鄭金玨 陳夢(mèng)蝶 綜述 鄭超 審校
Toll樣受體(Toll like receptors,TLRs)屬1型跨膜蛋白,是哺乳動(dòng)物主要的天然模式識(shí)別受體, 參與病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)的識(shí)別,引發(fā)信號(hào)轉(zhuǎn)導(dǎo),啟動(dòng)多種與炎癥反應(yīng)相關(guān)的基因轉(zhuǎn)錄,導(dǎo)致炎癥介質(zhì)的釋放,并最終激活獲得性免疫系統(tǒng)。Toll樣受體在不同種生物體內(nèi)保持高度的同源性,目前已證實(shí)在哺乳動(dòng)物體內(nèi)存在的TLRs有TLR1-TLR13共13種[2,11]。目前已經(jīng)有7種TLR被鑒定出其相應(yīng)配體[3,12],如TLR1,2,6可以協(xié)作識(shí)別細(xì)菌細(xì)胞壁的肽聚糖(PGN)和細(xì)菌脂蛋白(BLP),TLR3可以特異性識(shí)別病毒分子中的dsRNA,革蘭氏陰性菌細(xì)胞壁成分脂多糖(LPS)是TLR4的激動(dòng)劑,TLR5識(shí)別細(xì)菌鞭毛蛋白,TLR7和TLR8可以特異性識(shí)別ssRNA[4],TLR9主要參與并激活由病原體CpG基序刺激后細(xì)胞信號(hào)通路,引起大量炎性因子的產(chǎn)生[5,7]。
人類TLR9基因位于第3號(hào)染色體(3p2113),有2個(gè)外顯子組成,全長約5kb。TLR9基因與MyD88基因相連,以單外顯(monoexonic)或者雙外顯(biexonic)等兩種最常見的拼接方式表達(dá)[8,12]。TLR9蛋白由1032個(gè)氨基酸編碼,其分子結(jié)構(gòu)與TLR家族其他成員一樣,都是由胞膜外區(qū)、跨膜區(qū)、胞漿區(qū)組成。小鼠的胞外區(qū)LRR有16個(gè),而人有18個(gè)[9]。TLR9蛋白在脾臟中表達(dá)量最高,其次是卵巢、外周血白細(xì)胞,胸腺、肺、腸、前列腺、腦和胰腺。在各種免疫細(xì)胞中TLR9的表達(dá)量也有很大差異,尤其是記憶性B淋巴細(xì)胞和胞漿樣樹突狀細(xì)胞(DC)表達(dá)最為豐富[10]。
研究證實(shí),TLR9的天然激動(dòng)劑是CpG。CpG是存在于細(xì)菌或病毒基因組中出現(xiàn)頻率較高的非甲基化的胞嘧啶鳥嘌呤二核苷酸(cytosine phosphate—guanosine,CpG)序列,這些短核苷酸序列具有免疫活性。將含有CpG基序的細(xì)菌或病毒DNA稱CpG DNA,人工合成的含有CpG基序的寡核苷酸(oligodeexynucleotide,ODN)序列稱CpG ODN。Melinda A[11,14]等通過體外實(shí)驗(yàn)發(fā)現(xiàn),用CpG寡核苷酸序列刺激TLR9+的乳腺癌細(xì)胞MDA-MB-231和T47-D,可以降低血清基質(zhì)金屬蛋白酶抑制因子-3(TIMP-3)的表達(dá),而在TLR9-的乳腺癌細(xì)胞MCF-7中無此現(xiàn)象。Labzhinov PA等[3]研究發(fā)現(xiàn),敲除了TLR2,TLR4基因的小鼠,對(duì)CpG DNA仍具有反應(yīng)性,比如脾臟淋巴細(xì)胞的增殖,巨噬細(xì)胞分泌炎癥細(xì)胞因子以及樹突狀細(xì)胞的成熟加快等。而敲除TLR9基因的小鼠(TLR9-/-)則無以上反應(yīng)。這些研究結(jié)果都說明TLR9通路的激活與CpG DNA有緊密聯(lián)系。
無論是來自細(xì)菌或者病毒的CpG DNA還是人工合成的CpG DNA都可通過細(xì)胞的非序列依賴性胞吞作用攝入細(xì)胞體內(nèi),形成內(nèi)體。Vollmer J等[14]發(fā)現(xiàn),包含CpG DNA/ODN的內(nèi)體在P13激酶、Rab5以及GTP結(jié)合蛋白的調(diào)控下,不斷成熟,酸化,進(jìn)而激活TLR9介導(dǎo)的信號(hào)途徑。但是CpG骨架的結(jié)構(gòu)影響細(xì)胞對(duì)其攝取,有實(shí)驗(yàn)證實(shí)CpG ODN經(jīng)過硫代磷酸化修飾后更容易被細(xì)胞攝取,而且增強(qiáng)了原有序列的免疫刺激活性,而甲基化修飾卻無此作用[13]。
CpG-ODN與細(xì)胞表面接觸后,通過胞吞作用進(jìn)入細(xì)胞內(nèi)形成內(nèi)體形式,隨著內(nèi)體的成熟、酸化,TLR9被招募并識(shí)別CpG-ODN,兩者結(jié)合形成二聚體[14,15]。髓樣細(xì)胞分化因子88(MyD88)包含兩個(gè)結(jié)構(gòu)域,TIR結(jié)構(gòu)域位于C末端,N末端有個(gè)“死亡”結(jié)構(gòu)域,與白介素-1受體相關(guān)激酶(IRAK)的死亡結(jié)構(gòu)域高度同源,在受刺激后可被招募。因此結(jié)合了CpG-ODN的TLR9招募MyD88分子與之結(jié)合,形成MyD88-TLR復(fù)合物。該復(fù)合物與白介素-1相關(guān)蛋白激酶(IRAK)4結(jié)合并激活I(lǐng)RAK 4后,反過來作用于IRAK 1,使之高度磷酸化。IRAK 1高度磷酸化后從之前的復(fù)合物上解離下來,與轉(zhuǎn)接蛋白TNF受體相關(guān)因子6(TRAF6)相互作用形成復(fù)合體[15,16]。TRAF6介導(dǎo)的途徑有好多條,其中一條通過激活轉(zhuǎn)化生長因子β(TGFβ)激活激酶1(TGF-activated kinase 1,TAK1),活化的TAK1順序激活I(lǐng)KK,IKK的激活使IκB磷酸化從NF-κB上脫落并被泛素化,使得NF-κB由抑制狀態(tài)被激活從而引發(fā)NF-κB轉(zhuǎn)位入核并激發(fā)一系列后續(xù)免疫反應(yīng)。另一條轉(zhuǎn)導(dǎo)途徑是P38介導(dǎo)的MAPK途徑。這是一條經(jīng)典炎性反應(yīng)途徑,又稱為NAPK應(yīng)急信號(hào)通路。Yiqun Zhang等[15]也曾報(bào)道過,活化的TRAF6可通過結(jié)合轉(zhuǎn)接轉(zhuǎn)蛋ECSIT,作用于MAP-3的激酶MEKK-1,經(jīng)過P38進(jìn)一步刺激絲裂原活化蛋白激酶(MAPK),進(jìn)而激活c—Jun/Fos,最終引起免疫應(yīng)答。
近來的一些重要研究提示:TLR9信號(hào)通路不僅在感染誘導(dǎo)的炎癥損傷中起到作用,而且在自身免疫性糖尿病的發(fā)病中也起到重要作用。Wong等[17]將NOD小鼠的TLR3和TLR9兩個(gè)基因分別敲除,結(jié)果在TLR3缺如和雜合型NOD小鼠中,發(fā)病率無顯著性差異。然而TLR9缺如小鼠則較TLR9雜合子的NOD小鼠表現(xiàn)出明顯的保護(hù)作用。Zhang等[15]最近觀察到:單獨(dú)或聯(lián)合使用CpG寡脫氧核苷酸或CD40(共刺激分子)能激活致糖尿病性T細(xì)胞和誘發(fā)8.3-TCR轉(zhuǎn)基因鼠糖尿病的發(fā)病。而TLR9抑制肽段則阻滯了8.3-TCR轉(zhuǎn)基因鼠糖尿病的發(fā)病,氯喹(TLR受體阻滯劑)延緩了NOD鼠的糖尿病的發(fā)病,同時(shí)觀察到胰腺旁淋巴結(jié)中的DC的激活減少。
TLR9介導(dǎo)的免疫信號(hào)通路,幾乎是NF-κB依賴性的,NF-κB在炎癥介質(zhì)的產(chǎn)生和抗體釋放中起到至關(guān)重要的作用。CpG-DNA刺激TLR9-MyD88信號(hào)通路,導(dǎo)致IRAK和TRAF6的磷酸化,最終通過激活NF-κB起作用[14.15,16]。
綜上所述,CpGDNA/ODN激活TLR9后,哺乳動(dòng)物細(xì)胞內(nèi)的天然免疫應(yīng)答和適應(yīng)性免疫應(yīng)答均被激活,調(diào)節(jié)炎癥細(xì)胞因子的分泌,誘導(dǎo)機(jī)體產(chǎn)生以Th1型占優(yōu)勢(shì)的免疫應(yīng)答。但是,對(duì)于CpGODN/TLR9介導(dǎo)的細(xì)胞轉(zhuǎn)導(dǎo)通路的機(jī)制還有一些疑問,如與病毒感染密切相關(guān)的自身免疫性內(nèi)糖尿病是如何通過TLR9介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)改變細(xì)胞因子及共刺激分子表達(dá)、影響APCs功能,從而引起T細(xì)胞過度活化,產(chǎn)生針對(duì)自身抗原的T細(xì)胞,打破免疫耐受等具體機(jī)制還有待進(jìn)一步研究。相信隨著對(duì)TLR9信號(hào)通路研究的不斷深入,自身免疫性糖尿病的發(fā)病機(jī)制將會(huì)得到進(jìn)一步的闡明,必然會(huì)提高對(duì)該類糖尿病的預(yù)防和治療水平。
1 Lien E, Zipris D.The role of Toll-like receptor pathways in the mechanism of type 1 diabetes.Curr Mol Med,2009,9:52-68
2 Sorokina EV, Akhmatova NK, Skhodova SA.Influence of immunovac-VP-4 therapy on innate immunity effectors in patients with darier erythema annulare centrifugum.Zh Mikrobiol Epidemiol Immunobiol,2013, Nov-Dec(6):87-94.
3 Labzhinov PA, Svitich OA, Gankovskaia LV,et al.Evaluation of expression of innate immunity component genes in mice leukocytes under the effect of synthetic ligands in vivo.Zh Mikrobiol Epidemiol Immunobiol,2013,Nov-Dec(6):76-80.
4 Desnues B, Macedo AB, Roussel-Queval A,et al.Alexopoulou L.TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice.Proc Natl Acad Sci USA,2014,111(4):1497-1502.
5 Kenny EF, Quinn SR, Doyle SL, et al.Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.PLoS One,2013,8(8):e74103.
6 Darwiche SS, Ruan X, Hoffman MK, et al.Selective roles for toll-like receptors 2, 4, and 9 in systemic inflammation and immune dysfunction following peripheral tissue injury.J Trauma Acute Care Surg,2013,74(6):1454-1461.
7 Faust SM, Bell P, Cutler BJ, et al.CpG-depleted adeno-associated virus vectors evade immune detection.J Clin Invest,2013,123(7):2994-3001.
8 Abu-Rish EY, Amrani Y, Browning MJ.Toll-like receptor 9 activation induces expression of membrane-bound B-cell activating factor (BAFF) on human B cells and leads to increased proliferation in response to both soluble and membrane-bound BAFF.Rheumatology(Oxford),2013,52(7):1190-1201.
9 Raykov Z, Grekova SP, H rlein R, et al.TLR-9 contributes to the antiviral innate immune sensing of rodent parvoviruses MVMp and H-1PV by normal human immune cells.PLoS One,2013,8(1):e55086.
10 Montandon R, Korniotis S, Layseca-Espinosa E, et al.Innate pro-B-cell progenitors protect against type 1 diabetes by regulating autoimmune effector T cells.Proc Natl Acad Sci USA,2013,110(24):E2199-2208.
11 Han D, Cai X, Wen J, Matheson D,et al.Innate and adaptive immune gene expression profiles as biomarkers in human type 1 diabetes.Clin Exp Immunol,2012,170(2):131-138.
12 Zipris D.Toll-like receptors and type 1 diabetes.Adv Exp Med Biol,2010,654:585-610.
13 Zhang Y, Lee AS, Shameli A, et al.TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmun e diabetes.J Immun ol,2010,184(10):5645-5653.
14 Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists.Adv Drug Deliv Bey,2009,6l(3):195-204.
15 Yiqun Zhang, Andrew S.Lee,Afshin Shameli, et al.TLR9 Blockade Inhibits Activation of Diabetogenic CD8+T Cells and Delays Autoimmune Diabetes.The Journal of Immunology,2010,184:5645-5653
16 Ng MT, Van't HR, Crockett JC, et al.Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with Helicobacter pyloriinduced gastric disease.Infect Immun,2010,78(3):1345-1352
17 Wong F S, Hu C, Zhang L, et al.The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice.Ann N Y Acad Sci,2008,1150:146-148