張穎 馬林 李健 等
[摘要] 目的 研究過(guò)量氟對(duì)體外培養(yǎng)大鼠成釉細(xì)胞內(nèi)鈣超載及細(xì)胞凋亡的影響。方法 取大鼠成釉細(xì)胞系HAT-7細(xì)胞,分別加入不同濃度(0、0.4、0.8、1.6、3.2、6.4 mmol·L-1)的氟化鈉培養(yǎng)液,培養(yǎng)48 h后,采用Cell Counting Kit 8(CCK-8)試劑盒檢測(cè)各組細(xì)胞的活性,流式細(xì)胞術(shù)分析氟對(duì)細(xì)胞凋亡的影響,激光掃描共聚焦顯微鏡、Western blot試驗(yàn)和實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)技術(shù)檢測(cè)過(guò)量氟誘導(dǎo)大鼠成釉細(xì)胞內(nèi)Ca2+濃度和鈣網(wǎng)蛋白表達(dá)的變化。結(jié)果 氟化鈉濃度高于1.6 mmol·L-1時(shí),可抑制成釉細(xì)胞的活性,成釉細(xì)胞內(nèi)Ca2+濃度升高,鈣網(wǎng)蛋白表達(dá)上調(diào),細(xì)胞早期凋亡數(shù)量增加,并且隨著濃度的增加,細(xì)胞凋亡的數(shù)量也隨之增加。結(jié)論 過(guò)量氟可引起成釉細(xì)胞內(nèi)鈣超載,誘導(dǎo)成釉細(xì)胞凋亡。
[關(guān)鍵詞] 氟; 成釉細(xì)胞; 鈣超載; 鈣網(wǎng)蛋白; 細(xì)胞凋亡
[中圖分類(lèi)號(hào)] R 780.2 [文獻(xiàn)標(biāo)志碼] A [doi] 10.7518/hxkq.2014.06.003
氟是一種具有防齲功能的微量元素,但在牙齒的發(fā)育礦化時(shí)期,若機(jī)體攝入過(guò)量的氟會(huì)引起一種特殊的釉質(zhì)發(fā)育不全,稱(chēng)為氟牙癥。氟牙癥的發(fā)病機(jī)制還未完全明確。有學(xué)者認(rèn)為,地方性慢性氟中毒性疾病屬于“鈣矛盾”疾病[1],即整個(gè)機(jī)體缺鈣,但細(xì)胞內(nèi)Ca2+增多。Ca2+參與和調(diào)控多種細(xì)胞和組織的生理活動(dòng),包括肌肉收縮、新陳代謝以及細(xì)胞分裂等[2-3]。但是,若細(xì)胞內(nèi)Ca2+濃度過(guò)高,可引起細(xì)胞凋亡,導(dǎo)致一些疾病的發(fā)生[4-5]。成釉細(xì)胞是釉質(zhì)形成的關(guān)鍵,過(guò)量氟攝入機(jī)體,是否會(huì)導(dǎo)致成釉細(xì)胞Ca2+內(nèi)流增加,產(chǎn)生鈣超載,誘導(dǎo)成釉細(xì)胞凋亡,目前還少有研究。本實(shí)驗(yàn)應(yīng)用不同濃度的氟化鈉作用于體外培養(yǎng)的成釉細(xì)胞系HAT-7細(xì)胞,觀察氟化鈉對(duì)成釉細(xì)胞內(nèi)Ca2+的影響,檢測(cè)細(xì)胞凋亡的變化,為進(jìn)一步研究氟牙癥的發(fā)病機(jī)制提供依據(jù)。
3 討論
釉質(zhì)的發(fā)育過(guò)程是復(fù)雜并受到精確調(diào)節(jié)的動(dòng)態(tài)過(guò)程[6]。成釉細(xì)胞負(fù)責(zé)調(diào)控釉質(zhì)有機(jī)基質(zhì)的合成、分泌和移除,同時(shí)也與鈣鹽的活躍轉(zhuǎn)運(yùn)有關(guān)。在本實(shí)驗(yàn)中,高濃度的氟化鈉(1.6、3.2、6.4 mmol·L-1)培養(yǎng)HAT-7細(xì)胞48 h,成釉細(xì)胞開(kāi)始凋亡,顯著降低了細(xì)胞的活性。有研究[7]表明,氟化鈉(100 ng·mL-1)可促進(jìn)細(xì)胞膜Ca2+通道在短時(shí)間內(nèi)(20 s)迅速開(kāi)放,使人成骨細(xì)胞內(nèi)Ca2+濃度迅速增高。在本實(shí)驗(yàn)中,經(jīng)不同濃度氟化鈉作用48 h后,HAT-7細(xì)胞內(nèi)Ca2+濃度明顯增加,并且Ca2+濃度增加與氟化鈉濃度呈正相關(guān)。Ca2+是細(xì)胞內(nèi)的主要信使之一,在維持細(xì)胞的正常結(jié)構(gòu)和功能方面起重要作用[8]。當(dāng)一些有害因素引起鈣平衡系統(tǒng)功能失調(diào)時(shí),Ca2+分布紊亂,細(xì)胞內(nèi)Ca2+濃度異常性升高,即為鈣超載,此時(shí)可引起細(xì)胞凋亡[9-10]。本研究結(jié)果提示,過(guò)量的氟可以引起HAT-7細(xì)胞發(fā)生鈣超載,從而誘導(dǎo)細(xì)胞發(fā)生凋亡。
CRT是一種類(lèi)凝集素蛋白,也是主要的Ca2+結(jié)合蛋白,可以通過(guò)調(diào)節(jié)自身Ca2+結(jié)合能力和肌漿網(wǎng)Ca2+泵的活性而調(diào)節(jié)Ca2+穩(wěn)態(tài)[11]。目前對(duì)CRT在細(xì)胞凋亡中的作用尚存在爭(zhēng)議。有學(xué)者[12]認(rèn)為,過(guò)度表達(dá)的CRT引起細(xì)胞質(zhì)內(nèi)Ca2+反應(yīng)性增強(qiáng),誘導(dǎo)Ca2+依賴(lài)性蛋白磷酸酶(protein phosphatase 2A,PP2A)的表達(dá)和活性均上調(diào),使蛋白激酶B(protein kinase B,PKB)去磷酸化,抑制PKB信號(hào)轉(zhuǎn)導(dǎo)途徑,使細(xì)胞對(duì)凋亡刺激的敏感性增加。有學(xué)者[13-14]應(yīng)用大鼠心肌細(xì)胞進(jìn)行研究,證明CRT過(guò)表達(dá)可促進(jìn)內(nèi)質(zhì)網(wǎng)Ca2+釋放及細(xì)胞外Ca2+內(nèi)流,從而加重細(xì)胞質(zhì)Ca2+超載,增加細(xì)胞對(duì)應(yīng)激致凋亡的敏感性。與上述研究結(jié)論相反,Hung等[15]發(fā)現(xiàn)CRT過(guò)表達(dá)可以減輕H2O2對(duì)腎小管上皮細(xì)胞的損傷。本研究發(fā)現(xiàn),0.8 mmol·L-1氟化鈉培養(yǎng)HAT-7細(xì)胞48 h后,可促進(jìn)細(xì)胞的增殖,CRT mRNA表達(dá)量升高;當(dāng)氟化鈉濃度為1.2 mmol·L-1時(shí),CRT mRNA表達(dá)量最高;氟化鈉濃度為1.6 mmol·L-1時(shí),細(xì)胞發(fā)生早期凋亡。通過(guò)CRT的作用機(jī)制,筆者猜想,當(dāng)CRT少量過(guò)表達(dá)時(shí),可增加內(nèi)質(zhì)網(wǎng)Ca2+的緩沖能力和/或抑制過(guò)多Ca2+對(duì)細(xì)胞的毒性作用,發(fā)揮保護(hù)細(xì)胞的作用;但當(dāng)CRT過(guò)表達(dá)時(shí)間過(guò)長(zhǎng)或過(guò)多時(shí),其保護(hù)細(xì)胞的作用將消失,轉(zhuǎn)而誘導(dǎo)細(xì)胞的凋亡。同時(shí)本研究通過(guò)Western blot試驗(yàn)也發(fā)現(xiàn),當(dāng)氟化鈉濃度為1.2、1.6 mmol·L-1時(shí),CRT表達(dá)量增高,但氟化鈉濃度為0.8 mmol·L-1時(shí),CRT表達(dá)量與對(duì)照組沒(méi)有明顯差異,分析原因可能是由于在mRNA轉(zhuǎn)錄、修飾蛋白質(zhì)的過(guò)程中,細(xì)胞內(nèi)也發(fā)生其他蛋白質(zhì)的調(diào)控,導(dǎo)致蛋白質(zhì)合成的量與mRNA固有的量不相匹配。
綜上所述,氟對(duì)成釉細(xì)胞的影響與氟濃度有關(guān),過(guò)量的氟可通過(guò)誘導(dǎo)細(xì)胞發(fā)生Ca2+超載介導(dǎo)細(xì)胞凋亡。在Ca2+超載早期,CRT起到保護(hù)細(xì)胞的作用;當(dāng)Ca2+超載過(guò)于嚴(yán)重或持續(xù)時(shí)間過(guò)長(zhǎng),CRT則會(huì)誘導(dǎo)細(xì)胞凋亡。
[參考文獻(xiàn)]
[1] Fujita T, Palmieri GM. Calcium paradox disease: calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload[J]. J Bone Miner Metab, 2000, 18(3):109-125.
[2] Chang DC, Meng C. A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish em-bryo[J]. J Cell Biol, 1995, 131(6 Pt 1):1539-1545.
[3] Xu N, Luo KQ, Chang DC. Ca2+ signal blockers can inhi-bit M/A transition in mammalian cells by interfering with the spindle checkpoint[J]. Biochem Biophys Res Commun, 2003, 306(3):737-745.
[4] Thibault O, Gant JC, Landfield PW. Expansion of the cal-cium hypothesis of brain aging and Alzheimers disease: minding the store[J]. Aging Cell, 2007, 6(3):307-317.
[5] Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of Ca2+ in the pathophysiology of pancreatitis[J]. J Physiol:Lond, 2014, 592(Pt 2):269-280.
[6] Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta[J]. J Dent Res, 2005, 84(12):1117-1126.
[7] Barry EL. Expression of mRNAs for the alpha 1 subunit of voltage-gated calcium channels in human osteoblast-like cell lines and in normal human osteoblasts[J]. Calcif Tissue Int, 2000, 66(2):145-150.
[8] Szabó C, Salzman AL. Inhibition of terminal calcium over-load protects against peroxynitrite-induced cellular injury in macrophages[J]. Immunol Lett, 1996, 51(3):163-167.
[9] Arnaudeau S, Frieden M, Nakamura K, et al. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria[J]. J Biol Chem, 2002, 277(48):46696-46705.
[10] Bernard-Marissal N, Moumen A, Sunyach C, et al. Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS[J]. J Neurosci, 2012, 32(14):4901-4912.
[11] Arnaudeau S, Frieden M, Nakamura K, et al. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria[J]. J Biol Chem, 2002, 277(48):46696-46705.
[12] Kageyama K, Ihara Y, Goto S, et al. Overexpression of cal-reticulin modulates protein kinase B/Akt signaling to pro-mote apoptosis during cardiac differentiation of cardiomyo-blast H9c2 cells[J]. J Biol Chem, 2002, 277(22):19255-19264.
[13] 馬林, 張穎, 張凱強(qiáng), 等. 內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)細(xì)胞凋亡的機(jī)制及其在氟斑牙形成中的作用[J]. 中國(guó)實(shí)用口腔科雜志, 2013, 6(6):379-382.
[14] Ihara Y, Kageyama K, Kondo T. Overexpression of calreti-culin sensitizes SERCA2a to oxidative stress[J]. Biochem Biophys Res Commun, 2005, 329(4):1343-1349.
[15] Hung CC, Ichimura T, Stevens JL, et al. Protection of renal epithelial cells against oxidative injury by endoplasmic re-ticulum stress preconditioning is mediated by ERK1/2 acti-vation[J]. J Biol Chem, 2003, 278(31):29317-29326.
(本文采編 王晴)