關(guān)麗紅,常 晶,趙 昕
(1.長(zhǎng)春大學(xué) 理學(xué)院,長(zhǎng)春130022;2.空軍航空大學(xué) 基礎(chǔ)部,長(zhǎng)春130022;3.吉林農(nóng)業(yè)大學(xué) 信息技術(shù)學(xué)院,長(zhǎng)春130118)
考慮如下分?jǐn)?shù)階橢圓型方程Dirichlet邊值問(wèn)題:
其中:Ω??N(N≥2)是帶有光滑邊界?Ω的有界區(qū)域;(-Δ)s表示分?jǐn)?shù)階Laplace算子,s∈(0,1);f∈C(ˉΩ×?,?).目前,關(guān)于分?jǐn)?shù)階橢圓型方程解的存在性與多重性研究已有許多結(jié)果[1-6].分?jǐn)?shù)階Laplace算子(-Δ)s是Lévy穩(wěn)態(tài)擴(kuò)散過(guò)程的無(wú)窮小生成元[7],在美式期權(quán)、人口動(dòng)力學(xué)和黏彈性力學(xué)等領(lǐng)域應(yīng)用廣泛[8-10].本文研究分?jǐn)?shù)階橢圓型方程Dirichlet邊值問(wèn)題(1)非平凡解的存在性,應(yīng)用推廣形式的山路定理,在非線(xiàn)性項(xiàng)滿(mǎn)足漸近線(xiàn)性增長(zhǎng)的情形下得到了問(wèn)題(1)非平凡解的存在性.
本文主要結(jié)果如下:
注1 文獻(xiàn)[3,5]分別研究了分?jǐn)?shù)階Schr?dinger方程(-Δ)su+V(x)u=f(x,u)在非線(xiàn)性項(xiàng)滿(mǎn)足漸近線(xiàn)性增長(zhǎng)和超線(xiàn)性增長(zhǎng)時(shí)解的存在性;文獻(xiàn)[6]在非線(xiàn)性項(xiàng)滿(mǎn)足超線(xiàn)性增長(zhǎng)時(shí)得到了分?jǐn)?shù)階Laplace方程(-Δ)su=f(x,u)解的多重性;文獻(xiàn)[1]在非線(xiàn)性項(xiàng)滿(mǎn)足臨界增長(zhǎng)時(shí),得到了問(wèn)題(1)解的多重性;文獻(xiàn)[2]在非線(xiàn)性項(xiàng)滿(mǎn)足超線(xiàn)性增長(zhǎng)時(shí),得到了問(wèn)題(1)解的多重性.本文在非線(xiàn)性項(xiàng)滿(mǎn)足漸近線(xiàn)性增長(zhǎng)時(shí),研究問(wèn)題(1)非平凡解的存在性.
通常如果I∈C1(E,?),并且序列{un}?E 滿(mǎn)足I(un)→c,(1+‖un‖)‖I′(un)‖→0當(dāng)n→+∞,則稱(chēng){un}為泛函I的一個(gè)Cerami序列,簡(jiǎn)記為(C)c序列.如果I的每個(gè)Cerami序列都有強(qiáng)收斂子列,則稱(chēng)I滿(mǎn)足(C)c條件.
下面證明定理1.由假設(shè)(H1)~(H3)易知泛函J具有山路幾何,即:
1)存在r,δ>0,使得對(duì)所有滿(mǎn)足‖u‖=r的u∈Hs0(Ω),都有J(u)≥δ;
2)J(tφ1)→-∞,t→+∞.
為了應(yīng)用定理2,只需證明泛函J滿(mǎn)足(C)c條件.?。鹵n}n∈??Hs0(Ω)為(C)c序列,即
往證序列{un}在Hs0(Ω)中一致有界.事實(shí)上,若不然,不妨設(shè)‖un‖→+∞(n→+∞).由式(2)可得
由假設(shè)(H4),對(duì)任意的ε>0,存在M>0,使得
令zn=un/‖un‖2.則存在{zn}的子列(不妨仍記為{zn})及z0∈(Ω),使得zn?z0,且zn(x)→z0(x),a.e.x∈Ω.由式(4)可得因此,存在Ω1?Ω,使得且z0(x)≠0,a.e.x∈Ω1.因此,對(duì)a.e.x∈Ω1,有
這與式(3)矛盾.因此{un}在(Ω)中有界,從而利用標(biāo)準(zhǔn)的討論可知,存在u0∈(Ω),使得又由假設(shè)(H3)和Fatou引理可得應(yīng)用定理2,顯然u0即是問(wèn)題(1)的非平凡弱解.證畢.
衷心感謝吉林大學(xué)數(shù)學(xué)學(xué)院李勇教授的鼓勵(lì)和悉心指導(dǎo).
[1]Barrios B,Colorado E,Pablo A,de,et al.On Some Critical Problems for the Fractional Laplacian Operator[J].J Differential Equations,2012,252(11):6133-6162.
[2]Br?ndle C,Colorado E,Pablo A,de.A Concave-Convex Elliptic Problem Involving the Fractional Laplacian[J].Proc Roy Soc Edinburgh Sect A,2013,143(1):39-71.
[3]CHANG Xiaojun.Ground State Solutions of Asymptotically Linear Fractional Schr?dinger Equations[J].J Math Phys,2013,54(6):061504.
[4]CHANG Xiaojun,WANG Zhiqiang.Ground State of Scalar Field Equations Involving a Fractional Laplacian with General Nonlinearity[J].Nonlinearity,2013,26(2):479-494.
[5]Felmer P,Quaas A,TAN Jinggang.Positive Solutions of Nonlinear Schr?dinger Equation with the Fractional Laplacian[J].Proc Roy Soc Edinburgh Sect A,2012,142(6):1237-1262.
[6]Servadei R,Valdinoci E.Mountain Pass Solutions for Non-local Elliptic Operators[J].J Math Anal Appl,2012,389(2):887-898.
[7]Bertoin J.Lévy Processes[M].Cambridge:Cambridge University Press,1996.
[8]Applebaum D.Lévy Processes-From Probability to Finance and Quantum Groups[J].Notices Amer Math Soc,2004,51(11):1336-1347.
[9]Garroni A,Müller S.Γ-Limit of a Phase-Field Model of Dislocations[J].SIAM J Math Anal,2005,36(6):1943-1964.
[10]Valdinoci E.From the Long Jump Random Walk to the Fractional Laplacian[J].Bol Soc Esp Mat Apl SMA,2009,49:33-44.
[11]Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].Vol.65.Providence,RI:American Mathematical Society,1986.
[12]Schechter M.A Variation of the Mountain Pass Lemma and Applications[J].J London Math Soc,1991,44(3):491-502.