凌小明 趙曉東 李軍敏 呂 濤
(成都地質(zhì)礦產(chǎn)研究所,四川 成都 610081)
車盤向斜南東翼鋁土礦鈧特征及綜合利用前景
凌小明 趙曉東 李軍敏 呂 濤
(成都地質(zhì)礦產(chǎn)研究所,四川 成都 610081)
以重慶車盤向斜南東翼鋁土礦含礦巖系為研究對象,通過電感耦合等離子體質(zhì)譜法對41個樣品的主量、微量元素進(jìn)行了分析測試,探討了鈧的分布特征。研究發(fā)現(xiàn):鈧在鋁土礦礦體及各巖石類型中的品位變化系數(shù)為50,屬于不均勻的分布,在礦層底板鐵質(zhì)黏土巖中含量較高,頂板黏土巖次之;總體來說,含量高低與礦體厚度無關(guān);鈧常與鐵和鎂等元素發(fā)生類質(zhì)同像置換,鈧含量與Al、w(Al2O3)/w(SiO2)、SiO2均無相關(guān)性。從車盤向斜南東翼鋁土礦含礦巖系Sc含量來看,大多已達(dá)到綜合利用品位要求,初步選礦試驗表明,在高鐵鋁土礦焙燒—化學(xué)預(yù)脫硅—拜爾法工藝與高硫鋁土礦浮選脫硫—浮選脫硅—拜爾法工藝中,獲取的鈧初步富集物可經(jīng)過除雜得到高純氧化鈧產(chǎn)品,鈧回收率基本大于95%。因此,在生產(chǎn)鋁土礦的同時,可試驗回收伴生鈧。
鈧 分布特征 綜合利用 鋁土礦 車盤向斜
鈧是一種典型的稀散元素,自然界中Sc的獨立礦物較為稀少,主要分散于其他礦物中。由于Sc及其化合物具有很多優(yōu)異性能,在冶金、電子工業(yè)、化工等重要領(lǐng)域已有廣泛應(yīng)用。目前鈧的主要來源是在鋁土礦赤泥中提取鈧或生產(chǎn)鈧的合金,讓原本當(dāng)成廢渣扔掉的赤泥得到了一定程度上的綜合回收利用[1]。
重慶市鋁土礦資源豐富,地質(zhì)研究資料[2-3]表明,主要有用組分中普遍含有鈧,并可作為伴生組分綜合回收利用,成為鈧的工業(yè)來源之一。黔北鋁土礦[4-5]、黔中鋁土礦[6]、豫西鋁土礦[7-9]等在伴生元素方面都做了大量的研究工作,對重慶鋁土礦中伴生的鈧元素也有一些研究[10],以期為重慶鋁土礦及伴生元素的綜合利用提供理論依據(jù)。
重慶車盤向斜南東翼鋁土礦大地構(gòu)造位置位于上揚(yáng)子地塊區(qū)[11],處于黔西北構(gòu)造帶內(nèi)[12],屬揚(yáng)子準(zhǔn)地臺上揚(yáng)子臺坳渝東南陷褶束七曜山凹褶束之區(qū)域次級構(gòu)造車盤向斜南東翼。出露地層均為沉積巖。
含礦巖系位于中二疊統(tǒng)梁山組(P2l)炭質(zhì)頁巖之下[13],呈假整合超覆于志留系中統(tǒng)韓家店組(S2h)粉砂質(zhì)頁巖或黃龍組C2h灰?guī)r之上。含礦巖系上部及底部以黏土巖為主,鋁土礦一般分布在含礦巖系中上部。
本次在車盤向斜南東翼探槽工程CTC025、CTC013、CTC010、CTC009、CTC007、CTC005中采集樣品共41件,由國土資源部西南礦產(chǎn)資源監(jiān)督檢測中心完成薄片制樣、樣品粉碎和常量元素測試工作,測試依據(jù)為DZ/T 0223—2001,儀器設(shè)備為高分辨等離子質(zhì)譜儀(Element2),測試溫度為20±1℃,濕度為50%。微量測試分析工作由中國科學(xué)院地球化學(xué)研究所礦床地球化學(xué)國家重點研究室完成,所用儀器為加拿大PerkinElmer公司制造的四級桿型電感耦合等離子體質(zhì)譜儀(Q-ICP-MS),型號為ELAN DRC-e。部分元素含量見表1。
表1 主要成分及Sc含量分析結(jié)果
Table 1 Analysis result of major elements and Sc %
樣品編號巖 性真厚/m主要成分及Sc含量SiO2Al2O3Fe2O3TiO2Scw(Al2O)3/w(SiO2)CTC025-5HF黏土巖1.2241.8835.646.121.8418.60.85CTC025-8HF黏土巖0.7944.5739.290.591.063.890.88CTC013-2HF黏土巖0.3537.3231.528.781.3422.20.84CTC013-4HF黏土巖0.6341.6536.53.991.7219.40.88CTC013-6HF黏土巖0.9943.3437.922.41.5614.90.87CTC013-7HF黏土巖0.6344.2838.510.511.314.270.87CTC013-8HF黏土巖1.9043.4137.670.623.629.770.87CTC009-3HF黏土巖0.7843.2838.170.851.668.930.88CTC009-8HF黏土巖0.3941.8238.41.71.0125.30.92CTC007-4HF黏土巖1.4243.8839.941.660.05411.60.91CTC007-7HF黏土巖1.263935.486.381.7826.90.91CTC005-8HF黏土巖2.4843.0639.70.681.989.160.92CTC005-2HF黏土巖0.6270.2111.766.180.5310.90.17CTC010-6HF黏土巖0.5841.7237.13.073.0612.20.89CTC009-4HF黏土巖2.2441.8240.750.481.817.720.97CTC025-7HF黏土巖2.9542.8236.634.491.6318.70.86CTC025-2HF鐵質(zhì)黏土巖0.2932.2526.4622.540.9923.50.82CTC025-4HF鐵質(zhì)黏土巖0.2221.1221.0925.790.6630.91.00CTC005-3HF鐵質(zhì)黏土巖1.0940.2832.86.471.7330.30.81CTC005-4HF鐵質(zhì)黏土巖0.4722.3122.1412.980.9222.40.99CTC005-5HF鐵質(zhì)黏土巖1.4022.2124.1310.771.2430.31.09CTC007-2HF鐵質(zhì)黏土巖4.1036.8533.4211.831.5321.30.91CTC009-2HF鐵質(zhì)黏土巖1.0722.8923.7411.540.6320.11.04CTC013-5HF鐵質(zhì)黏土巖0.4228.9625.5428.251.0240.60.88CTC013-3HF鐵質(zhì)黏土巖0.4923.9424.1314.540.8231.01CTC010-3HF鐵質(zhì)黏土巖0.7841.4736.293.921.7215.70.88CTC010-4HF鐵質(zhì)黏土巖0.3924.7423.9711.290.8526.30.97CTC010-5HF鐵質(zhì)黏土巖0.2631.127.5218.561.22400.88CTC009-6HF鋁土質(zhì)黏土巖2.1530.1849.990.882.4217.91.66CTC010-7HF鋁土質(zhì)黏土巖0.3932.8244.073.632.0213.71.34CTC025-6HF1鋁土質(zhì)黏土巖0.4321.5423.6821.10.91301.10CTC005-9HF鋁土質(zhì)黏土巖0.4732.5939.49.411.8346.21.21CTC009-5HF豆?fàn)钿X土礦0.591.9477.330.455.127.1839.86CTC009-7HF豆?fàn)钿X土礦0.7823.553.983.441.5322.62.30CTC007-6HF鋁土礦2.2911.869.120.81.7719.85.86CTC007-4HF2鋁土礦0.127.4449.713.772.426.71.81CTC025-1HF粉砂質(zhì)頁巖4.3966.3216.026.570.7312.90.24CTC005-1HF粉砂質(zhì)頁巖1.5564.8716.574.980.7616.40.26CTC010-1HF粉砂質(zhì)頁巖0.7867.1815.783.040.7311.80.23CTC013-1HF亮晶灰?guī)r1.692.021.531.310.0472.480.76CTC010-2HF亮晶灰?guī)r4.791.010.460.220.0151.140.46
注:Sc的含量單位為10-6。
3.1 鈧的含量變化系數(shù)
根據(jù)樣品分析數(shù)據(jù),鈧在含礦巖系中含量為(3.89~46.2)×10-6,平均為20.36×10-6。鈧品位變化系數(shù)為50,屬于不均勻的變化,在含礦巖系中不均勻分布。
3.2 鈧含量與鋁土礦礦體厚度的關(guān)系
以鋁土礦中Al2O3含量大于40%、w(Al2O3)/w(SiO2) 大于1.8的樣品統(tǒng)稱為鋁土礦[14],根據(jù)礦體厚度統(tǒng)計,經(jīng)計算礦體厚度變化系數(shù)為46,屬不均勻變化。礦體厚度與Sc含量關(guān)系見圖3,從圖中可看出,二者關(guān)系毫無規(guī)律而言。
圖1 各工程礦體厚度與Sc含量關(guān)系Fig.1 The relations of engineering orebody thickness and Sc content
3.3 鈧在各類巖石中的分布特征
本次所取41個樣品中,主要為黏土巖、鐵質(zhì)黏土巖、鋁土質(zhì)黏土巖、鋁土礦、粉砂質(zhì)頁巖、亮晶灰?guī)r。
黏土巖中,Sc含量為(3.89~26.9)×10-6,平均為14.03×10-6,變化系數(shù)為51;鐵質(zhì)黏土巖中,Sc含量為(15.7~40.6)×10-6,平均為27.03×10-6,變化系數(shù)為28;鋁土質(zhì)黏土巖中,Sc含量為(13.70~46.2)×10-6,平均為26.95×10-6,變化系數(shù)為54;鋁土礦中,Sc含量為(7.8~26.7)×10-6,平均為19.07×10-6,變化系數(shù)為44;粉砂質(zhì)頁巖中,Sc含量為(11.8~16.4)×10-6,平均為13.7×10-6,變化系數(shù)為18;亮晶灰?guī)r中,Sc含量為(1.14~2.48)×10-6,平均為1.81×10-6,變化系數(shù)為52。除鋁土礦、鐵質(zhì)黏土巖及粉砂質(zhì)頁巖中Sc均勻變化外,其余各巖石均屬不均勻變化。鈧含量最高的是鐵質(zhì)黏土巖,最低的是亮晶灰?guī)r。
3.4 鈧與部分元素相關(guān)性
由于鈧與鋁具有相似的物理和化學(xué)性質(zhì),鈧在沉積時以離子吸附的形式賦存在于富鋁礦物和鋁土礦的原始物質(zhì)中。鈧與鐵和鎂地球化學(xué)性質(zhì)相似,由Sc與Fe2O3相關(guān)系數(shù)為0.643來看,Sc與Fe發(fā)生類質(zhì)同像置換的可能性較大[15-16],鈧與Sn、Ti、Zr、Nb、Ta、W、In的原子價和離子半徑也相似,因此鈧在鋁土礦中富集時,受其他性質(zhì)相似元素干擾,導(dǎo)致鋁與鈧含量并無相關(guān)性。
近年來,隨著鈧應(yīng)用研究不斷深入,已成功應(yīng)用于國防、軍工、航天等尖端技術(shù)領(lǐng)域及民用。據(jù)不完全統(tǒng)計,2006年世界Sc2O3總銷量約980 kg,我國在國內(nèi)外市場的銷售量約250 kg(其中出口為70.0 kg,國內(nèi)消費約180 kg),占世界總銷量的25.5%,主要出口日本、美國及歐洲等[1]。
鋁土礦資源一直是極其重要的戰(zhàn)略資源之一,在各種有色金屬資源中居重要地位。我國目前對鋁土礦伴生Sc暫無工業(yè)品位要求,Sc的國外回收工業(yè)品位一般為(20~50)×10-6[17]。從車盤向斜南東翼鋁土礦含礦巖系Sc含量來看,大多已達(dá)到綜合利用品位。初步選礦試驗表明[3],利用高鐵鋁土礦焙燒—化學(xué)預(yù)脫硅—拜爾法工藝,預(yù)脫硅產(chǎn)品拜爾法溶出后,鈧有96%以上進(jìn)入赤泥,赤泥中的鈧對原礦回收率為94.4%;利用高硫鋁土礦浮選脫硫—浮選脫硅—拜爾法工藝,精礦拜爾法溶出過程中,精礦的鈧有98.6%以上進(jìn)入赤泥,鈧含量為82×10-6,赤泥中的鈧對原礦回收率為68%。上述2種方法獲取的鈧初步富集物可經(jīng)過除雜,得到高純氧化鈧產(chǎn)品,這部分工藝較成熟,鈧回收率基本大于95%。因此,在生產(chǎn)鋁土礦的同時,可試驗回收伴生鈧。
(1)研究區(qū)含礦巖系中鈧含量在鋁土礦、鐵質(zhì)黏土巖及粉砂質(zhì)頁巖中屬均勻變化,在其余巖石類型中均屬不均勻變化,與礦體厚度無關(guān)。
(2)鈧含量與Al、w(Al2O3)/w(SiO2)沒有明顯相關(guān)性,與鐵、鎂等元素化學(xué)性質(zhì)和離子半徑相近,常發(fā)生類質(zhì)同像置換,因此礦層底板含量較高,頂板次之。
(3)初步選礦試驗表明,高鐵鋁土礦焙燒—化學(xué)預(yù)脫硅—拜爾法工藝與高硫鋁土礦浮選脫硫—浮選脫硅—拜爾法工藝獲取的鈧初步富集物可經(jīng)過除雜得到高純氧化鈧產(chǎn)品,鈧回收率基本大于95%。因此,在生產(chǎn)鋁土礦的同時,可試驗回收伴生鈧。
[1] 林河成.我國氧化鈧的生產(chǎn)、應(yīng)用及市場[J].稀土,2009,30(1):99-104. Lin Hecheng.The production,application and market of scandium[J].Chinese Rare Earths,2009,30(1):99-104.
[2] 地質(zhì)礦產(chǎn)勘查開發(fā)局107地質(zhì)隊.重慶武隆、南川孫家山鋁土礦區(qū)伴生稀有、稀散、稀土元素評價報告[R].重慶:地質(zhì)礦產(chǎn)勘查開發(fā)局107地質(zhì)隊,2005. 107 Geological Team of Geology and Mineral Resources Development Bureau.The Evaluation Geological Report of Rare Elements in Chongqing Wulong and Nanchuan[R].Chongqing:107 Geological Team of Teology and Mineral Resources Development Bureau,2005.
[3] 中國地質(zhì)調(diào)查局成都地質(zhì)調(diào)查中心,中國地質(zhì)科學(xué)院礦產(chǎn)綜合利用研究所,重慶市地質(zhì)調(diào)查院,等.重慶市大佛巖、吳家灣、申基坪鋁土礦區(qū)鋁土礦伴生鈧、鋰、鎵綜合評價地質(zhì)報告[R].成都:中國地質(zhì)調(diào)查局成都地質(zhì)調(diào)查中心,2011. Chengdu Institute of Geology and Mineral Resources,Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences Chongqing Institute of Geological Survey,et al.The Evaluation Geological Report of Associate Scandium,Lithium,Gallium in Chongqing Dafuyan、Wujiawan and Shenjiping bauxite[R].Chengdu:Chengdu Institute of Geology and Mineral Resources,2011.
[4] 葉 霖,潘自平,程曾濤.貴州修文小山壩鋁土礦中鎵等伴生元素分布規(guī)律研究[J].礦物學(xué)報,2008,28(2):105-111. Ye Lin,Pan Ziping,Cheng Zengtao.The regularities of distribution of associated elements in Xiaoshanba bauxite deposit,Guizhou[J].Acta Mineralogica Sinica,2008,28(2):105-111.
[5] 魯方康,黃智龍,金中國,等.黔北務(wù)—正—道地區(qū)鋁土礦鎵含量特征與賦存狀態(tài)初探[J].礦物學(xué)報,2009,29(3):373-379. Lu Fangkang,Huang Zhilong,Jin Zhongguo,et al.A primary study on the content features and occurrence states of gallium in bauxite from the Wuchuan-Zhengan-Daozhen area,northern Guizhou province[J].Acta Mineralogica Sinica,2009,29(3):373-379.
[6] 張源有.豫西鋁土礦物質(zhì)來源和化學(xué)沉積分異作用[J].地質(zhì)與勘探,1982(10):1-9. Zhang Yuanyou.Material sources and chemical sedimentary differentiation in auxite deposits in the western area of Henan province[J].Geology and Prospecting,1982(10):1-9.
[8] 吳國炎.微量元素分析在豫西鋁土礦成因研究中的應(yīng)用嘗試[J].輕金屬,1990(6):8-12. Wu Guoyan.The attempt application about trace elements analysis of genetic study in bauxite deposit in western Henan[J].Light Metals,1990 (6):8-12.
[9] 湯艷杰,賈建業(yè),劉建朝.豫西地區(qū)鋁土礦中鎵的分布規(guī)律研究[J].礦物巖石,2002,22(1):15-20. Tang Yanjie,Jia Jianye,Liu Jianchao.Study on distribution laws of gallium in bauxite deposits in the western area of Henan province[J].Journal of Mineralogy and Petrology,2002,22(1):15-20.
[10] 陳 陽,程 軍,任世聰,等.渝南大佛巖鋁土礦伴生鎵的分布規(guī)律研究[J].稀有金屬,2013,37(1):140-148. Chen Yang,Cheng Jun,Ren Shicong et al,Distribution of Ga in Dafoyan bauxite mining area,southern Chongqing[J].Chinese Journal of Rare Metal,2013,37(1):140-148.
[11] 潘桂堂,肖慶輝,陸松年,等.中國大地構(gòu)造單元劃分[J].中國地質(zhì),2009,36(1):1-28. Pan Guitang,Xiao Qinghui,Lu Songnian,et al.Subdivision of tectonic units in China[J].Geology in China,2009,36(1):1-28.
[12] 萬桂梅,湯良杰,郭彤樓,等.黔中隆起及鄰區(qū)分帶性變形特征[J].地質(zhì)學(xué)報,2008,82(3):317. Wan Guimei,Tang liangjie,Guo Tonglou,et al. Zonation of Qianzhong(central Guizhou) uplift and its adjacent areas[J].Acta Geological Sinica,2008,82(3):317.
[13] 李軍敏,尹福光,陳 陽,等.渝南大佛巖礦區(qū)鋁土巖系炭質(zhì)頁巖孢粉組合特征及其意義[J].古生物學(xué)報,2012,51(4):508-514. Li Junmin,Yin Fuguang,Chen Yang,et al.Characteristics and significance of spore-polen assemblage in carbonaceous shale in bauxite deposit of the Dafoyan area,southern Chongqing[J].Acta Palaeontologica Sinica,2012,51(4):508-514.
[14] 全國礦產(chǎn)儲量委員會.礦產(chǎn)工業(yè)要求參考手冊[M].北京:地質(zhì)出版社,1987. National Commission of Mineral Reserves.Reference Manual of Mineral Industry Requirements[M].Beijing:Geological Publishing House,1987.
[15] 宋學(xué)信.鈧的地球化學(xué)與鐵礦石成因[J].礦產(chǎn)地質(zhì),1982(2):53-57. Song Xuexin.Geochemistry and iron ore genesis[J].Geology and Mineral Resources,1982(2):53-57.
[16] 薛步高.鈧礦資料[J].云南地質(zhì),2010,29(3):371-373. Xue Bugao.Scandium mineral materials[J].Yunnan Geology,2010,29(3):371-373.
[17] 趙運(yùn)發(fā),元小衛(wèi),王智勇,等.山西鋁土礦稀有稀土元素綜合利用評價[J].世界有色金屬,2004(6):35-37. Zhao Yunfa,Yuan Xiaowei,Wang Zhiyong,et al.Comprehensive utilization and evaluation of rare and rare earth elements in Shanxi bauxite[J].World Nonferrous Metals,2004(6):35-37.
(責(zé)任編輯 鄧永前)
Characteristics and Comprehensive Utilization Prospect of Scandium in Bauxite Mine in Southeast Wing of Chepan Syncline
Ling Xiaoming Zhao Xiaodong Li Junmin Lu Tao
(ChengduInstituteofGeologyandMineralResourcesofMinistryofLandandResources,Chengdu610081,China)
Taking the ore-bearing rock series of Bauxite in southeast wing of Chepan syncline of Chongqing as research object,the main content and trace elements of 41 samples were analyzed by adopting the inductively coupled plasma emission spectroscopy method and the distribution characteristics of scandium was discussed.The research results showed that the grade variation coefficient of scandium in bauxite and the rock types is 50,which are unevenly distributed.Then content of scandium in iron clay rock of seam floor is higher,following by the clay rock roof.In general,the content of scandium has no relationship with the ore-body thickness.Scandium often replaces iron and magnesium and other elements as isomorphous form.There has no correlation between scandium content and Al,w(Al2O3)/w(SiO2),SiO2.According to the content of Sc in ore bearing rock series in bauxite in southeast wing of Chepan syncline,most of them reach the comprehensive utilization grade.The preliminary beneficiation experiment results show that the impurities can be removed from the preliminary enrichment so as to obtain high purity scandium oxide,and recovery of scandium is basically higher than 95% by adopting the process of high iron bauxite roasting,chemical pre-desilication,Bayer process with flotation desulfurization of high sulfur bauxite,flotation desilication and Bayer process.Therefore,the associated scandium can be recovered during production of bauxite.
Sc,Distribution characteristics,Integrated utilization,Bauxite,Chepan syncline
2013-11-02
渝東地區(qū)地質(zhì)構(gòu)造演化及鐵鋁基地研究項目(編號:1212011085167)。
凌小明(1975—),男,工程師。
P618.11,TE112
A
1001-1250(2014)-01-088-04