萬(wàn)華+常珊
摘要:采用分子動(dòng)力學(xué)分別模擬了FoxO1和兩個(gè)不同的DNA序列IRE-DNA、DBE-DNA結(jié)合形成的復(fù)合物結(jié)構(gòu)。6 ns的分子動(dòng)力學(xué)模擬結(jié)果表明,FoxO1/DBE-DNA系統(tǒng)較FoxO1/IRE-DNA系統(tǒng)更穩(wěn)定,和試驗(yàn)中活性測(cè)試結(jié)果一致。兩個(gè)系統(tǒng)的氫鍵計(jì)算顯示,DBE-DNA在堿基Thy2、Gua3和Thy7′上和FoxO1形成了更多的高占有率的氫鍵,使得DBE-DNA和FoxO1結(jié)合得更加緊密。通過(guò)比較DNA構(gòu)象參數(shù),揭示了DNA序列在5′端小溝的壓縮以及3′端大溝的擴(kuò)張是有利于和FoxO1結(jié)合的優(yōu)勢(shì)構(gòu)象。為從原子水平上理解FoxO1的調(diào)控機(jī)理提供了一定的理論依據(jù)。
關(guān)鍵詞:FoxO1;DNA;分子動(dòng)力學(xué)模擬;大溝;小溝
中圖分類號(hào):Q51;Q52文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):0439-8114(2014)09-2184-05
Molecular Dynamics Simulations of the FoxO1-DNA Complexes
WAN Hua,CHANG Shan
(College of Informatics, South China Agricultural University,Guangzhou 510642, China)
Abstract:Molecular dynamics(MD) simulations were used to study two complex structures of FoxO1 binding with two different DNA elements IRE-DNA and DBE-DNA, respectively. The results of 6 ns MD simulations showed that the FoxO1/DBE-DNA system had higher stability compared with FoxO1/IRE-DNA system, which is consistent with the experimental data. By calculating the hydrogen bonds in the two systems, there were more hydrogen bonds with high occupancy formed between bases Thy2,Gua3,Thy7′ of DBE-DNA and the protein FoxO1. It contributed to higher stability of the FoxO1/DBE-DNA system. The comparison of DNA groove parameters showed that it is helpful to binding with the protein FoxO1 for compressing minor groove at 5′ end and expanding major groove at 3′ end. It will provide new insights into understanding the modulation of FoxO1-DNA affinity at atomic level.
Key words:FoxO1;DNA;molecular dynamics simulation;major groove; minor groove
FoxO蛋白是Fox家族的一個(gè)亞群,它們?cè)诓溉閯?dòng)物細(xì)胞的凋亡、應(yīng)激、細(xì)胞周期阻滯、DNA損傷/修復(fù)以及糖代謝調(diào)節(jié)中起著重要作用[1]。另外,小鼠基因敲除研究證明FoxOs也是腫瘤抑制因子[2]。作為FoxO蛋白家族的主要成員,FoxO1轉(zhuǎn)錄調(diào)節(jié)因子在動(dòng)物的生長(zhǎng)和肉品質(zhì)方面發(fā)揮著重要的作用,并可能是糖尿病等疾病的重要治療靶點(diǎn)[3,4]。FoxO1含有一段約100個(gè)氨基酸殘基組成的DNA結(jié)合域,此區(qū)域稱為FoxO1保守叉頭(forkhead)盒序列,也叫做帶翼螺旋(Winged helix)。FoxO1保守叉頭和不同DNA的復(fù)合物晶體結(jié)構(gòu)研究[5]揭示了FoxO1與不同DNA序列結(jié)合調(diào)節(jié)著FoxO1的活性。如圖1所示,FoxO1保守叉頭可以分別和IRE-DNA識(shí)別序列(5′-TTGTTTTG-3′)以及DBE-DNA識(shí)別序列(5′-TTGTTTAC-3′)形成穩(wěn)定的復(fù)合物結(jié)構(gòu)FoxO1/IRE-DNA和FoxO1/DBE-DNA。比較IRE-DNA和DBE-DNA,這兩個(gè)序列在第7和8號(hào)位點(diǎn)的堿基對(duì)不同,這導(dǎo)致了FoxO1對(duì)DBE-DNA的結(jié)合活性是對(duì)IRE-DNA結(jié)合活性的兩倍[5]。那么,FoxO1和不同的DNA序列結(jié)合導(dǎo)致活性差別的原因是什么,FoxO1保守叉頭和DNA之間具體形成了哪些穩(wěn)定的相互作用,DNA在結(jié)合位點(diǎn)上的構(gòu)象如何影響著與FoxO1蛋白的結(jié)合等問(wèn)題有待進(jìn)一步闡明。為探討以上問(wèn)題,本研究對(duì)FoxO1和IRE-DNA、DBE-DNA結(jié)合的復(fù)合物結(jié)構(gòu)進(jìn)行分子動(dòng)力學(xué)模擬研究,以深入理清FoxO1和DNA的相互作用機(jī)制。
1模擬方法
分別以FoxO1和DNA復(fù)合物的兩個(gè)晶體結(jié)構(gòu)(PDB代碼:3COA和3CO6)為初始結(jié)構(gòu)[5],采用VMD 1.9[6]軟件搭建兩個(gè)分子動(dòng)力學(xué)模擬(Molecular dynamics,MD)體系:FoxO1/IRE-DNA系統(tǒng)和FoxO1/DBE-DNA系統(tǒng)。每個(gè)初始結(jié)構(gòu)被放置在填充了TIP3P水分子的周期性立方盒子中心,距離水盒子邊界的最小距離大約10 ?魡。25Na+和24Na+分別被加到FoxO1/IRE-DNA和FoxO1/DBE-DNA系統(tǒng)中進(jìn)行電性中和。然后,使用NAMD 2.6軟件包[7]和CHARMM27[8]對(duì)核酸的全原子力場(chǎng),對(duì)兩個(gè)體系進(jìn)行MD模擬。SHAKE算法[9]用于約束鍵長(zhǎng),PME方法[10]用于計(jì)算靜電相互作用,非鍵相互作用的截?cái)嗑嚯x設(shè)為12 ?魡。每個(gè)模擬過(guò)程均包含3個(gè)步驟:①對(duì)體系進(jìn)行20 000步的能量最小化;②約束溶質(zhì)分子進(jìn)行0.5 ns的預(yù)平衡MD模擬,約束力常數(shù)為0.1 kcal/(mol·?魡2),這個(gè)階段對(duì)體系進(jìn)行緩慢升溫,溫度從0 K逐步升到310 K;③放開(kāi)約束,進(jìn)行6 ns的恒溫(310 K)恒壓(1 atm)平衡MD模擬,其中溫度和壓強(qiáng)采用Langevin piston[11]的方法控制。平衡MD模擬的積分步長(zhǎng)為2 fs,蛋白質(zhì)和DNA結(jié)構(gòu)坐標(biāo)每2.0 ps采樣1次,因此每個(gè)體系均收集了3 000個(gè)構(gòu)象用于分析。
2結(jié)果與分析
2.1整體結(jié)構(gòu)變化
首先檢查FoxO1/IRE-DNA和FoxO1/DBE-DNA兩個(gè)系統(tǒng)在6 ns 動(dòng)力學(xué)模擬中勢(shì)能隨時(shí)間的變化,兩個(gè)體系的勢(shì)能分別為-31 211 kJ/mol和-34 013 kJ/mol,對(duì)應(yīng)的標(biāo)準(zhǔn)差約為86 kJ/mol和92 kJ/mol,勢(shì)能波動(dòng)范圍均在0.27%左右,反映兩個(gè)體系的動(dòng)力學(xué)模擬是平穩(wěn)可靠的。被模擬結(jié)構(gòu)的穩(wěn)定性一般用方均根偏差(Root mean square deviation,RMSD)來(lái)測(cè)量。兩個(gè)系統(tǒng)中FoxO1蛋白和DNA的骨架原子相對(duì)于初始結(jié)構(gòu)的RMSD隨時(shí)間的變化見(jiàn)圖2。由圖2可以看出,兩個(gè)體系的RMSD均在3 ns 以后保持穩(wěn)定,因此3~6 ns 部分被作為平衡軌跡。計(jì)算平衡軌跡的RMSD,FoxO1/IRE-DNA系統(tǒng)中的FoxO1和IRE-DNA的RMSD分別收斂于2.3 ?魡和2.0 ?魡;FoxO1/DBE-DNA系統(tǒng)中的FoxO1和DBE-DNA的RMSD分別收斂于2.1 ?魡和1.8 ?魡。因此,FoxO1/DBE-DNA系統(tǒng)比FoxO1/IRE-DNA系統(tǒng)結(jié)合得更穩(wěn)定。FoxO1/IRE-DNA晶體結(jié)構(gòu)分辨率為2.2 ?魡,FoxO1/DBE-DNA晶體結(jié)構(gòu)分辨率為2.1 ?魡,同時(shí)試驗(yàn)結(jié)果表明FoxO1對(duì)DBE-DNA的結(jié)合活性大約是IRE-DNA的兩倍[5]。由此可見(jiàn),本研究的模擬結(jié)果和試驗(yàn)結(jié)果一致,故本研究的模擬結(jié)果是可靠的。
endprint
被模擬結(jié)構(gòu)的柔性一般用方均根漲落(Root mean square fluctuation,RMSF)來(lái)表示,它反映體系在模擬過(guò)程中相對(duì)于平均結(jié)構(gòu)所發(fā)生的構(gòu)象變化,殘基的RMSF越高則柔性越大。兩個(gè)體系平衡軌跡中蛋白FoxO1的Cα原子RMSF的分布和相關(guān)性見(jiàn)圖3。從圖3A可知,兩個(gè)體系中RMSF分布比較相似。RMSF相對(duì)較低的位置在Tyr165(N端)、Ser184~Tyr187(α2螺旋)、Asn211~Ser218(α3螺旋)、Ser235~Trp237(wing1)這幾個(gè)區(qū)域上,這可能是因?yàn)樵谶@幾個(gè)區(qū)域FoxO1蛋白和DNA形成了穩(wěn)定的相互作用,從而導(dǎo)致運(yùn)動(dòng)幅度降低。兩個(gè)體系中RMSF相對(duì)較高的位置基本分布在Ser175~Lys179(連接α1和α2螺旋的loop區(qū))、Lys198~Asn204(連接α3和α4螺旋的loop區(qū))、Glu229~Thr231(wing1)這幾個(gè)區(qū)域。值得注意是,和DBE-DNA結(jié)合的FoxO1的穩(wěn)定性比和IRE-DNA結(jié)合的要高(圖2A),同時(shí)和DBE-DNA結(jié)合的FoxO1的柔性比和IRE-DNA結(jié)合的也相對(duì)偏高(圖3A)。這可能是因?yàn)榈鞍祝疲铮希痹谝陨希欤铮铮饏^(qū)和wing1區(qū)的高柔性有利于幫助調(diào)整其DNA結(jié)合域上殘基的方位,從而更好地和DNA形成相互作用。兩個(gè)體系中蛋白FoxO1的RMSF的相關(guān)性比較見(jiàn)圖3B,其相關(guān)系數(shù)(R)達(dá)到0.8,表明兩個(gè)體系雖然在DNA識(shí)別序列的最后兩個(gè)堿基對(duì)的類型上有所不同(圖1),但蛋白FoxO1的運(yùn)動(dòng)性質(zhì)沒(méi)有發(fā)生根本性變化。
2.2氫鍵分析
分析蛋白FoxO1和DNA副鏈上形成的氫鍵對(duì)于在原子層面上理解FoxO1和DNA的相互作用非常重要。本研究中氫鍵計(jì)算的幾何判據(jù)為截?cái)嗑嚯x3.5 ?魡和截?cái)嘟嵌龋常怠悖郏保玻荩疲铮希保桑遥牛模危梁停疲铮希保模拢牛模危羶蓚€(gè)體系中氫鍵占有率在50%以上的成鍵情況見(jiàn)表1。兩個(gè)復(fù)合物體系中的氫鍵信息基本一致,蛋白FoxO1以下幾個(gè)殘基都和DNA相同位置上的堿基的磷酸基團(tuán)形成穩(wěn)定氫鍵:Tyr165(N端)、Tyr187(α2螺旋)、Ser218(α3螺旋)、Ser235/Trp237(wing1)。因?yàn)榈鞍祝疲铮希痹谶@幾個(gè)位點(diǎn)和DNA形成了穩(wěn)定的相互作用,因此在殘基RMSF分布圖中(圖2A),這幾個(gè)位置的RMSF基本都處于局部較小值。在FoxO1/IRE-DNA系統(tǒng)中,殘基Asn211和堿基Ade5′形成堿基特異性識(shí)別氫鍵;在FoxO1/DBE-DNA系統(tǒng)中,殘基His215和堿基Thy6形成堿基特異性識(shí)別氫鍵。以上證實(shí)了FoxO1蛋白的殘基Asn211和His215負(fù)責(zé)與DNA形成特異性識(shí)別相互作用。
值得注意的是,FoxO1/IRE-DNA系統(tǒng)僅形成了6個(gè)穩(wěn)定氫鍵,而FoxO1/DBE-DNA系統(tǒng)形成了9個(gè)穩(wěn)定氫鍵。通過(guò)氫鍵數(shù)量對(duì)比,很好地解釋了FoxO1/DBE-DNA系統(tǒng)相對(duì)FoxO1/IRE-DNA系統(tǒng)有較高的穩(wěn)定性。具體來(lái)講,和FoxO1/IRE-DNA比較,FoxO1/DBE-DNA的蛋白FoxO1和DNA序列的第2、3和7′號(hào)堿基上的磷酸骨架形成的氫鍵數(shù)目分別多出一個(gè)。在這3個(gè)堿基中,兩個(gè)系統(tǒng)僅在第7′號(hào)位點(diǎn)的堿基類型不同(FoxO1/DBE-DNA:Thy7′;FoxO1/IRE-DNA:Ade7′),因此,筆者認(rèn)為這兩個(gè)系統(tǒng)的穩(wěn)定性差異可能和第7'號(hào)的堿基類型改變是相關(guān)的,由此引起DNA骨架和蛋白FoxO1之間的結(jié)合緊密程度有所改變。
2.3DNA結(jié)合位點(diǎn)的構(gòu)象分析
DNA的構(gòu)象變化對(duì)于蛋白質(zhì)與DNA的識(shí)別和結(jié)合是非常關(guān)鍵的,而溝參數(shù)的變化經(jīng)常和蛋白質(zhì)與DNA之間的相互作用聯(lián)系在一起[13,14]。FoxO1-DNA復(fù)合物晶體研究[5]表明,蛋白FoxO1和DNA的1~4號(hào)堿基對(duì)的小溝發(fā)生相互作用,且和DNA的5~8號(hào)堿基對(duì)的大溝發(fā)生相互作用。因此,有必要分析DNA識(shí)別序列(1~8號(hào)堿基對(duì))在堿基層上的小溝和大溝的變化對(duì)與蛋白FoxO1結(jié)合的影響。本研究從FoxO1/IRE-DNA和FoxO1/DBE-DNA兩個(gè)系統(tǒng)的3~6 ns的平衡軌跡中每隔10 ps采樣一次,各抽取了300個(gè)DNA的結(jié)構(gòu)快照,然后分別計(jì)算每個(gè)系統(tǒng)中這300個(gè)DNA結(jié)構(gòu)在堿基上的大、小溝參數(shù)的平均值,結(jié)果見(jiàn)圖4。從圖4 A、B可以看出,DBE-DNA相對(duì)IRE-DNA在5′端(1~4號(hào)堿基對(duì))的小溝深度變化不大,但小溝寬度明顯下降。有研究表明,蛋白質(zhì)與DNA帶負(fù)電的磷酸骨架發(fā)生中和作用可以幫助DNA小溝的壓縮[15],這對(duì)于蛋白質(zhì)-DNA的相互結(jié)合非常重要。相對(duì)IRE-DNA,DBE-DNA在2、3號(hào)堿基的磷酸基團(tuán)和蛋白FoxO1上分別多形成了一個(gè)氫鍵,且都是和帶有正電的精氨酸(Arg)發(fā)生相互作用(表1)。這顯然更好地中和了DNA磷酸骨架的負(fù)電效應(yīng),所以DBE-DNA在5′端的小溝被壓縮是和蛋白FoxO1的骨架形成緊密結(jié)合的優(yōu)勢(shì)構(gòu)象。另外,由于DNA的3′端(5~8號(hào)堿基對(duì))是在大溝內(nèi)和蛋白FoxO1結(jié)合,因此研究DNA序列3′端的大溝變化顯得尤為重要。DBE-DNA在7、8號(hào)堿基對(duì)附近的大溝深度明顯小于IRE-DNA,且大溝寬度明顯大于IRE-DNA(圖4C、D)。從圖4D上可以發(fā)現(xiàn),這兩個(gè)系統(tǒng)均在5~6號(hào)堿基對(duì)上有最高的大溝寬度值。原因是IRE-DNA的5′號(hào)堿基和蛋白FoxO1形成了一個(gè)特異性識(shí)別氫鍵,DBE-DNA的6號(hào)堿基和蛋白FoxO1形成了特異性識(shí)別氫鍵。相應(yīng)的,IRE-DNA和DBE-DNA體系在5、6號(hào)堿基對(duì)上大溝寬度達(dá)到峰值。因而,相比IRE-DNA的構(gòu)象,DBE-DNA在3′端的大溝顯得更寬更淺,提供了更大的和蛋白FoxO1相互接觸的面積。這一點(diǎn)也可以從氫鍵分析中得到證實(shí),即FoxO1/DBE-DNA系統(tǒng)比FoxO1/IRE-DNA系統(tǒng)在7'位置上的堿基的磷酸骨架多形成了一個(gè)氫鍵。所以,DBE-DNA在3′端的大溝的擴(kuò)張更有利于和蛋白FoxO1結(jié)合??偟膩?lái)說(shuō),和IRE-DNA溝參數(shù)相比,DBE-DNA的溝參數(shù)在結(jié)合區(qū)域上顯示出更加有利于和蛋白FoxO1結(jié)合的DNA構(gòu)象。
3小結(jié)與討論
本研究采用分子動(dòng)力學(xué)模擬方法研究了FoxO1和DNA之間的相互作用機(jī)制。FoxO1/IRE-DNA和FoxO1/DBE-DNA兩個(gè)系統(tǒng)的RMSD比較表明,FoxO1/DBE-DNA系統(tǒng)更加穩(wěn)定,與試驗(yàn)中這兩個(gè)結(jié)構(gòu)的活性比較的結(jié)論是一致的,這表明本研究的模擬結(jié)果是可靠的。同時(shí),兩個(gè)系統(tǒng)的RMSF相比較,揭示了蛋白FoxO1的兩個(gè)loop區(qū)和wing1區(qū)的柔性對(duì)于和DNA的結(jié)合是有利的。氫鍵分析表明,FoxO1蛋白的殘基Asn211和His215可以和DNA形成特異性識(shí)別相互作用。與FoxO1/IRE-DNA比較, FoxO1/DBE-DNA系統(tǒng)中蛋白FoxO1和堿基Thy2、Gua3和Thy7'的磷酸骨架可以形成更多的相互作用,使得FoxO1和DBE-DNA序列更好地結(jié)合。此外,對(duì)比IRE-DNA序列,DBE-DNA在3'端的大溝更寬、更淺,且在5'端的小溝更窄,這種構(gòu)象更有利于DNA和FoxO1蛋白形成更多的相互作用。本研究的模擬對(duì)于進(jìn)一步探討FoxO1的調(diào)控機(jī)理以及和DNA分子的相互作用機(jī)制,對(duì)以后開(kāi)展動(dòng)物生產(chǎn)服務(wù)及為糖尿病等疾病的治療具有一定意義。
endprint
參考文獻(xiàn):
[1] GREER E L,BRUNET A. FOXO transcription factors at the interface between longevity and tumor suppression[J]. Oncogene,2005,24(50):7410-7425.
[2] PAIK J H,KOLLIPARA R,CHU G,et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis[J].Cell,2007,128(2):309-323.
[3] HASHIMOTO N,KIDO Y,UCHIDA T,et al. Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass[J].Nat Genet,2006,38(5):589-593.
[4] OKADA T,LIEW C W,HU J,et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance[J]. Proc Natl Acad Sci USA,2007,104(21):8977-8982.
[5] BRENT M M,ANAND R,MARMORSTEIN R,et al. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification[J].Structure,2008,16(9):1407-1416.
[6] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J].J Mol Graphics,1996,14(1):33-38.
[7] PHILLIPS J C,BRAUN R,WANG W,et al. Scalable molecular dynamics with NAMD[J].J Comput Chem,2005,26(16):1781-1802.
[8] VANOMMESLAEGHE K,HATCHER E,ACHARYA C,et al. CHARMM general force field:A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J].J Comput Chem,2010,31(4):671-690.
[9] RYCKAERT J P,CICCOTTI G,BERENDSEN H J C. Numerical Integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes[J].J Comput Phys,1997,23(3):327-341.
[10] DARDEN T,YORK D,PEDERSEN L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems[J].J Comput Phys,1993,98(12):10089-10092.
[11] HATANO T,SASA S.Steady-state thermodynamics of Langevin systems[J]. Phys Rev Lett,2001,86(16):3463-3466.
[12] WAN H,HU J P,TIAN X H,et al. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d[J]. Phys Chem Chem Phys,2013, 15(4):1241-1251.
[13] PRABAKARAN P,SIEBERS J G,AHMAD S,et al. Classification of protein-DNA complexes based on structural descriptors[J]. Structure,2006,14(9):1355-1367.
[14] CHENOWETH D M,DERVAN P B. Allosteric modulation of DNA by small molecules[J]. Proc Natl Acad Sci USA, 2009, 106(32):13175-13179.
[15] HANCOCK S P,GHANE T,CASCIO D,et al. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group[J]. Nucleic Acids Res,2013,41(13):6750-6760.
endprint
參考文獻(xiàn):
[1] GREER E L,BRUNET A. FOXO transcription factors at the interface between longevity and tumor suppression[J]. Oncogene,2005,24(50):7410-7425.
[2] PAIK J H,KOLLIPARA R,CHU G,et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis[J].Cell,2007,128(2):309-323.
[3] HASHIMOTO N,KIDO Y,UCHIDA T,et al. Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass[J].Nat Genet,2006,38(5):589-593.
[4] OKADA T,LIEW C W,HU J,et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance[J]. Proc Natl Acad Sci USA,2007,104(21):8977-8982.
[5] BRENT M M,ANAND R,MARMORSTEIN R,et al. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification[J].Structure,2008,16(9):1407-1416.
[6] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J].J Mol Graphics,1996,14(1):33-38.
[7] PHILLIPS J C,BRAUN R,WANG W,et al. Scalable molecular dynamics with NAMD[J].J Comput Chem,2005,26(16):1781-1802.
[8] VANOMMESLAEGHE K,HATCHER E,ACHARYA C,et al. CHARMM general force field:A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J].J Comput Chem,2010,31(4):671-690.
[9] RYCKAERT J P,CICCOTTI G,BERENDSEN H J C. Numerical Integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes[J].J Comput Phys,1997,23(3):327-341.
[10] DARDEN T,YORK D,PEDERSEN L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems[J].J Comput Phys,1993,98(12):10089-10092.
[11] HATANO T,SASA S.Steady-state thermodynamics of Langevin systems[J]. Phys Rev Lett,2001,86(16):3463-3466.
[12] WAN H,HU J P,TIAN X H,et al. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d[J]. Phys Chem Chem Phys,2013, 15(4):1241-1251.
[13] PRABAKARAN P,SIEBERS J G,AHMAD S,et al. Classification of protein-DNA complexes based on structural descriptors[J]. Structure,2006,14(9):1355-1367.
[14] CHENOWETH D M,DERVAN P B. Allosteric modulation of DNA by small molecules[J]. Proc Natl Acad Sci USA, 2009, 106(32):13175-13179.
[15] HANCOCK S P,GHANE T,CASCIO D,et al. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group[J]. Nucleic Acids Res,2013,41(13):6750-6760.
endprint
參考文獻(xiàn):
[1] GREER E L,BRUNET A. FOXO transcription factors at the interface between longevity and tumor suppression[J]. Oncogene,2005,24(50):7410-7425.
[2] PAIK J H,KOLLIPARA R,CHU G,et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis[J].Cell,2007,128(2):309-323.
[3] HASHIMOTO N,KIDO Y,UCHIDA T,et al. Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass[J].Nat Genet,2006,38(5):589-593.
[4] OKADA T,LIEW C W,HU J,et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance[J]. Proc Natl Acad Sci USA,2007,104(21):8977-8982.
[5] BRENT M M,ANAND R,MARMORSTEIN R,et al. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification[J].Structure,2008,16(9):1407-1416.
[6] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J].J Mol Graphics,1996,14(1):33-38.
[7] PHILLIPS J C,BRAUN R,WANG W,et al. Scalable molecular dynamics with NAMD[J].J Comput Chem,2005,26(16):1781-1802.
[8] VANOMMESLAEGHE K,HATCHER E,ACHARYA C,et al. CHARMM general force field:A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J].J Comput Chem,2010,31(4):671-690.
[9] RYCKAERT J P,CICCOTTI G,BERENDSEN H J C. Numerical Integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes[J].J Comput Phys,1997,23(3):327-341.
[10] DARDEN T,YORK D,PEDERSEN L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems[J].J Comput Phys,1993,98(12):10089-10092.
[11] HATANO T,SASA S.Steady-state thermodynamics of Langevin systems[J]. Phys Rev Lett,2001,86(16):3463-3466.
[12] WAN H,HU J P,TIAN X H,et al. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d[J]. Phys Chem Chem Phys,2013, 15(4):1241-1251.
[13] PRABAKARAN P,SIEBERS J G,AHMAD S,et al. Classification of protein-DNA complexes based on structural descriptors[J]. Structure,2006,14(9):1355-1367.
[14] CHENOWETH D M,DERVAN P B. Allosteric modulation of DNA by small molecules[J]. Proc Natl Acad Sci USA, 2009, 106(32):13175-13179.
[15] HANCOCK S P,GHANE T,CASCIO D,et al. Control of DNA minor groove width and Fis protein binding by the purine 2-amino group[J]. Nucleic Acids Res,2013,41(13):6750-6760.
endprint