II)catalysed decomposition of peroxomonosulphate Kinetic and mechanistic study[J].Catalysis Communications,2008,9:2340-2344.endprint