雷賢才
(宜賓學(xué)院數(shù)學(xué)研究所,四川宜賓644000)
致謝高校自然科學(xué)研究基金(2012S19)對(duì)本文給予了資助,謹(jǐn)致謝意.
[1]Chang S S,Wang L,Lee H W J,et al.Strong and△-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0)spaces[J/OL].Fixed Point Theory Appl,2013,2013:122,doi:10.1186/1687-1813-2013-122.
[2]Sahin A,Basarir M.On the strong convergence of modifiedS-iteration process for asymptotically quasi-nonexpansive mappings in CAT(0)space[J/OL].Fixed Point Theory Appl,2013,2013:12,doi:10.1186/1687-1812-2013-12.
[3]Agarwal R P,O'Regan D,Sahu D R.Iterative construction of fixed points of nearly asymptotically nonexpansive mappings[J].J Nonlinear Convex Anal,2007,8(1):61-79.
[4]Leustean L.A quadratic rate of asymptotic regularity for CAT(0)spaces[J].J Math Anal Appl,2007,325:386-399.
[5]Khan A R,Khamsi M A,Fukharuddin H.Strong convergence of a general iteration scheme in CAT(0)spaces[J].Nonlinear Anal,2011,74:783-791.
[6]艾藝紅.混合變分不等式和非擴(kuò)張映射解的迭代算法[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,35(1):21-24.
[7]劉敏.廣義平衡問(wèn)題與無(wú)限族k一嚴(yán)格偽壓縮映象的強(qiáng)收斂定理[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,34(1):63-70.
[8]雷賢才.全漸近非擴(kuò)張映象和無(wú)限族非擴(kuò)張映象的強(qiáng)收斂定理[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,36(1):71-76.
[9]左平,劉敏.Banach空間中可數(shù)無(wú)限族連續(xù)偽壓縮映象公共不動(dòng)點(diǎn)的強(qiáng)收斂定理[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,36(2):370-374.
[10]雷賢才.全漸近非擴(kuò)張映象在CAT(0)空間的新迭代算法[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,36(6):876-880.
[11]丁協(xié)平.局部FC-一致空間內(nèi)的聯(lián)立廣義矢量擬平衡問(wèn)題組[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(1):1-5.
[12]丁協(xié)平.乘積局部FC-一致空間內(nèi)的聚合不動(dòng)點(diǎn)定理和應(yīng)用[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2008,31(1):1-12.
[13]朱浸華.混合平衡問(wèn)題組及不動(dòng)點(diǎn)問(wèn)題公解的算法[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,35(5):656-662.
[14]黎小波,夏福全.Banach空間中廣義向量混合變分不等式的擾動(dòng)Levitin-Polyak適定性[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2013,36(6):811-819.
[15]李小蓉.Banach空間中可數(shù)簇全擬-φ-漸近非擴(kuò)張非自映射的強(qiáng)收斂定理[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,37(1):62-67.
[16]趙良才.Banach空間中有限簇非擴(kuò)張非自映象具誤差的迭代逼近[J].四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2008,31(2):159-163.
[17]Goebel K,Reich S.Uniform Convexity,Hyperbolic Geometry,and Nonexpansive Map-pings[M].New York:Marcel Dekker,1984.
[18]Bridson M,Haefliger A.Metric Spaces of Non-Positive Curvature[M].Berlin:Springer-Verlag,1999:193-209.
[19]Leustean L.Nonexpansive iterations in uniformly convexW-hyperbolic spaces[J/OL].Nonlinear Analysis and Optimization:Nonlinear Anal,2010,513:193-209.
[20]Zhao L C,Chang S S,Kim J K.Mixed type iteration for total asymptotically nonexpansive mappings in Hyperbolic spaces[J/OL].Fixed Point Theory and Appl,2013,1:353.doi:10.1186/1687-1812-2013-353.