李巖波,郭 華
(吉林大學(xué)數(shù)學(xué)學(xué)院,長春 130012)
波動方程反演中邊界條件下延拓的穩(wěn)定性
李巖波,郭 華
(吉林大學(xué)數(shù)學(xué)學(xué)院,長春 130012)
通過建立彈性波動方程反演中邊界條件下延拓的過渡矩陣,得到了邊界條件下延拓的求解方法及穩(wěn)定性條件,解決了彈性波動方程參數(shù)反演時延拓深度點(diǎn)上邊界條件無法測定的問題,從而提高了反演速度和精度.
彈性波方程反演;邊界條件;下延拓;過渡矩陣;穩(wěn)定性
其中:變量x,t分別為深度和時間;u(x,t)為彈性介質(zhì)內(nèi)質(zhì)點(diǎn)的位移;f(x,t)為已知函數(shù);ρ(x)為地下介質(zhì)的密度;a(x)=λ(x)+2μ(x),λ(x)和μ(x)為介質(zhì)的Lame系數(shù);φ(t)為地表邊界條件;ψ(t)為震源子波,在地震勘探中常用δ-函數(shù)或Leike子波ψ(t)=e-αt2sin 2πft或ψ(t)=e-αt2cos 2πft模擬,常數(shù)α與振動的衰減有關(guān),f是振動頻率.
由于在頻率域研究邊界條件下的延拓問題較方便,因此將數(shù)學(xué)模型(1)做Fourier變換得
其中U(x,ω),F(xiàn)(x,ω),Φ(ω),Ψ(ω)分別是函數(shù)u(x,t),f(x,t),φ(t),ψ(t)的Fourier變換.將方程(2)和邊界條件(3),(4)差分化得
邊界條件下延拓的穩(wěn)定性與下延拓過渡矩陣G有關(guān).令
G的特征方程為Ajλ2+Bjλ+Cj=0.當(dāng)根λ按?!?,f(x,t)=0時,迭代格式(8)是穩(wěn)定的[7],即邊界條件下延拓穩(wěn)定.
則穩(wěn)定性條件仍然保持.式(9)和式(10)都是穩(wěn)定性的充分條件,式(10)比式(9)稍弱,但應(yīng)用較方便.
[1] GUO Hua,LIU Cai,LI Yue,et al.A New Inversion Method of Sedimentary Strata for Deriving Double Parameters and Its Applications[J].Journal of Geoscientific Research in Northeast Asia,2002,5(1):79-88.
[2] 何彥鋒,孫偉家,符力耘.復(fù)雜介質(zhì)地震波傳播模擬中邊界元法與有限差分法的比較研究 [J].地球物理學(xué)進(jìn)展,2013,28(2):664-678.(HE Yanfeng,SUN Weijia,F(xiàn)U Liyun.Comparison of Boundary Element Method and Finite-Difference Method for Simulating Seismic Wave Propagation in Complex Media[J].Progress in Geophys,2013,28(2):664-678.)
[3] 任志明,劉洋.一階彈性波方程數(shù)值模擬中的混合吸收邊界條件[J].地球物理學(xué)報,2014,57(2):595-606.(REN Zhiming,LIU Yang.Numerical Modeling of the First-Order Elastic Equations with the Hybrid Absorbing Boundary Condition[J].Chinese J Geophys,2014,57(2):595-606.)
[4] Duchkov A A,Hoop M V,De.Velocity Continuation in the Downward Continuation Approach to Seismic Imaging[J].Geophysical Journal International,2009,176(3):909-924.
[5] Bai X Y,Liang K,Chen Y B,et al.Study and Application of Seismic Attenuation Based on the One-Way Wave Equation[J].Journal of Seismic Exploration,2011,20(1):45-55.
[6] 孫衛(wèi)濤.彈性波動方程的有限差分?jǐn)?shù)值方法[M].北京:清華大學(xué)出版社,2009.(SUN Weitao.The Finite Difference Numerical Method for Elastic Wave Equation[M].Beijing:Tsinghua University Press,2009.)
[7] 李榮華.偏微分方程數(shù)值解法[M].北京:高等教育出版社,2005.(LI Ronghua.Numerical Solution of Partial Differential Equation[M].Beijing:Higher Education Press,2005.)
(責(zé)任編輯:趙立芹)
Stability of Downward Continuation of Boundary Conditions of Wave Equation Inversion
LI Yanbo,GUO Hua
(College of Mathematics,Jilin University,Changchun130012,China)
The transition matrix of the downward continuation of boundary conditions about elastic wave equation inversion was established.The solving method and stable conditions of the downward continuation of boundary conditions were obtained.The problem that the boundary conditions at downward continuation depth points cannot be determined has been solved so as to improve the speed and precision of inversion calculation.
inversion of elastic wave equation;boundary condition;down continuation;transition matrix;stability
O175.2
A
1671-5489(2014)04-0743-03
彈性波方程的反演問題在地震勘探領(lǐng)域應(yīng)用廣泛[1-2],它能為儲層描述提供所需的參數(shù)特征,是儲層預(yù)測的確定性方法[3-5].若反演深度較大或分辨率較高,則反演的點(diǎn)數(shù)會顯著增加,既增加了反演計算的不適定性,也延長了計算時間.若使用分段反演的方法,則不但在參數(shù)反演上是等效的,而且可以顯著減少計算時間.彈性波方程參數(shù)的分段反演,需在每段上都有邊界條件.但實(shí)際應(yīng)用中只可能在第一段上獲取地表邊界條件的觀測值,因而需要用理論計算求出其他各段所需的邊界條件,即將地表邊界條件延拓到各段上,作為各段的邊界條件.本文給出了地表邊界條件下延拓的方法和穩(wěn)定性條件.
1 數(shù)學(xué)模型
若忽略橫波效應(yīng),且假設(shè)僅深度與介質(zhì)的變化有關(guān),則地震波的傳播滿足下列彈性波方程的定解問題[6]:
10.13413/j.cnki.jdxblxb.2014.04.21
2013-12-31.
李巖波(1972—),女,漢族,博士,副教授,從事偏微分方程及應(yīng)用數(shù)學(xué)的研究,E-mail:liyb@jlu.edu.cn.通信作者:郭 華(1964—),女,漢族,博士,教授,從事偏微分方程及應(yīng)用數(shù)學(xué)的研究,E-mail:guohua@jlu.edu.cn.
吉林省自然科學(xué)基金(批準(zhǔn)號:20130101179JC;201215165)、虛擬現(xiàn)實(shí)技術(shù)與系統(tǒng)國家重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(批準(zhǔn)號:BUAA-VR-13KF-14)和符號計算與知識工程教育部重點(diǎn)實(shí)驗(yàn)室開放課題項(xiàng)目(批準(zhǔn)號:93K172013Z01).