陳 曦
(成都大學(xué)附屬醫(yī)院 消化內(nèi)科,成都610000)
人類腸道微生態(tài)是一個包含了約1013~1014個微生物的復(fù)雜生態(tài)系統(tǒng)[25],這些微生物在長期的進(jìn)化過程中與宿主相互依賴、相互制約,形成了和諧共生的整體,當(dāng)這個和諧的整體受到破壞時,便會發(fā)生相應(yīng)的腸道疾病。本文將就目前腸道微生態(tài)與腸道疾病的研究進(jìn)展進(jìn)行簡單綜述。
當(dāng)人們認(rèn)識到腸道微生態(tài)的存在以及它可能與人類腸道生理及病理過程有重要關(guān)聯(lián)時,就不斷試圖認(rèn)清它的本質(zhì),因此誕生了人類微生態(tài)計劃和人類腸道系統(tǒng)基因組計劃(MetaHIT)等[26,27]較為系統(tǒng)的以人類正常腸道微生態(tài)結(jié)構(gòu)和功能為對象的研究計劃。隨著這些研究計劃的開展,學(xué)者已經(jīng)發(fā)現(xiàn)人類不同個體的腸道微生態(tài)在基因水平存在一個由大量微生物基因及相關(guān)傳導(dǎo)通路組成的共同核心,偏離這個核心就會影響人類健康、導(dǎo)致疾病發(fā)生[27,28]。同時,人們對腸道微生物與宿主之間相互作用的具體機(jī)制也有了更深的理解。學(xué)者發(fā)現(xiàn),腸道上皮細(xì)胞和粘膜免疫細(xì)胞廣泛存在著與特定微生物相互識別的模式受體(Pattern recognition receptors,PRR),包括視黃酸誘導(dǎo)基因-I樣RNA解螺旋酶、C-型血凝素受體(C-typelectin receptors,CLR)、富有亮氨酸的核苷酸結(jié)合域蛋白/N樣受體(Nodlike receptors,NLR)和 T 樣受體(Toll-like receptors,TLR)[29,30]。腸道微生物通過與這些受體的模式結(jié)合激活相應(yīng)的信號轉(zhuǎn)導(dǎo)通路,參與宿主免疫細(xì)胞及腸道上皮細(xì)胞的凋亡、增生等生理活動。
另外,腸道微生態(tài)越來越多的生理功能被發(fā)現(xiàn)。除了傳統(tǒng)的促進(jìn)消化吸收、參與物質(zhì)代謝和抑制腸道致病菌生長外,腸道微生態(tài)還在胃腸道系統(tǒng)的發(fā)生和自穩(wěn)過程中起關(guān)鍵作用[31],對心血管系統(tǒng)[32,33]和免疫系統(tǒng)[34]亦有著重要影響。腸道微生態(tài)失調(diào),與肥胖癥[35]、脂肪肝[36]、糖尿?。?7]、關(guān)節(jié)炎等[38]許多疾病相關(guān),其中包括腸易激綜合征、炎癥性腸病及結(jié)直腸惡性腫瘤在內(nèi)的腸道疾病與腸道微生態(tài)的關(guān)系尤為密切。
腸易激綜合征(Irritable bowel syndrome,IBS)是多因素引起的胃腸道功能紊亂。其主要的致病機(jī)制包括胃腸道動力失調(diào)、內(nèi)臟神經(jīng)高敏感、神經(jīng)-免疫-內(nèi)分泌傳遞通路紊亂等。
近年來,許多報道都證明腸道微生態(tài)與上述IBS致病機(jī)制有密切關(guān)系。有研究發(fā)現(xiàn)腸道菌群缺乏的動物小腸蠕動速度明顯減慢、結(jié)腸擴(kuò)張[39],而重建腸道菌群后動物也重新建立起正常的腸道蠕動,其機(jī)制可能與腸道菌群對內(nèi)源及外源物質(zhì)的分解代謝有關(guān)[39]。腸道菌群通過分解代謝增加相關(guān)酶的表達(dá),促進(jìn)神經(jīng)調(diào)節(jié)因子(如:γ-氨基丁酸)及特殊肌蛋白的合成,代謝產(chǎn)生的氫氣、甲烷及短鏈脂肪酸可調(diào)節(jié)胃腸道動力[39]、影響胃腸道的敏感性。因此,腸道微生態(tài)失調(diào),可導(dǎo)致胃腸道動力失調(diào)及內(nèi)臟神經(jīng)敏感性改變[24],最終導(dǎo)致IBS發(fā)生。
IBS患者的腸道微生態(tài)失調(diào)可分為兩種類型:腸道細(xì)菌數(shù)量的改變和腸道菌群構(gòu)成的改變。早在1998年就有學(xué)者發(fā)現(xiàn)IBS患者的結(jié)腸產(chǎn)氣量增多,提示腸道產(chǎn)氣菌增加可能與IBS發(fā)病相關(guān)[40],后有研究通過C-木糖呼氣實驗[41]及乳果糖呼吸實驗[42]分別證實了IBS患者存在小腸細(xì)菌生長過度(Small intestinal bacterial over growth,SIBO),SIBO 導(dǎo)致腸道氫氣和甲烷產(chǎn)生增多,促使炎癥反應(yīng)出現(xiàn)及小腸動力紊亂。另有研究證實新霉素[43]或利福昔明[44]治療甲烷產(chǎn)量明顯增多的IBS后,患者癥狀得到明顯改善,亦支持SIBO導(dǎo)致IBS的假說。盡管在確診是否存在SIBO的方法上仍然存在一些爭議,但最近有一項將不同研究方法整合后的META分析顯示,IBS患者腸道細(xì)菌的數(shù)量約為對照組的4倍[45],因此將SIBO視為IBS的致病因素之一,特別是以腹脹為主訴、存在胃腸道動力紊亂的IBS,是合理的。1982年就有學(xué)者通過糞便細(xì)菌培養(yǎng)發(fā)現(xiàn)IBS患者腸道菌群中乳酸桿菌和雙歧桿菌較對照組明顯減少,而大腸桿菌增多[46],提示腸道菌群構(gòu)成改變可能導(dǎo)致IBS發(fā)生。后人采用結(jié)腸粘膜活檢[47]、聚合酶鏈反應(yīng)-變性梯度凝膠電泳法等[48]方法均證實了IBS患者的確存在腸道菌群構(gòu)成的變化。進(jìn)一步的研究發(fā)現(xiàn),在腹瀉-便秘型中 Allisonellahe和Bacteroide增多,雙歧桿菌減少則更多見于腹瀉型IBS[49]。而腸道菌群構(gòu)成改變引起IBS的具體機(jī)制還有待進(jìn)一步研究。
在IBS患者中,約20%繼發(fā)于胃腸道急性細(xì)菌感染,提示除腸道細(xì)菌數(shù)量的改變和腸道菌群構(gòu)成的改變外,急性胃腸道感染可能是發(fā)生IBS的獨(dú)立危險因素。感染持續(xù)的時間是感染后是否發(fā)生感染后腸 易 激 綜 合 征 (Post infectious irritable bowel syndrome,PI-IBS)的關(guān)鍵,感染持續(xù)的時間越長,發(fā)生PI-IBS的概率越大,當(dāng)感染持續(xù)時間超過3周時,PI-IBS發(fā)生的危險性增加11倍[50]。另外,感染的年齡較小和焦慮或抑郁的情緒狀態(tài)也是導(dǎo)致PIIBS發(fā)生的重要原因[50]。有研究發(fā)現(xiàn),急性胃腸道細(xì)菌感染3個月后前炎癥因子IL-1β仍然高表達(dá)的患者PI-IBS患病率增高[51],提示細(xì)菌感染后持續(xù)的低水平炎癥反應(yīng)可能是PI-IBS的主要致病機(jī)制。
炎癥性腸?。↖nflammatory bowel disease,IBD)是一類病因未明的慢性腸道疾病,主要包括Crohn病(Crohn’s disease,CD)和潰瘍性結(jié)腸炎(Ulcerative colitis,UC)。近年來遺傳易感[52]、腸道微生態(tài)和環(huán)境改變的相互作用被認(rèn)為是IBD主要的病理生理過程,其中腸道菌群引起的腸粘膜異常免疫應(yīng)答損傷尤為重要。
早在1994年就有報道嬰兒時期腸道在惡劣衛(wèi)生環(huán)境中的暴露會降低未來CD的患病概率[53],流行病學(xué)相關(guān)研究發(fā)現(xiàn)在衛(wèi)生條件更好的發(fā)達(dá)國家,IBD的患病率比發(fā)展中國家更高[54],后人關(guān)于IBD病因的諸多研究亦提示IBD的環(huán)境危險因素正是減少感染性疾病傳播的有利因素。猜測其機(jī)理可能是早期胃腸道缺乏病原體暴露,導(dǎo)致機(jī)體對腸腔內(nèi)常駐菌群抗原的耐受不足[55],機(jī)體產(chǎn)生對腸道常駐菌群的異常免疫反應(yīng),最終導(dǎo)致腸道粘膜損傷。常駐腸道細(xì)菌參與的免疫應(yīng)答損傷假說在許多早期的動物實驗中都得以印證。研究發(fā)現(xiàn),HLA-B27轉(zhuǎn)基因大鼠可自發(fā)慢性結(jié)腸炎,而無菌環(huán)境飼養(yǎng)的HLA-B27大鼠則不會發(fā)生慢性結(jié)腸炎[56]。類似的研究還有T細(xì)胞受體基因缺陷的小鼠在無菌環(huán)境中不發(fā)生結(jié)腸炎、IL-2基因缺陷的小鼠可在10周齡時發(fā)生組織特點類似人類UC的炎癥性腸病,而該小鼠在無菌環(huán)境飼養(yǎng)時并不發(fā)生此病變[57]等等。另有實驗結(jié)果顯示,腸道非致病性細(xì)菌可加重IL-10基因敲除小鼠的腸道炎癥反應(yīng)[58]。早期不吸收抗生素治療可減輕粘膜損傷的研究也間接證明了腸道菌群參與了腸道的免疫炎性損傷[59-61]。
進(jìn)一步的研究聚焦在不同菌種對IBD的不同影響。實驗證明,在引起腸道免疫炎性損傷的細(xì)菌中,厭氧菌導(dǎo)致的炎性損傷最為嚴(yán)重[62],且以單核細(xì)胞滲出浸潤為主。另有實驗發(fā)現(xiàn)CD患者回腸末端粘膜及肉芽腫中粘附侵襲性大腸桿菌(Adherent invasive E.coli,AIEC)含量明顯增多[63],而從 CD 患者中分離的AIEC在體外可誘發(fā)形成肉芽腫[64]。而乳酸桿菌可顯著減少腸粘膜固有層中表達(dá)IL-2受體的T淋巴細(xì)胞數(shù),并降低IL-6、TNF-α及而Bcl-2族蛋白的表達(dá)量,從而減輕炎癥反應(yīng)。亦有學(xué)者提出副結(jié)核分枝桿菌、幽門螺桿菌和病毒在IBD發(fā)病中可能起促進(jìn)作用,但尚缺乏充分的實驗證據(jù)。
IBD腸道粘膜免疫損傷的具體機(jī)制也是研究的重點之一,而異常免疫反應(yīng)發(fā)生和黏液-上皮屏障被破壞是損傷機(jī)制的兩個核心環(huán)節(jié)。研究發(fā)現(xiàn)無菌小鼠的漿細(xì)胞、淋巴濾泡、T細(xì)胞和Paneth細(xì)胞減少,產(chǎn)生的粘膜IgA也減少,而IBD患者腸道粘膜組織中產(chǎn)生IgG的淋巴細(xì)胞較對照組顯著增多[65]。正常的胃腸道免疫排異反應(yīng)主要以產(chǎn)生IgA抗體為主且局限在上皮表面,并不會導(dǎo)致組織的炎性損傷,但異常的IgG抗體可形成免疫復(fù)合物激活補(bǔ)體,引起完全免疫應(yīng)答。最近有研究發(fā)現(xiàn)一些細(xì)菌通過與癌胚抗原相關(guān)細(xì)胞黏附分子-6(Carcinoembryonic antigen associated cell adhesion molecule-6,CEACAM-6)作用黏附至粘膜上并侵襲入上皮細(xì)胞,誘導(dǎo)TNF-α分泌并啟動后續(xù)免疫反應(yīng)[66],還有研究表明多形擬桿菌作為T樣受體傳導(dǎo)通路的下游信號可激活NF-κB31啟動異常免疫反應(yīng)。另一些細(xì)菌則可通過抑制核因子-κB(Nuclear factor-κB,NF-κB)的激活抑制免疫反應(yīng)的發(fā)生。通過上述異常免疫應(yīng)答導(dǎo)致腸道黏液-上皮屏障的破壞,進(jìn)而導(dǎo)致IBD的發(fā)生。動物實驗證明,正常菌群可增加杯狀細(xì)胞的黏液分泌,構(gòu)成黏液-上皮屏障的重要部分,腸道菌群失調(diào)使黏液分泌減少,讓腸道上皮直接暴露在損傷因子下,如腸道有毒代謝產(chǎn)物等等[67]。另外,正常腸道菌群通過增加相關(guān)蛋白的表達(dá)可加強(qiáng)上皮細(xì)胞間的緊密連接[68],而上皮穿透性增加是嚴(yán)重IBD的特征之一[69]。
另外,隨著腸道上皮和腸道菌群模式作用的發(fā)現(xiàn),與IBD發(fā)病相關(guān)的信號傳導(dǎo)通路也逐漸被了解,而這些傳到通路與結(jié)直腸癌的發(fā)生也有一定關(guān)系,下文將進(jìn)一步總結(jié)相關(guān)研究的結(jié)果。
結(jié)直腸癌(Colorectal cancer,CRC)在發(fā)達(dá)國家的發(fā)概率高發(fā)展中國家,除了基因和環(huán)境因素,IBD發(fā)病率的差差異也是導(dǎo)致CRC發(fā)病率差異的原因之一,長期受炎性刺激的人,如IBD患者,在確診10年后發(fā)生CRC的危險比對照組高1%/年[70]。前文已概述腸道微生態(tài)在IBD病理生理過程中的重要作用,但越來越多的研究證明,腸道微生態(tài)不僅通過參與IBD的病理生理過程間接結(jié)作用于CRC的發(fā)病過程[71],更通過腸道微生物代謝產(chǎn)生致癌物質(zhì)直接郵到腫瘤發(fā)生。
自上個世紀(jì)60年代起至今,有許多動物實驗研究都發(fā)現(xiàn),一些外源或內(nèi)源性物質(zhì),通過非胃腸道途徑給藥或者采用無菌小鼠胃腸道給藥并沒有致癌作用,但通過胃腸道給予有胃腸道菌群的小鼠時,該物質(zhì)則可被微生物分泌酶催化轉(zhuǎn)換成具有致癌作用的產(chǎn)物,通過誘發(fā)胃腸道上皮細(xì)胞基因突變等途徑導(dǎo)致腫瘤發(fā)生。如外源性的蘇鐵素可通過小鼠腸道微生物分泌的β-葡萄糖苷酶轉(zhuǎn)換成具有致癌作用的非結(jié)合甲基氧化偶氮甲醇[72],又如進(jìn)入腸道的膽鹽在腸道厭氧菌群如脆弱擬桿菌的作用下,通過去結(jié)合及脫羥作用生成可溶性更差的膽鹽,這些膽鹽無法參與腸肝循環(huán),經(jīng)生化反應(yīng)后形成有致癌作用的去氧膽酸[73,74]。其它與結(jié)直腸腫瘤發(fā)生有關(guān)的腸道微生物代謝酶包括β-葡萄糖醛酸酶、硫酸酯酶、β-豐乳糖酶、β-硝基還原酶、偶氮還原酶及膽固醇脫氫酶等[75]。
但并非所有的腸道菌群都會因為自身代謝活動參與CRC的發(fā)生。早在1971年就有研究發(fā)現(xiàn)腸道微生態(tài)中類桿菌增多與結(jié)腸癌發(fā)生有關(guān)。后陸續(xù)發(fā)現(xiàn),結(jié)腸癌與結(jié)腸息肉患者腸道中雙歧桿菌和乳酸桿菌數(shù)量明顯減少,而腸球菌、類桿菌和酵母菌數(shù)量增多[76]。對腸道微生態(tài)中不同菌種的進(jìn)一步動物實驗研究發(fā)現(xiàn),分泌B.脆弱毒素(Bacteroides fragilis toxin,BFT)的產(chǎn)腸毒素脆弱類桿菌(Enterotoxigenic Bacteroides fragilis,ETBF)可誘發(fā)小鼠多種腸道新生物[77],而擬桿菌的普通亞型卻可通過誘發(fā)IL-10基因敲除小鼠腸道的低水平炎癥減少CRC的發(fā)生[78]。證實腸道微生態(tài)中不同菌種可能促進(jìn)、也可能抑制CRC的發(fā)生發(fā)展,可能與不同菌種產(chǎn)生的腫瘤相關(guān)代謝酶不同有關(guān)。
不難發(fā)現(xiàn),IBS、IBD和CRC的發(fā)生均和腸道微生態(tài)失調(diào)引起異常免疫反應(yīng)等機(jī)體正常生理功能紊亂相關(guān)。于是有學(xué)者提出,IBS、IBD和CRC并非完全獨(dú)立的腸道疾病,而腸道微生態(tài)正是三者之間最關(guān)鍵的連接點[79,80]!特別是當(dāng)PI-IBS和IBD相關(guān)的CRC這兩個概念提出后,PI-IBS、IBD和IBD相關(guān)的CRC似乎更像是同一疾病的不同階段。但進(jìn)一步的研究發(fā)現(xiàn),三者不僅是量的不同,更有著質(zhì)的不同,其關(guān)系并非疾病的連續(xù)變化這么簡單。
PI-IBS雖然也存在著低水平的炎癥反應(yīng),但參與炎癥反應(yīng)的細(xì)胞及相關(guān)細(xì)胞因子種類與IBD有很大不同[81],另外,中樞和外周神經(jīng)系統(tǒng)的相互作用在IBS的發(fā)病中起重要作用,但I(xiàn)BD受中樞神經(jīng)系統(tǒng)的影響微乎其微,再次,對IBS和IBD的具體菌種分析結(jié)果也提示兩者的主要致病菌譜并不一致。然而仍有不少報道稱IBD患者中既往很多都曾出現(xiàn)IBS癥狀[82],且近期一項流行病學(xué)研究發(fā)現(xiàn),IBD患者的一級親屬中IBS患者較正常對照組明顯增多[83]。因此,盡管更多證據(jù)提示IBS和IBD并非同一疾病,但I(xiàn)BS與IBD之間仍然可能存在著直接或間接的關(guān)聯(lián),比如IBS是否是IBD的危險因素之一等等,這些問題尚有待進(jìn)一步研究證實。
隨著微生物與腸道上皮細(xì)胞模式受體相互作用的機(jī)制被發(fā)現(xiàn),IBD和CRC之間“共同”的信號傳導(dǎo)通路為IBD和CRC的密切聯(lián)系提供了除流行病學(xué)證據(jù)外的、更為確切的分子依據(jù)。研究最為熱門的,當(dāng)屬對IBD和CRC發(fā)展起阻礙作用的NOD1[84]和NLRP3[85]通路,以及起促進(jìn)炎癥和腫瘤發(fā)生作用的TLR/MyD[88]通路[87]。盡管如此,仍有不少動物實驗結(jié)果發(fā)現(xiàn)慢性炎癥也可能對腫瘤的發(fā)生起阻礙作用[78],而且事實上,有近80%的IBD患者并不會發(fā)展成CRC[87]。綜合前述腸道微生物代謝活動可直接誘導(dǎo)CRC發(fā)生的結(jié)論,目前較為一致的意見是,IBD可能是腸道微生態(tài)與CRC之間的聯(lián)系紐帶之一,但并不是唯一的聯(lián)系。IBD與CRC之間的絕對因果關(guān)系尚需考證。
而另一項關(guān)于IBS和CRC的Cohort研究發(fā)現(xiàn),在IBS診斷后的第一個十年里,CRC的發(fā)病率較對照組有所下降[88],提示IBS可能是CRC的保護(hù)性因素,但尚沒有其他任何證據(jù)證明IBS與CRC之間有直接關(guān)系。
綜上所述,隨著腸道微生物的基因構(gòu)成及其與腸道上皮的相互作用模式被逐步揭曉,學(xué)者對腸道微生態(tài)與人類腸道疾病之間關(guān)系的探索又邁入了一個新的階段。然而要完全弄清腸道微生態(tài)復(fù)雜的結(jié)構(gòu)與功能、為相關(guān)疾病的診斷和治療尋找新的突破口,還需要更多的努力。
[1] Famularo G,Trinchieri V and De Simone C.Inflammatory bowel disease[J].The New England journal of medicine,2002,347:1982-1984.
[2] Bush TG,Savidge TC,F(xiàn)reeman TC,et al.Fulminant jejunoileitis following ablation of enteric glia in adult transgenic mice[J].Cell,1998,93:189-201.
[3] Cabarrocas J,Savidge TC and Liblau RS.Role of enteric glial cells in inflammatory bowel disease[J].Glia,2003,41:81-93.
[4] Steinkamp M,Geerling I,Seufferlein T,et al.Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells[J].Gastroenterology,2003,124:1748-1757.
[5] Zhang DK,He FQ,Li TK,et al.Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis [J].The Journal of pathology,2010,222:213-222.
[6] Airaksinen MS and Saarma M.The GDNF family:signalling,biological functions and therapeutic value[J].Nature reviews Neuroscience,2002,3:383-394.
[7] Vargas-Leal V,Bruno R,Derfuss T, Krumbholz M,Hohlfeld R and Meinl E.Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells[J].Journal of immunology,2005,175:2301-2308.
[8] Dvorak AM,Monahan RA,Osage JE and Dickersin GR.Crohn's disease:transmission electron microscopic studies.II.Immunologic inflammatory response. Alterations of mast cells,basophils,eosinophils,and the microvasculature[J].Human pathology,1980,11:606-619.
[9] King T,Biddle W,Bhatia P,Moore J and Miner PB,Jr.Colonic mucosal mast cell distribution at line of demarcation of active ulcerative colitis[J].Digestive diseases and sciences,1992,37:490-495.
[10] He SH.Key role of mast cells and their major secretory products in inflammatory bowel disease[J].World journal of gastroenterology:WJG,2004,10:309-318.
[11] Arseneau KO,Pizarro TT and Cominelli F.Discovering the cause of inflammatory bowel disease:lessons from animal models[J].Current opinion in gastroenterology,2000,16:310-317.
[12] Araki Y,Andoh A,F(xiàn)ujiyama Y and Bamba T.Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats[J].Clinical and experimental immunology,2000,119:264-269.
[13] Douglas JT.Adenoviral vectors for gene therapy[J].Molecular biotechnology,2007,36:71-80.
[14] Gurish MF,Ghildyal N,Arm J,et al.Cytokine mRNA are preferentially increased relative to secretory granule protein mRNA in mouse bone marrow-derived mast cells that have undergone IgE-mediated activation and degranulation [J].Journal of immunology,1991,146:1527-1533.
[15] Mudter J and Neurath MF.Il-6signaling in inflammatory bowel disease:pathophysiological role and clinical relevance[J].Inflammatory bowel diseases,2007,13:1016-1023.
[16] Taniguchi K and Karin M.IL-6and related cytokines as the critical lynchpins between inflammation and cancer[J].Seminars in immunology,2014,26(1):54-74.
[17] Allocca M,Jovani M,F(xiàn)iorino G,Schreiber S and Danese S.Anti-IL-6treatment for inflammatory bowel diseases:next cytokine,next target[J].Current drug targets,2013,14:1508-1521.
[18] Bischoff SC,Lorentz A,Schwengberg S,Weier G,Raab R and Manns MP.Mast cells are an important cellular source of tumour necrosis factor alpha in human intestinal tissue[J].Gut,1999,44:643-652.
[19] Gibbs BF,Wierecky J,Welker P,Henz BM,Wolff HH and Grabbe J.Human skin mast cells rapidly release preformed and newly generated TNF-alpha and IL-8following stimulation with anti-IgE and other secretagogues[J].Experimental dermatology,2001,10:312-320.
[20] Kulczycki A,Jr.,Isersky C and Metzger H.The interaction of IgE with rat basophilic leukemia cells.I.Evidence for specific binding of IgE [J].The Journal of experimental medicine,1974,139:600-616.
[21] Barsumian EL,Isersky C,Petrino MG and Siraganian RP.IgE-induced histamine release from rat basophilic leukemia cell lines:isolation of releasing and nonreleasing clones[J].European journal of immunology,1981,11:317-323.
[22] Wu Z,Pearson A and Oliveira D.Characterization of cis-regulatory elements conferring mercury-induced interleukin-4 gene expression in rat mast cells:a role for signal transducer and activator of transcription 6and TATA box binding sites[J].Immunology,2009,127:530-853.
[23] Lisboa FA,Peng Z,Combs CA and Beaven MA.Phospholipase d promotes lipid microdomain-associated signaling events in mast cells[J].Journal of immunology,2009,183:5104-5112.
[24] Bourdu S,Dapoigny M,Chapuy E,et al.Rectal instillation of butyrate provides a novel clinically relevant model of non-inflammatory colonic hypersensitivity in rats[J].Gastroenterology,2005,128:1996-2008.25.LV.H and JI.G.Commensal host-bacterial relationships in the gut.[J].Science,2001,292:1115–1158.
[26] PJ.T,RE.L and M.H.The human microbiome project.[J].Nature,2007,449:804-810.
[27] J.Q,R.L and J.R.A human gut microbial gene catalogue established by metagenomic sequencing.[J].Nature,2010,464:59-65.
[28] PJ.T,M.H and T.Y.A core gut micro-biome in obese and lean twins.[J].Nature,2009,457:480-484.
[29] TB.G,SJ.vV and A.E.Self-and nonself-recognition by C-type lectins on dendritic cells[J].Annu Rev Immunol,2004,22:33-54.
[30] S.R-N and R.M.Innate immune recognition of the indigenous microbial flora[J].Mucosal Immunol,2008,I(suppl I):S10-S14.
[31] LV.H.Bacterial contributions to mammalian gut development[J].Trends Microbiol,2004,12:129-134.
[32] TS.S,LV.H and JI.G.Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J].Proc Natl Acad Sci U S A,2002,99:15451-1545.
[33] PA.C,JR.C and N.S.Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J].Proc Natl Acad Sci U S A,2009,106:11276-11281.
[34] AV.C.Influence of microbial environment on autoimmunity.Nat Immunol.2010;11:28-35.
[35] PJ.T,RE.L and MA.M.An obesity-associated gut microbiome with increased capacity for energy harvest[J].Proc Natl Acad Sci U S A,2006,444:1027-1031.
[36] ME.D,RH.B and A.T.Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulinresistant mice[J].Proc Natl Acad Sci U S A,2006,103:12511-12516.
[37] L.W,RE.L and PY.V.Innate immunity and intestinal microbiota in the development of Type 1diabetes[J].Nature,2008,455:1109-1113.
[38] S.A-R,LA.J and MI.K.Stimulation of TLR2and TLR4 differentially skews the balance of T cells in a mouse model of arthritis[J].J Clin Invest,2008,118:205-216.
[39] G B,V S,G B,C C,G dn and r dG.Interactions between commensal bacteria and gut sensorimotor function in health and disease..Am J Gastroenterol.2005;100:2560-2568.
[40] TS K,M E and JO H.Abnormal colonic fermentation in irritable bowel syndrome[J].Lancet,1998,352:1187-1189.
[41] Podolsky DK.Inflammatory bowel disease [J].The New England journal of medicine,2002,347:417-429.
[42] M P,D W and D H.A link between irritable bowel syndrome and fibromyalgia may be related to findings on lactulose breath testing[J].Ann Rheum Dis,2004,63:450-452.
[43] M P,S C,EJ C,S P and Y K.Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas:sub-analysis of a double-blind randomized controlled study [J].Dig Dis Sci,2006,51:1297-1301.
[44] M P,S P,J M,SV K and Y K.The effect of a nonabsorbed antibiotic(rifaximin)on the symptoms of the irritable bowel syndrome:a randomized trial[J].Ann intern Med,2006,145:557-563.
[45] AC F,BM S,J T and P M.Small intestinal bacterial overgrowth in irritable bowel syndrome:systematic review and meta-analysis [J].Clin Gastroenterol Hepatol,2009,7:1279-1286.
[46] A B,A C,F(xiàn) D and G FEP.The fecal microbial population in the irritable bowel syndrome[J].Microbiology,1982,5:185-194.
[47] A S,M K and M O.Alteration of bacterial concentration in colonic biopsies from patients with irritable bowel syndrome(IBS)[J].Gastroenterology,1999,116:A1.
[48] J M,L M and K K.Composition and temporal stability of gastrointestinal microbiotain irritable bowel syndrome a longitudinal study in IBS and control subjects[J].Immunol Med Microbiol,2005,43:213-222.
[49] A K,L K-K,H M,T r,L Pi and J C.The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects[J].Gastroenterology,2007,133:24-33.
[50] M T,T K and JK M.Systematic review and meta-analysis:the incidence and prognosis of post-infectious irritable bowel syndrome[J].Aliment Pharmacol Ther,2007,26:535-544.
[51] R S and K G.Infection,inflammation,and the irritable bowel syndrome[J].dig Liv dis,2009,41:844-849.
[52] B K,A G and RJ X.Genetics and pathogenesis of inflammatory bowel disease[J].Nature,2011,474:307-317.
[53] AE G,MD H,RH G and D SEC.Inflammatory bowel disease and domestic hygiene in infancy[J].Lancet,1994,343:766-767.
[54] NP T,SM M,ME W and AJ PRW.Early determinants of inflammatory boweldisease:use of two national longitudinal birth cohorts[J].EurJGastroenterolHepatol,2000,12:25-30.
[55] P.B,TS.H,K.K,et al.Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes[J].Gastroenterology,1989,97:1562-1584.
[56] JD.T,JA.R,JT.C,et al.The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats[J].J Exp Med,1994,180:2359-2364.
[57] Sadlack B MH,Schorle H,Schimpl A,F(xiàn)eller A & Horak I.Ulcerative colitis-like disease in mice with a disrupted interleukin-2gene[J].Cell,1993,75:253-261.
[58] R.Kh,J.Lh,D.R and W RKMl.Interleukin-10-deficient mice develop chronic enterocolitis[J].Cell,1993,75:263-274.
[59] S V,J V,F(xiàn) G,A S,F(xiàn) T and E C.Role of intestinal microflora in chronic inflammation and ulceration of the rat colon[J].Gut,1994,35:1090-1097.
[60] A S,J W and V L-B.Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease[J].J Clin Microbiol,2005,43:3380-3389.
[61] SS K,SM B and LA N.An antibiotic-responsive mouse model of fulminant ulcerative colitis[J].PLoS Med,2008,5:e41.
[62] M.M,A.S,F(xiàn).G and E.C.Stimulation of transforming growth factor-1by enteric bacteria in the pathogenesis of rat intestinal fibrosis[J].Gastroenterology,1998,114:519-526.
[63] A.DM,C.N and N.B.Presence of adherent Escherichia coli.in ileal mucosa strains of patients with Crohn's disease[J].Gastroenterology,1998,115:1405-1413.
[64] S.M,A.V and F.L.Adherent-invasive Escherichia coli i-solated from Crohn's disease patients induce granulomas in vitro[J].Cell Microbiol,2007,9:1252-1261.
[65] P.B,TS.H,K.K,et al.Immunobiology and immunopathology of human gut mucosa:humoral immunity and intraepithelial lymphocytes[J].Gastroenterology,1989,97:1562-1584.
[66] N.B,F(xiàn)A.C and AL.G.CEACAM6acts as a receptor for adherent invasive E.coli supporting ileal mucosa colonization in Crohn disease[J].J Clin Invest,2007,117:1566-1574.
[67] R H and H C.The influence of colonizing micro-organisms on development of crypt architecture in the neonatal mouse colon[J].Acta Anat(Basel),1990,137:137-140.
[68] S U,A S and U D.Probiotic Escherichia coli Nissle 1917inhibits leaky gut by enhancing mucosal integrity [J].PLoS One,2007,2:e1308.
[69] U S,H L and A C.Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation [J].Ann N Y Acad Sci,2006,1072:262-275.
[70] Chambers.WM,Warren.BF,Jewell.DP and Mortensen.NJ.Cancer surveillance in ulcerative colitis[J].Br J Surg,2005,92:928-936.
[71] Goel A,Mittal A,Evstatiev R,et al.In vivo effects of mesalazine or E.coli Nissle 1917on microsatellite instability in ulcerative colitis[J].Aliment PharmacolTher ,2009,30:634-642.
[72] GL L.Carcinogenic effects of cycad meal and cycasin,methylazoxymethanol glycoside,in rats and effects of cycasin in germfree rats[J].Fed Proc,1964,23:1386-1388.
[73] MJ.H.Bile flow and colon cancer[J].Mutat Res,1990,238:3130-3320.
[74] A P,J X and G L.Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53[J].Int J Biochem Cell Biol,2001,33:193-203.
[75] Rowland and R I.The Role of the Gastrointestinal Microbiota in Colorectal Cancer [J].Current Pharmaceutical Design,2009,15:1524-157.
[76] R.M and OM.J.Dietary fibre,transit-time,faecal bacteria,steroids,and colon cancer in two Scandinavian populations[J].Lancet,1977,30:207-211.
[77] Wu S,Rhee KJ,Albesiano E,et al.A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17Tcell responses[J].Nat Med,2009,15:1016-1022.
[78] M.Joshua JMU,M.Mühlbauer,H.H.Herfarth,T.C.Rubinas,and G.S.Jones CJ.Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility[J].PLoS One,2009,4:e6026.
[79] Quigley EMM.Commensal bacteria:the link between IBS and IBD?[J].Curr Opin Clin Nutr Metab Care,2011,14:497-503.
[80] C.J and Jobin.C.The Struggle Within:Microbial Influences on Colorectal Cancer[J].Inflamm Bowel Dis,2011,17:396-409.
[81] J.K,C.OM and L.OM.Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease:a real association or reflection of occult inflammation?[J].Am J Gastroenterol,2010,105:1789-1884.
[82] T.B,I.C and L.G.The Manitoba Inflammatory Bowel Disease Cohort Study:prolonged symptoms before diagnosis:how much is irritable bowel syndrome?[J].Clin Gastroenterol Hepatol,2006,4:614-620.
[83] Aguas M,Garrigues V and Bastida G.Prevalence of irritable bowel syndrome (IBS)in first-degree relatives of patients with inflammatory bowel disease(IBD)[J].Journal of Crohn's and Colitis,2011,5:227-233.
[84] Chen GY,Shaw MH,Redondo G,et al.The innate immune receptor Nod1protects the intestine from inflammation-induced tumorigenesis[J].Cancer Res,2008,68:10060-10067.
[85] Rogers AB,Herfarth HH,Jobin C,Ting JP.The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis associated cancer[J].J Exp Med,2010,207:1045-1056.
[86] Rakoff-Nahoum S,Medzhitov R.Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88[J].Science,2007,317:124-127.
[87] Eaden JA,Abrams KR,Mayberry JF.The risk of colorectal cancer in ulcerative colitis:a meta-analysis[J].Gut,2001,48:526-535.
[88] N rgaard M,F(xiàn)arkas DK,Pedersen L,et al.Irritable bowel syndrome and risk of colorectal cancer:a Danish nationwide cohort study[J].The British Journal of Cancer,2011,104:1202-1206.