葉琳琳,張 民,孔繁翔, ,,,
(1:南通大學(xué)地理科學(xué)學(xué)院,南通 226007) (2:中國(guó)科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210008)
伴隨人類(lèi)活動(dòng)的急劇加強(qiáng),由于營(yíng)養(yǎng)鹽過(guò)度輸入引起的水體富營(yíng)養(yǎng)化、藍(lán)藻水華頻發(fā),已成為世界范圍內(nèi)的水環(huán)境問(wèn)題[1-3].富營(yíng)養(yǎng)化水體治理的關(guān)鍵是控制氮、磷等營(yíng)養(yǎng)鹽的輸入,但最近有科學(xué)家提出“減氮不能控制藻類(lèi)總量,反而誘發(fā)固氮藍(lán)藻水華”[4-5].部分絲狀藍(lán)藻具有異形胞(heterocyst),借助胞內(nèi)的固氮酶將大氣中游離態(tài)的分子氮還原成具有生物可利用性的氮素化合物[6].有研究發(fā)現(xiàn)在波羅的海,隨著藍(lán)藻固氮速率的增加,水體中再生的銨態(tài)氮濃度顯著升高,這種生態(tài)系統(tǒng)內(nèi)部營(yíng)養(yǎng)鹽的反饋?zhàn)饔每赡軙?huì)加劇藍(lán)藻水華發(fā)生的頻率與規(guī)模[7-8].
國(guó)外學(xué)者很早就對(duì)固氮藍(lán)藻進(jìn)行了大量調(diào)查研究,涉及不同水生生態(tài)系統(tǒng)中固氮藍(lán)藻類(lèi)型[9-10]、影響固氮藍(lán)藻分布和固氮作用的生物及非生物因素、藍(lán)藻固氮對(duì)水體中新生氮的貢獻(xiàn)作用等[11-14].國(guó)內(nèi)關(guān)于固氮藍(lán)藻的研究最早可以追溯到1959年黎尚豪等[15]綜述了從稻田生態(tài)系統(tǒng)中分離得到的藍(lán)藻的固氮作用.隨后的研究開(kāi)始關(guān)注異形胞的結(jié)構(gòu)與功能、影響異形胞生長(zhǎng)的環(huán)境因子、不同固氮藍(lán)藻固氮酶活性之間的差異以及海洋藍(lán)藻固氮基因的檢測(cè)方法等[6,16-17].曹秀云等[18]逐月分析了2009-2010年巢湖固氮藍(lán)藻的分布特征及其營(yíng)養(yǎng)鹽利用策略.但到目前為止,關(guān)于水生生態(tài)系統(tǒng)中固氮藍(lán)藻生長(zhǎng)機(jī)理、固氮作用程度的研究還很缺乏.有研究發(fā)現(xiàn)在加利福尼亞Iron Gate和Copco水庫(kù),微囊藻水華形成時(shí)間滯后于束絲藻水華[19],暗示微囊藻生長(zhǎng)的部分氮源可能來(lái)自束絲藻的固氮作用[20].近年來(lái),我國(guó)太湖、滇池、巢湖藍(lán)藻水華頻發(fā),也出現(xiàn)固氮和非固氮藍(lán)藻的演替過(guò)程:首先是固氮藍(lán)藻如魚(yú)腥藻、束絲藻在春季形成水華,隨后是沒(méi)有固氮能力的微囊藻在夏季形成水華[4,21-22].有研究表明在太湖和巢湖,藍(lán)藻夏季生長(zhǎng)過(guò)程中受到氮素的限制作用[23-24],那么氮限制是不是引起固氮和非固氮藍(lán)藻演替的重要驅(qū)動(dòng)因子?固氮藍(lán)藻釋放的氮源是否會(huì)促進(jìn)非固氮藍(lán)藻的生長(zhǎng)甚至水華形成?這些問(wèn)題的回答對(duì)于深入研究水體氮素循環(huán)機(jī)理和藍(lán)藻水華治理具有重要參考價(jià)值.因此,本文從固氮與非固氮藍(lán)藻分異的驅(qū)動(dòng)機(jī)制、影響藍(lán)藻固氮速率的主要環(huán)境因子以及被固定氮再釋放對(duì)水體中氮庫(kù)的貢獻(xiàn)作用3個(gè)方面,來(lái)綜述水生生態(tài)系統(tǒng)中藍(lán)藻的固氮作用.
影響固氮藍(lán)藻與非固氮藍(lán)藻分異的驅(qū)動(dòng)因素很多,如營(yíng)養(yǎng)鹽濃度及形態(tài)、氮磷比、水溫、微量元素等[25-29].近年來(lái),以色列Kinneret湖夏季水體氮限制導(dǎo)致固氮藍(lán)藻念珠藻成為優(yōu)勢(shì)種[29].一般認(rèn)為,湖泊中正磷酸鹽(SRP)濃度≥0.01mg/L、溶解性無(wú)機(jī)氮濃度(DIN)≤0.1mg/L時(shí),固氮藍(lán)藻易生長(zhǎng)[9],并且低的氮磷比是表征水體中固氮藍(lán)藻形成的重要參數(shù)[28].有研究發(fā)現(xiàn),巢湖固氮魚(yú)腥藻占優(yōu)勢(shì),其次才是非固氮的微囊藻,這可能與巢湖較低的總氮總磷比(TN/TP)有關(guān)[30].在加拿大安大略實(shí)驗(yàn)湖區(qū)進(jìn)行全湖營(yíng)養(yǎng)鹽操縱實(shí)驗(yàn),施加缺氮肥料或只施加磷肥,結(jié)果發(fā)現(xiàn)低的氮磷比誘導(dǎo)了固氮魚(yú)腥藻和束絲藻的大量形成[5].在瑞典富營(yíng)養(yǎng)化湖泊Limmaren湖進(jìn)行圍隔實(shí)驗(yàn),也得到相同結(jié)論,低的氮磷比會(huì)引起固氮藍(lán)藻占優(yōu)勢(shì),在沒(méi)有添加氮的實(shí)驗(yàn)處理中,固氮藍(lán)藻生物量所占比例達(dá)到50%[31].
以上研究結(jié)果表明,低的氮磷比會(huì)誘導(dǎo)固氮藍(lán)藻形成.但也有研究認(rèn)為,TN/TP不能用來(lái)指示鹽湖生態(tài)系統(tǒng)中固氮藍(lán)藻的出現(xiàn)[32].此外,到目前為止,對(duì)引起水生生態(tài)系統(tǒng)中固氮藍(lán)藻占優(yōu)勢(shì)的氮磷比的形態(tài)及閾值還存在爭(zhēng)議.Howarth等[26]認(rèn)為固氮藍(lán)藻出現(xiàn)時(shí),水體中氮磷比≤Redfield質(zhì)量比值7.Smith等[9]認(rèn)為T(mén)N/TP質(zhì)量比≤22時(shí),固氮藍(lán)藻占優(yōu)勢(shì).而在歐洲淺水湖泊Peipsi湖的研究發(fā)現(xiàn),固氮藍(lán)藻生物量所占比例最高時(shí),TN/TP和DIN/SRP質(zhì)量比都低于20[33].溶解性無(wú)機(jī)氮和正磷酸鹽是藍(lán)藻在生長(zhǎng)過(guò)程中優(yōu)先利用的氮、磷形態(tài),DIN/SRP能更直觀地表征氮、磷在水體中的生物有效性及藍(lán)藻對(duì)其在生長(zhǎng)過(guò)程中的吸收利用,但是這一指標(biāo)在關(guān)于固氮藍(lán)藻的研究過(guò)程中往往被忽略.因此,通過(guò)TN/TP和DIN/SRP兩種氮磷形態(tài)比來(lái)表征固氮藍(lán)藻的形成更加科學(xué)和嚴(yán)謹(jǐn).此外,引起固氮藍(lán)藻與非固氮藍(lán)藻分異的氮磷比閾值還需要結(jié)合研究對(duì)象所屬的水生生態(tài)系統(tǒng)類(lèi)型、氮磷營(yíng)養(yǎng)鹽來(lái)源格局和固氮藍(lán)藻類(lèi)型等多種因素綜合分析.
大量研究表明溫度升高是藍(lán)藻形成優(yōu)勢(shì)的重要原因[34-35].對(duì)太湖1992-2002年的研究數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明微囊藻生物量與水溫呈顯著正相關(guān)[36].此外,有研究發(fā)現(xiàn)處于溫帶的新西蘭富營(yíng)養(yǎng)化Lower Karori水庫(kù),當(dāng)水溫高于15℃時(shí),魚(yú)腥藻藻細(xì)胞增長(zhǎng)速度快;當(dāng)水溫達(dá)到最高21.3℃時(shí),藻細(xì)胞數(shù)量也達(dá)到最大值[37],暗示魚(yú)腥藻水華暴發(fā)強(qiáng)度隨水溫升高而增大.但也有研究結(jié)果與此結(jié)論相反,從日本琵琶湖分離得到的魚(yú)腥藻在35℃時(shí)生長(zhǎng)速率顯著降低[38].在中國(guó)巢湖出現(xiàn)春季魚(yú)腥藻和束絲藻在夏季被微囊藻取代的演替模式,水華魚(yú)腥藻細(xì)胞密度與水溫呈顯著負(fù)相關(guān)[25,39].因此,固氮藍(lán)藻生長(zhǎng)與溫度的正相關(guān)性不適用于處在熱帶與亞熱帶富營(yíng)養(yǎng)化程度較高的淡水水生生態(tài)系統(tǒng).但在海洋生態(tài)系統(tǒng)中,溫度升高仍有利于固氮藍(lán)藻的形成,研究發(fā)現(xiàn)在印度洋桑給巴爾島附近,束毛藻生物量與水溫呈顯著正相關(guān),在水溫達(dá)到28℃時(shí),束毛藻生物量達(dá)到最大值[40].通過(guò)室內(nèi)控制實(shí)驗(yàn)也發(fā)現(xiàn)相似規(guī)律,束毛藻IMS 101最適生長(zhǎng)溫度為27℃,雖然在低溫17℃下仍能存活,但沒(méi)有生長(zhǎng)跡象[41].此外,固氮藍(lán)藻不同生態(tài)型對(duì)溫度的變化也存在顯著差異.從波羅的海、日本琵琶湖和Yogo湖分離得到的水華束絲藻能適應(yīng)低溫環(huán)境生長(zhǎng)[42-43],而在日本京都大學(xué)一個(gè)人工富營(yíng)養(yǎng)化池塘中研究發(fā)現(xiàn),當(dāng)溫度低于11℃時(shí),水華束絲藻停止生長(zhǎng)[44].并且太湖魚(yú)腥藻也存在適應(yīng)高溫和低溫的兩種生態(tài)型.因此,在探討水溫對(duì)固氮藍(lán)藻分布的影響機(jī)制時(shí),需要結(jié)合固氮藍(lán)藻種類(lèi)、水生生態(tài)系統(tǒng)類(lèi)型及其所處的氣候區(qū)域和室內(nèi)控制實(shí)驗(yàn)結(jié)果來(lái)進(jìn)行綜合分析.
鐵是藻類(lèi)生長(zhǎng)的重要微量元素.有研究發(fā)現(xiàn)束毛藻在其特定生長(zhǎng)環(huán)境——海洋生態(tài)系統(tǒng)中受到鐵的限制作用[48-49],因此其對(duì)鐵的利用效率要高于其它固氮藍(lán)藻如魚(yú)腥藻.當(dāng)外界環(huán)境鐵含量充足時(shí),束毛藻可以增加對(duì)鐵的吸收并存儲(chǔ)在細(xì)胞內(nèi)[46-47].有研究發(fā)現(xiàn),中國(guó)南海束毛藻豐度較低,是由低濃度的鐵離子引起的[50].Xu等[51]在東太湖研究發(fā)現(xiàn),鐵是微囊藻生長(zhǎng)的限制因子,但是否對(duì)固氮藍(lán)藻生長(zhǎng)產(chǎn)生影響,還未見(jiàn)報(bào)道.此外,微量元素低的生物有效性是不是導(dǎo)致河口海岸生態(tài)系統(tǒng)不適于固氮藍(lán)藻生長(zhǎng)的唯一原因還需要深入探討.有研究表明,浮游動(dòng)物的攝食和微量元素的耦合作用是導(dǎo)致這一現(xiàn)象的重要原因[52].因此,在今后的研究中,還應(yīng)考慮生物因素對(duì)固氮藍(lán)藻形成的影響.
藍(lán)藻固氮速率是表征其固氮作用程度的重要指標(biāo),是準(zhǔn)確定量被固定氮的再釋放對(duì)水體中氮循環(huán)貢獻(xiàn)作用的重要參數(shù).乙炔還原法(acetylene reduction,AR)和氮同位素示蹤(15N)被廣泛應(yīng)用于藍(lán)藻固氮速率的測(cè)定[53-54].表1綜述了不同水生生態(tài)系統(tǒng)中的藍(lán)藻固氮速率.
表1 乙炔還原法和氮同位素示蹤測(cè)定藍(lán)藻固氮速率
生物固氮需要消耗大量的能量,每2個(gè)電子傳遞就需要消耗4~5個(gè)ATP,因此光是影響藍(lán)藻固氮速率的重要環(huán)境因子[63-64].在維多利亞湖研究發(fā)現(xiàn),藍(lán)藻固氮速率從近岸(0.90μg/(L·h))向遠(yuǎn)岸區(qū)域(0.11μg/(L·h))逐漸減少,湖心出現(xiàn)最低值,主要是由于近岸區(qū)域平均光照強(qiáng)度比遠(yuǎn)岸區(qū)域高[65].在賓夕法尼亞Sanctuary湖,由于光的抑制作用,魚(yú)腥藻固氮速率隨著水深增大而減少[66].在澳大利亞Peel-Harvey河口也得到相同規(guī)律,節(jié)球藻固氮速率隨著水深增大而減少[67].但通過(guò)對(duì)野外實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明魚(yú)腥藻水華暴發(fā)時(shí)水下可利用性光強(qiáng)度大,而束絲藻對(duì)光照強(qiáng)度要求不高[68].室內(nèi)模擬實(shí)驗(yàn)也發(fā)現(xiàn),黑暗條件下,束絲藻的固氮速率要高于魚(yú)腥藻[69-70].此外,也有研究表明,在強(qiáng)光照條件下,節(jié)球藻固氮作用受到抑制[71].因此,不同藍(lán)藻固氮作用對(duì)光的響應(yīng)機(jī)制可能存在差異[72].有研究表明,藍(lán)藻固氮速率對(duì)光照的響應(yīng)程度分為兩種類(lèi)型:第一類(lèi)型藍(lán)藻必須有光照才可以開(kāi)始固氮作用,比如柱胞魚(yú)腥藻.黑暗條件下不能進(jìn)行固氮,可能是因?yàn)閺纳L(zhǎng)細(xì)胞分化來(lái)的異形胞內(nèi)缺乏光合作用產(chǎn)物,并且固氮酶的合成被中斷.第二類(lèi)型藍(lán)藻在光照和黑暗中都可以固氮,由于異形胞存儲(chǔ)了大量碳水化合物,因此能維持黑暗條件下的固氮作用,但是固氮速率在黑暗條件下比光照條件下要低[73-74].有研究發(fā)現(xiàn),水華束絲藻和泡沫節(jié)球藻在黑暗條件下固氮速率分布是有光照條件下的50%和20%[75].
異形胞是藍(lán)藻中某些絲狀體種類(lèi)所特有的一種能固氮的細(xì)胞,它們是由藻絲細(xì)胞中的一些營(yíng)養(yǎng)細(xì)胞轉(zhuǎn)化而來(lái)的.從研究和測(cè)定過(guò)固氮能力的藍(lán)藻中發(fā)現(xiàn),150多種固氮藍(lán)藻中絕大多數(shù)都具有異形胞的分化.因此,異形胞的豐度可以用來(lái)表征藍(lán)藻固氮作用程度.對(duì)Lake 227研究發(fā)現(xiàn),柔細(xì)束絲藻(Aphanizomenongracile)固氮速率與異形胞數(shù)量呈顯著正相關(guān)[76].通過(guò)室內(nèi)控制實(shí)驗(yàn)研究發(fā)現(xiàn),從波羅的海分離出來(lái)的水華束絲藻的固氮速率與異形胞豐度呈正相關(guān),雖然水華束絲藻異形胞豐度低于泡沫節(jié)球藻(Nodulariaspumigena),但其固氮速率仍高于泡沫節(jié)球藻.結(jié)果表明,這兩種固氮藍(lán)藻異形胞固氮能力、固氮酶的活性具有顯著差異[42].因此,異形胞豐度與固氮速率呈正相關(guān)的定律并不適用于種間的數(shù)據(jù)統(tǒng)計(jì)分析.此外,也有研究發(fā)現(xiàn),此定律也不適用于短時(shí)間尺度(幾小時(shí)或幾天)范圍內(nèi)的數(shù)據(jù)分析[77].因此,在探討異形胞對(duì)藍(lán)藻固氮速率影響機(jī)制的時(shí)候,應(yīng)綜合考慮固氮藍(lán)藻異形胞固氮能力的種間差異以及數(shù)據(jù)獲得的時(shí)間尺度.
固氮藍(lán)藻吸收利用銨態(tài)氮和硝態(tài)氮的能量要小于合成固氮酶進(jìn)行固氮作用[78-79],研究發(fā)現(xiàn)海水中溶解性無(wú)機(jī)氮濃度高于1μmol/L時(shí),固氮速率受到抑制[80],因此,只有當(dāng)溶解性無(wú)機(jī)氮源耗竭的時(shí)候,固氮藍(lán)藻才開(kāi)始固氮[81].在美國(guó)佛羅里達(dá)州Okeechobee湖研究發(fā)現(xiàn),溶解性無(wú)機(jī)氮濃度升高,藍(lán)藻固氮速率受到抑制[82].在美國(guó)賓夕法尼亞Sanctuary湖,硝態(tài)氮和銨態(tài)氮濃度迅速降低導(dǎo)致魚(yú)腥藻固氮速率顯著升高[66].以上研究結(jié)果表明,銨態(tài)氮和硝態(tài)氮會(huì)抑制固氮酶的合成,對(duì)藍(lán)藻固氮速率產(chǎn)生影響.
但不同類(lèi)型固氮藍(lán)藻,其固氮速率對(duì)兩種無(wú)機(jī)氮的響應(yīng)可能還存在一定差異.有研究表明,銨態(tài)氮對(duì)固氮酶的抑制作用比硝態(tài)氮強(qiáng)[83].研究發(fā)現(xiàn),在黑暗條件下,10μmol/L的銨態(tài)氮對(duì)固氮藍(lán)藻Crocosphaerawatsonii(WH8501和WH0003)固氮速率的抑制率分別為36%和83%[84],而同等濃度的硝態(tài)氮對(duì)固氮速率并沒(méi)有顯著影響,可能原因是Crocosphaerawatsonii在黑暗條件下,吸收利用硝態(tài)氮獲得能量,完成固氮酶的合成,從而進(jìn)行固氮作用.但以束毛藻為研究對(duì)象,在黑暗條件下,相同濃度的硝態(tài)氮對(duì)其固氮速率的抑制率為50%[81].以上研究結(jié)果表明,某些固氮藍(lán)藻在吸收利用溶解性無(wú)機(jī)氮的同時(shí)仍然能進(jìn)行固氮作用,并保持較高的固氮速率.最近一項(xiàng)研究表明,高濃度的正磷酸鹽能增加固氮藍(lán)藻豐度,因此緩解了硝態(tài)氮對(duì)藍(lán)藻固氮速率的抑制作用,研究發(fā)現(xiàn)固氮藍(lán)藻在5μmol/L的硝態(tài)氮和1.0μmol/L的正磷酸鹽培養(yǎng)體系中的固氮速率與沒(méi)有添加硝態(tài)氮、正磷酸鹽濃度為0.5μmol/L系統(tǒng)中的固氮速率沒(méi)有顯著差異[85].
在上一部分,我們綜述了異形胞豐度對(duì)藍(lán)藻固氮速率的影響.有研究發(fā)現(xiàn),無(wú)機(jī)氮濃度與形態(tài)對(duì)異形胞的形成具有抑制作用,以銨態(tài)氮作為氮源,固氮藍(lán)藻異形胞豐度最低[86].因此,在探討無(wú)機(jī)氮對(duì)藍(lán)藻固氮速率的影響機(jī)制的時(shí)候,還應(yīng)考慮無(wú)機(jī)氮源對(duì)異形胞形成的作用,從而引起的對(duì)藍(lán)藻固氮速率的間接影響.
有研究表明,在波羅的海,固氮藍(lán)藻水華形成過(guò)程中受到鐵限制,添加溶解性有機(jī)物可以絡(luò)合大量鐵離子,促進(jìn)固氮藍(lán)藻形成[87],但作者并沒(méi)有深入探討添加有機(jī)物是否會(huì)促進(jìn)藍(lán)藻固氮速率.在大西洋近岸海域,添加糖類(lèi)如葡萄糖、麥芽糖等能誘導(dǎo)固氮作用和增加固氮速率[48].Paulsen等[88]的研究也發(fā)現(xiàn)相同的規(guī)律:在沙克爾福德海灘添加葡萄糖和甘露醇能提高藍(lán)藻固氮速率.可能原因是固氮藍(lán)藻利用有機(jī)物過(guò)程中消耗氧氣,導(dǎo)致水體微環(huán)境出現(xiàn)厭氧,因此有利于固氮作用的加強(qiáng)[48].
藍(lán)藻固氮是海洋生態(tài)系統(tǒng)中“新”氮素的重要來(lái)源[12,89].固氮藍(lán)藻形成初期固氮速率高,形成的氮素化合物可以從處于生長(zhǎng)階段的藻細(xì)胞中釋放出來(lái),而在生長(zhǎng)后期,雖然固氮速率較低,但藻細(xì)胞大量死亡并裂解,也會(huì)釋放大量氮源.固氮藍(lán)藻新固定的氮多以銨態(tài)氮或溶解性有機(jī)氮的形式被釋放,研究發(fā)現(xiàn),被束毛藻釋放的氮中有50%是溶解性有機(jī)氮[13],通過(guò)細(xì)菌分解轉(zhuǎn)化成溶解性無(wú)機(jī)氮,可被其它生物再吸收利用.在大西洋研究發(fā)現(xiàn),硅藻的生長(zhǎng)導(dǎo)致水體中溶解性無(wú)機(jī)氮耗竭,為固氮藍(lán)藻束毛藻的生長(zhǎng)提供了適宜的條件,而被束毛藻固定氮的再釋放又為鞭毛藻的生長(zhǎng)補(bǔ)充了氮源,因此,浮游植物出現(xiàn)硅藻-束毛藻-鞭毛藻的演替規(guī)律[90].以上研究結(jié)果表明,固氮藍(lán)藻氮釋放是水體中氮素循環(huán)的重要環(huán)節(jié),但如何準(zhǔn)確定量再釋放的氮通量一直是相關(guān)研究領(lǐng)域中的難點(diǎn).Mulholland等[91-93]通過(guò)室內(nèi)模擬和野外調(diào)查研究發(fā)現(xiàn),乙炔還原法和氮同位素示蹤所測(cè)得的速率分別代表總固氮速率和凈固氮速率,兩者之差可以用來(lái)表征被固定新氮的釋放通量.運(yùn)用這種方法在墨西哥灣的研究發(fā)現(xiàn),束毛藻能釋放出被固定氮的52%,為非固氮藻類(lèi)(腰鞭毛藻)生長(zhǎng)提供氮源[92].
但是在湖泊生態(tài)系統(tǒng)中,關(guān)于藍(lán)藻固氮對(duì)水體中氮庫(kù)的貢獻(xiàn)作用還存在爭(zhēng)議[29].在委內(nèi)瑞拉巴倫西亞湖[64]、美國(guó)加利福尼亞Clear湖[86]、瑞典S?dra Bergundasj?n湖[94]、美國(guó)佛羅里達(dá)Mize湖[95]、烏干達(dá)George湖[96]、加拿大曼尼托巴885湖[97]等湖泊中發(fā)現(xiàn),藍(lán)藻固氮對(duì)湖泊生態(tài)系統(tǒng)中氮的貢獻(xiàn)量很大,其中在Kinneret湖,束絲藻水華暴發(fā)期間,對(duì)水體中氮的貢獻(xiàn)量高達(dá)700t[14].有研究發(fā)現(xiàn),在美國(guó)威斯康辛州Mendota湖,束絲藻和微囊藻交替出現(xiàn),藍(lán)藻固氮速率達(dá)到最大值后,微囊藻毒素顯著升高,結(jié)果表明固氮藍(lán)藻的氮釋放有利于維持產(chǎn)毒微囊藻水華的生長(zhǎng)[98].但也有研究認(rèn)為,被固定氮的釋放對(duì)水體中氮庫(kù)的貢獻(xiàn)作用很小[99].表2歸納了不同營(yíng)養(yǎng)級(jí)別的湖泊中藍(lán)藻固定的氮對(duì)水體中氮庫(kù)的貢獻(xiàn)作用.結(jié)果發(fā)現(xiàn),水體的營(yíng)養(yǎng)狀態(tài)與固氮藍(lán)藻對(duì)氮庫(kù)的貢獻(xiàn)程度并沒(méi)有顯著相關(guān)性.表2中固氮藍(lán)藻對(duì)水體的貢獻(xiàn)是通過(guò)結(jié)合固氮速率和固氮藍(lán)藻豐度來(lái)估算的,由于研究對(duì)象中固氮速率的時(shí)空異質(zhì)性,這種方法不一定能準(zhǔn)確還原水體中的真實(shí)情況.近來(lái)有研究發(fā)現(xiàn),由于對(duì)束毛藻生物量估計(jì)不足[104],固氮藍(lán)藻對(duì)海洋生態(tài)系統(tǒng)的貢獻(xiàn)作用要高于目前研究所獲得的結(jié)果[105],而與水體中發(fā)生的反硝化作用基本持平[106].因此,在目前的研究,可通過(guò)定量固氮藍(lán)藻水華期間水體中氮的輸入輸出變化通量準(zhǔn)確估算固氮藍(lán)藻對(duì)水體中氮庫(kù)的貢獻(xiàn)作用.
表2 不同水體中藍(lán)藻固定的氮對(duì)水體中氮庫(kù)的貢獻(xiàn)
藍(lán)藻是富營(yíng)養(yǎng)化水體中主要的優(yōu)勢(shì)種.但是,目前國(guó)內(nèi)就富營(yíng)養(yǎng)化水生生態(tài)系統(tǒng)中藍(lán)藻水華的形成機(jī)制與藍(lán)藻時(shí)空分布特征等方面開(kāi)展了大量的研究工作[25,35],而對(duì)固氮藍(lán)藻的關(guān)注遠(yuǎn)遠(yuǎn)不夠.引起固氮藍(lán)藻占優(yōu)勢(shì)的主要環(huán)境因子有哪些?藍(lán)藻的固氮速率是多少?環(huán)境因素包括生物(浮游動(dòng)物攝食)和非生物因素對(duì)藍(lán)藻固氮速率的影響如何?被固定氮的再釋放對(duì)水體氮庫(kù)的貢獻(xiàn)是多少?這些方面的研究鮮見(jiàn)報(bào)道.對(duì)于藍(lán)藻水華頻發(fā)、出現(xiàn)固氮和非固氮藍(lán)藻演替的巢湖和太湖,探索固氮藍(lán)藻氮釋放對(duì)于微囊藻水華,尤其是產(chǎn)毒微囊藻的形成是否具有重要影響,顯得尤為重要.因此,以固氮藍(lán)藻為研究對(duì)象,揭示固氮藍(lán)藻的分布規(guī)律,明確固氮與非固氮藍(lán)藻分異的主要環(huán)境因子閾值,探索被固定氮的歸趨及其對(duì)水生生態(tài)系統(tǒng)中氮循環(huán)的貢獻(xiàn)對(duì)加強(qiáng)水體氮循環(huán)研究以及藍(lán)藻水華治理具有重要意義.
[1] Dokulil M, Teubner K. Cyanobacterial dominance in lakes.Hydrobiologia, 2000,438(1/2/3):1-12.
[2] Paerl HW. Controlling eutrophication along the freshwater-marine continuum: dual nutrient(N and P) reductions are essential.EstuariesandCoasts, 2009,32(4): 593-601.
[3] 盛 虎,郭懷成,劉 慧等.滇池外海藍(lán)藻水華爆發(fā)反演及規(guī)律探討.生態(tài)學(xué)報(bào),2012,32(1):56-63.
[4] 王海軍,王洪鑄.富營(yíng)養(yǎng)化治理應(yīng)該放寬控氮、集中控磷.自然科學(xué)進(jìn)展,2009,19(6):599-604.
[5] Schindler DW, Hecky RE, Findlay DLetal. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of 37-year whole-ecosystem experiment.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2008,105(32):11254-11258.
[6] 周云龍.異形胞與藍(lán)藻的固氮.生物學(xué)通報(bào),1994,29(11):5-6.
[7] Ohlendieck U, Gundersen K, Meyerhofer Metal. The significance of nitrogen fixation to new production during early summer in the Baltic Sea.Biogeosciences, 2007,4(1):63-73.
[8] Vahtera E, Coonley DJ, Gustafsson BGetal. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.Ambio, 2007,36(2):186-194.
[9] Smith VH, Bierman VJ, Jones BLetal. Historical trends in the Lake Okeechobee ecosystem Ⅳ. Nitrogen: phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential.ArchivfürHydrobiologie, 1995,107(1): 71-88.
[10] Kahru M, Leppanen JM, Rud Oetal. Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea.MarineEcologyProgressSeries, 2000,207: 13-18.
[11] Howarth RW, Marino R, Lane Jetal. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance.LimnologyandOceanography, 1988,33(4part2): 669-687.
[12] Karl D, Letelier R, Tupas Letal. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean.Nature, 1997,388(7): 533-538.
[13] Glibert PM, Bronk DA. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria,Trichodesmiumspp.AppliedandEnvironmentalMicrobiology, 1994,60(11):3996-4000.
[14] Gophen M, Smith VH, Nishri Aetal. Nitrogen deficiency, phosphorus sufficiency, and the invasion of Lake Kinneret, Israel, by the N2-fixing cyanobacteriumAphanizomenonovalisporum.AquaticSciences, 1999,61(4):293-306.
[15] 黎尚豪,葉清泉,劉富瑞等.我國(guó)的幾種藍(lán)藻的固氮作用.水生生物學(xué)集刊,1959,4:429-439.
[16] 中國(guó)科學(xué)院水生生物研究所第五室生化、遺傳組.幾種固氮藍(lán)藻的固氮酶活性及其某些特性.水生生物學(xué)集刊,1980,7(1):57-60.
[17] 丁昌玲,孫 軍,顧海峰等.海洋藍(lán)藻固氮基因.海洋科學(xué),2008,32(7):75-80.
[18] 曹秀云,宋春雷,周易勇.巢湖固氮藍(lán)藻的分布特征及其營(yíng)養(yǎng)鹽利用策略.見(jiàn):中國(guó)藻類(lèi)學(xué)會(huì)第八次會(huì)員代表大會(huì)暨第十六次學(xué)術(shù)討論會(huì)論文摘要集,2011.
[19] Kann J, Asarian E. Nutrient budgets and phytoplankton trends in Iron Gate and Copco Reservoirs, California, May 2005-May 2006. Final Technical Report to the State Water Resources Control Board, Sacramento, California, 2007.
[20] Moisander PH, Ochiai M, Lincoff A. Nutrient limitation ofMicrocystisaeruginosain northern California Klamath River reservoirs.HarmfulAlgae, 2009,8(6):889-897.
[21] 李 原,張 梅,王若南.滇池的水華藍(lán)藻的時(shí)空變化.云南大學(xué)學(xué)報(bào):自然科學(xué)版,2005,27(3):272-276.
[22] 呂興菊,朱 江,孟 良.洱海水華藍(lán)藻多樣性初步研究.環(huán)境科學(xué)導(dǎo)刊,2010,29(3):32-35.
[23] Xu H, Paerl HW, Qin BQetal. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China.LimnologyandOceanography, 2010,55(1): 420-432.
[24] 王書(shū)航,姜 霞,金相燦.巢湖水環(huán)境因子的時(shí)空變化及對(duì)水華發(fā)生的影響.湖泊科學(xué),2011,23(6):873-880.
[25] 賈曉會(huì),施定基,史綿紅等.巢湖藍(lán)藻水華形成原因探索及“優(yōu)勢(shì)種光合假說(shuō)”.生態(tài)學(xué)報(bào),2011,31(11):2968-2977.
[26] Howarth RW, Marino R, Cole JJ. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls.LimnologyandOceanography, 1988,33(4part2): 688-701.
[27] Niemi ?. Blue-green algal blooms and N:P ratio in the Baltic Sea.ActaBotanicaFennica, 1979,110: 57-61.
[28] Havens KE, James RT, East Tetal. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.EnvironmentalPollution, 2003,122(3):379-390.
[29] Hadas O, Pinkas R, Malinsky-Rushansky Netal. Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel.FreshwaterBiology, 2012,57(6):1214-1227.
[30] 謝 平.翻閱巢湖的歷史——藍(lán)藻、富營(yíng)養(yǎng)化及地質(zhì)演化.北京:科學(xué)出版社,2009:105.
[31] Vrede T, Ballantyne A, Mille-Lindblom Cetal. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake.FreshwaterBiology, 2009,54(2): 331-344.
[32] Marino R, Howarth RW. Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta.LimnologyandOceanography, 1990,35(2):245-259.
[33] Toges T, LaugasteR, Noges Petal. Critical N:P ratio for cyanobacterial and N2-fixing species in the large shallow temperature lakes Peipsi and V?rtsj?rv, North-East Europe.Hydrobiologia, 2008,599(1):77-86.
[34] Parel HW, Fulton RS, Moisander PHetal. Harmful freshwater algal blooms with an emphasis on cyanobacteria.TheScientificWorldJournal, 2001,1:76-113.
[35] 孔繁翔,高 光.大型淺水富營(yíng)養(yǎng)化湖泊中藍(lán)藻水華形成機(jī)理的思考.生態(tài)學(xué)報(bào),2005,25(3):589-595.
[36] Liu X, Lu X, Chen Y. The effects of temperature and nutrient ratios onMicrocystisblooms in Lake Taihu, China: An 11-year investigation.HarmfulAlgae, 2011,10:337-343.
[37] Wood SA, Prentice MJ, Smith Ketal. Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors toAnabaenaplanktonica blooms in a temperate, eutrophic reservoir.JournalofPlanktonResearch, 2010,32(9):1315-1325.
[38] Nalewajko C, Murphy TP. Effects of temperature, and availability of nitrogen and phosphours on the abundance ofAnabaenaandMicrocystisin Lake Biwa, Japan: an experimental approach.Limnology, 2001,4:45-48.
[39] 蔡元鋒.太湖、巢湖藍(lán)藻組成演替及驅(qū)動(dòng)因子的比較研究[學(xué)位論文].南京:中國(guó)科學(xué)院南京地理與湖泊研究所,2012.
[40] Lugomela C, Lyimo TJ, Bryceson Ietal.Trichodesmiumin coastal waters of Tanzania: diversity, seasonality, nitrogen and carbon fixation.Hydrobiologia, 2002,477:1-13.
[41] Breitbarth E, Oschlies A, LaRoche J. Physiological constraints on the global distribution ofTrichodesmium-effect of temperature on diazotrophy.Biogosciences, 2007,4:53-61.
[42] Lehtimaki J, Moisander P, Sivonen Ketal. Growth, nitrogen fixation, and nodularin production by two baltic sea cyanobacteria.AppliedandEnvironmentalMicrobiology, 1997,63(5):1647-1656.
[43] Tsujimura S, Ishikawa K, Tsukada H. Effects of temperature on growth of the cyanobacteriumAphanizomenonflos-aquaein Lake Biwa and Lake Yogo.PhycologicalResearch, 2001,49:275-280.
[44] Yamamoto Y, Nakahara H. The formation and degradation of cyanobacteriumAphanizomenonflos-aquaeblooms: the importance of pH, water temperature, and day length.Limnology, 2005,6:1-6.
[45] Marino R, Howarth RW, Chan Fetal. Sulfate inhibition of molybdenum-dependent nitrogen fixation by planktonic cyanobacteria under seawater conditions: a non-reversible effect.Hydrobiologia, 2003,500:277-293.
[46] Berman-Frank I, Quigg A, Finkel ZVetal. Nitrogen-fixation strategies and Fe requirments in cyanobacteria.LimnologyandOceanography, 2007,52(5): 2260-2269.
[47] Tuit C, Waterbury J, Ravizza G. Diel variation of molybdenum and iron in marine diazotrophic cyanobaceria.LimnologyandOceanography, 2004,49(4):978-990.
[48] Paerl HW, Crocker KM, Prufert LE. Limitation of N2fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus, and organic matter availability.LimnologyandOceanography, 1987,32(3):525-536.
[49] Rueter JG. Iron stimulation of photosynthesis and nitrogen fixation inAnabaena7120 andTrichodesmium(Cyanophyceae).JournalofPhycology, 1988,24:249-254.
[50] Wu J, Chung SW, Wen LSetal. Dissolved inorganic phosphorus, dissolved iron, andTrichodesmiumin the oligotrophic South China Sea.GlobalBiogeochemicalCycles, 2003,17(1): 8-1-8-10.
[51] Xu H, Zhu G, Qin Betal. Growth response ofMicrocystisspp. to iron enrichment in different regions of Lake Taihu, China.Hydrobiologia, 2013,700:187-202.
[52] Howarth RW, Chan F, Marino R. Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a stimulation model.Biogeochemistry, 1999,46:203-231.
[53] Montoya JP, Voss M, Kahler Petal. A simple, high-precision, high sensitivity tracer assay for N2fixation.AppliedandEnvironmentalMicrobiology, 1996,62(3):986-993.
[54] Scott JT, Stanley JK, Doyle RDetal. River-reservoir transition zones are nitrogen fixation hot spots regardless of ecosystem trophic state.Hydrobiologia, 2009,625(1):61-68.
[55] Ohlendieck U, Stuhr A, Siegmund H. Nitrogen fixation by diazotrophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms.JournalofMarineSystems, 2000,25(3/4):213-219.
[56] Wasmund N, Voss M, Lochte K. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation.MarineEcologyProgressSeries, 2001,214:1-14.
[57] Grobe J. Effects of the Mekong River on abundance and N2-fixation rates of cyanobacteria in the South China Sea. Universit?t Rostock, 2007.
[58] Bonnet S, Biegala IS, Dutrieux Petal. Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance.GlobalBiogeochemicalCycles, 2009,23:GB3012.
[59] Mulholland MR, Bernhardt PW, Blanco-garcia JLetal. Rates of dinitrogen fixation and the abundance of diazotrophs in North American coastal waters between Cape Hatteras and Georges Bank.LimnologyandOceanography, 2012,57(4):1067-1083.
[60] Rees AP, Gilbert JA, Kelly-Gerreyn BA. Nitrogen fixation in the western English Chanel(NE Atlantic Ocean).MarineEcologyProgressSeries, 2009,374:7-12.
[61] Tonno I, Ott K, Noges T. Nitrogen dynamics in steeply stratified, temperate, Lake Verevi, Estonia.Hydrobiologia, 2005,547(1): 63-71.
[62] Tonno I, Noges T. Nitrogen fixation in a large shallow lakes: rates and initiation conditions.Hydrobiologia, 2003,490(1/2/3):23-30.
[63] Brock TD, Madigan MT, Matinko JMetal. Biology of microorganisms. New York:Prentice-Hall Inc., 1994.
[64] Levine SN, Lewis WM. A numerical model of nitrogen fixation and application to lake Valencia, Venezuela.FreshwaterBiology, 1987,17(2): 265-274.
[65] Mugidder R, Hecky RE, Hendzel Letal. Pelagic nitrogen fixation in Lake Victoria(East Africa).JGreatLakesRes, 2003,29(supplement 2):76-88.
[66] Dugdale VA, Dugdale RC. Nitrogen metabolism in lakes II. Role of nitrogen fixation in Sanctuary Lake, Pennsylvania.LimnologyandOceanography, 1962,7(2):170-177.
[67] Huber AL. Nitrogen fixation byNodulariaspumigenaMertens(Cyanobacteriaceae). 1: Field studies and the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia.Hydrobiologia, 1986,131(3):193-203.
[68] Schreurs H. Cyanobacterial dominance. Relations to eutrophication and lake morphology. Amsterdam: University of Amsterdam, 1992.
[69] Bradburn MJ, Lewis JRWM, Mccutchan JRJH. Comparative adaptations ofAphanizomenonandAnabaenafor nitrogen fixation under weak irradiance.FreshwaterBiology, 2012,57(5):1042-1049.
[70] De Nobel WT(PIM), Matthijs HCP, Von Elert Eetal. Comparison of the light-limited growth of the nitrogen-fixing cyanobacteriaAnabaenaandAphanizomenon.NewPhytologist, 1998,138(4): 579-587.
[71] Stal L, Walsby A. Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea.EuropeanJournalofPhycology, 2000,35(2):97-108.
[72] Millineaux PM, Gallon JR, Chaplin AE. Acetylene reduction(nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles.FEMSMicrobiologyLetters, 1981,10(3):245-247.
[73] Khamees HS, Gallon JR, Chaplin AE. The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness.BritishPhycologicalJournal, 1987,22(1):55-60.
[74] Fay P. Factors influencing dark nitrogen fixation in blue-green algae.AppliedandEnvironmentalMicrobiology, 1976,31(3): 376-379.
[75] Evans AM, Gallon JR, Jones Aetal. Nitrogen fixation by Baltic cyanobacteria is adapted to the prevailing photon flux density.NewPhytologist, 2000,147(2):285-297.
[76] Findlay DL, Hecky RE, Hendzel LLetal. Relationship between N2-fixation and heterocyst abundance and its relationship to the nitrogen budget of Lake 227.CanadianJournalofFisheriesandAquaticSciences, 1994,51:2254-2266.
[77] Laamanen M, Kuosa H. Annual variability of biomass and heterocysts of the N2-fixing cyanobacteriumAphanizomenonflos-aquaein the Baltic Sea with reference toAnabaenaspp. andNodulariaspumigena.BorealEnvironmentResearch, 2005,10:19-30.
[78] Mulholland MR, Ohki K, Capone DG. Nitrogen utilization and metabolism relative to patterns of N2fixation in cultures ofTrichodesmiumNIBB1067.JournalofPhycology, 1999,35(5):977-988.
[79] Sprober P, Shafik HM, Presing Metal. Nitrogen uptake and fixation in the cyanobacteriumCylindrospermopsisraciborskiiunder different nitrogen conditions.Hydrobiologia, 2003,506-509(1/2/3):169-174.
[80] Knapp AN. The sensitivity of marine N2fixation to dissolved inorganic nitrogen.FrontiersinMicrobiology, 2012,3:374.
[81] Holl CM, Montoya JP. Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotrophTrichodesmium(Cyanobacteria).JournalofPhycology, 2005,41(6):1178-1183.
[82] Phlips EJ, Cichra M, Haves Ketal. Relationships between phytoplankton dynamics and the availability of light and nutrients in a shallow sub-trophic lake.JournalofPlanktonResearch, 1997,19(3):319-342.
[83] Ogawa RE, Carr JF. The influence of nitrogen on heterocyst production in blue-green algae.LimnologyandOceanography, 1969,14(3):342-351.
[86] Horne AJ, Goldman CR. Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts.LimnologyandOceanography, 1972,17(5): 693-703.
[87] Stolte W, Balode M, Carlsson Petal. Stimulation of nitrogen-fixing cyanobacteria in a Baltic Sea plankton community by land-derived organic matter or iron additon.MarineEcologyProgressSeries, 2006,327:71-82.
[88] Paulsen DM, Paerl HW, Bishop PE. Evidence that molybdenum-dependent nitrogen fixation is not limited by high sulfate concentrations in marine environments.LimnologyandOceanography, 1991,36(7):1325-1334.
[89] 董俊德,王漢奎,張 偲等.海洋固氮生物多樣性及其對(duì)海洋生產(chǎn)力的氮、碳貢獻(xiàn).生態(tài)學(xué)報(bào),2002,22(10):1741-1749.
[90] Hood RR, Cole VJ, Capone DG. Modeling the distribution ofTrichodesmiumand nitrogen fixation in the Atlantic Ocean.JournalofGeophysicalResearch, 2004,109: C06006.
[91] Mulholland MR, Bronk DA, Capone DG. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen byTrichodesmiumIMS101.AquaticMicrobialEcology, 2004,37(1):85-94.
[92] Mulholland MR, Bernhardt PW, Heil CAetal. Nitrogen fixation and release of fixed nitrogen byTrichodesmiumspp. in the Gulf of Mexico.LimnologyandOceanography, 2006,51(4):1762-1776.
[93] Mulholland MR, Bernhardt PW. The effect of growth rate, phosphorus concentration, and temperature on N2fixation, carbon fixation, and nitrogen release in continuous cultures ofTrichodesmiumIMS 101.LimnologyandOceanography, 2005,50(3):839-849.
[94] Leonardson L, Bengtsson L. Effects of sewage diversion in Lake S?dra Bergundasj?n.Ⅱ. Phytoplankton changes and the role of nitrogen fixation.VerhandlungenderInternationaleVereinigungfürLimnologie, 1978,20:2701-2707.
[95] Keirn MA, Brezonik PL. Nitrogen fixation by bacteria in Lake Mize, Florida, and in some lacustrine sediments.LimnologyandOceanography, 1971,16(5):720-731.
[96] Horne AJ, Viner AB. Nitrogen fixation and its significance in tropical Lake Geroge, Uganda.Nature, 1971,232:417-418.
[97] Brownlee BG, Murphy TP. Nitrogen fixation and phosphorus turnover in a hypertrophic prarie lake.CanadianJournalofFisheriesandAquaticSciences, 1983,40(11):1853-1860.
[98] Beversdorf LJ, Miller TR, McMahon KD. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.PLoSONE, 2013,8(2): e56103.
[99] Ferber LR, Levine SN, Linni Aetal. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen?FreshwaterBiology, 2004,49(6):690-708.
[100] Dierberg FE, Scheinkman MM. Contribution from nitrogen fixation(acetylene reduction) to the nitrogen budget of Lake Tohopekaliga(Florida).Hydrobiologia, 1987,154(1):61-73.
[101] Scott JT, Doyle RD, Prochnow SJetal. Are watershed and lacustrine conditions on planktonic N2fixation hierarchically structured?EcologicalApplications, 2008,18(3):805-819.
[102] Tison DL, Palmer FE, Staley JT. Nitrogen fixation in lakes of the lake Washington drainage basin.WaterResearch, 1977,11(9):843-847.
[103] Steward GF, Zehr JP, Jellison Retal. Vertical distribution of nitrogen-fixing phylotypes in meromictic, hyper-saline lake.MicrobiolEcology, 2004,47(1): 30-40.
[104] Davis CS, McGillicuddy DJ. Transatlantic abundance of the N2-fixing colonial cyanobacteriumTrichodesmium.Science, 2006,312:1517-1520.
[105] Codispoti LA. An oceanic fixed nirogen sink exceeding 400 Tg N a-1vs the concept of homeostasis in the fixed-nitrogen inventory.Biogeosciences, 2007,4:233-253.
[106] Deutsch C, Sarmiento JL, Sigman DMetal. Spatial coupling of nitrogen inputs and losses in the ocean.Nature, 2007,445:163-167.