王亞平+張寧
作者簡介: 王亞平(1975—),女,江西南昌人,副研究員,博士,研究方向?yàn)槲淦飨到y(tǒng)仿真和優(yōu)化,(Email)zykdou@163.com0引言
現(xiàn)代軍事戰(zhàn)略的需求和科學(xué)技術(shù)的發(fā)展對(duì)步槍性能的要求越來越高,促使現(xiàn)代步槍不斷地更新?lián)Q代.提高步槍的射擊頻率及命中概率是改善步槍性能的主要技術(shù)措施,也是世界各國輕武器界長期以來不懈努力的目標(biāo).理論上,高射頻可大大提高對(duì)移動(dòng)目標(biāo)的命中概率,主要是因?yàn)閺椡璧竭_(dá)目標(biāo)的時(shí)間和目標(biāo)移動(dòng)時(shí)間的比值增大.高射頻僅考慮彈丸外彈道方面,沒有考慮射手的影響因素.作為手持武器,人為因素是不可忽略的.實(shí)際上對(duì)考慮人體的槍口響應(yīng),學(xué)者們[14]也做過很多分析,但是較側(cè)重于人體模型的建立,沒有對(duì)各種因素的影響進(jìn)行深入分析.文獻(xiàn)[1]對(duì)一種射擊頻率下的點(diǎn)射(小于3發(fā))情況進(jìn)行分析.實(shí)際上,不同的射擊頻率與點(diǎn)射發(fā)數(shù)的影響規(guī)律不同,因此本文基于人體被動(dòng)態(tài)模型,進(jìn)行射頻對(duì)槍口響應(yīng)影響的深入分析,考慮設(shè)計(jì)參數(shù)之間的耦合關(guān)系,進(jìn)行不同設(shè)計(jì)參數(shù)的影響分析,并進(jìn)行參數(shù)的動(dòng)力學(xué)靈敏度分析及優(yōu)化.
1人體肌肉及人槍系統(tǒng)模型
人體與槍械的相互作用有被動(dòng)態(tài)與主動(dòng)態(tài)2種方式:被動(dòng)態(tài)響應(yīng)不考慮人體的主動(dòng)反應(yīng),模型簡單,但只能考慮300 ms以內(nèi)的情況,即步槍單發(fā)或點(diǎn)射的情況;主動(dòng)態(tài)也稱有控響應(yīng),充分體現(xiàn)射手的主觀作用,考慮人體中樞神經(jīng)的響應(yīng)和人體四肢的調(diào)節(jié)作用.主動(dòng)態(tài)模型可以考慮連發(fā)射擊精度, 但模型復(fù)雜[2],而且不同水平射手的主動(dòng)控制能力也不一樣.高射頻發(fā)射對(duì)彈藥消耗量較大,通常只在前幾發(fā)采用高頻點(diǎn)射方式,在此過程中人體還處于被動(dòng)響應(yīng)態(tài),故本文采用人體被動(dòng)態(tài)模型進(jìn)行研究.
在士兵握持步槍進(jìn)行射擊的過程中,人體的受力、槍械的運(yùn)動(dòng)和載荷情況都非常復(fù)雜.針對(duì)本文的分析目標(biāo)要求,采用與文獻(xiàn)[3]相同簡化假設(shè)建立人槍仿真模型.依據(jù)Hanavan人體模型,采用多體動(dòng)力學(xué)方法,將人體各部分考慮為剛體,各關(guān)節(jié)處采用柔性聯(lián)接,在人體與槍械的接觸部分采用彈性連接模擬肌肉接觸.
人體的肌肉形狀復(fù)雜,通過復(fù)雜的電化學(xué)過程由中樞神經(jīng)系統(tǒng)激活,隨人體運(yùn)動(dòng)做非線性的變形運(yùn)動(dòng),符合人體力學(xué)原理和運(yùn)動(dòng)規(guī)律.目前采用較多的數(shù)值模擬方法[4]有彈簧阻尼模型、基于有限元的生物力學(xué)模型、基于物理特性的物體變形方法和基于彈性網(wǎng)絡(luò)的肌肉模型等.基于生物力學(xué)和物理特性的肌肉模型雖然比較逼真,但是涉及到復(fù)雜的動(dòng)力學(xué)分析和有限元計(jì)算,難以應(yīng)用到實(shí)時(shí)計(jì)算當(dāng)中.彈簧阻尼模型最簡單,誤差相對(duì)較大.對(duì)于槍械發(fā)射過程,主要考慮槍體與人體肌肉的碰撞問題,可以忽略人體對(duì)肌肉的控制,因此本文采用彈簧阻尼模型,其中人體肌肉剛度和阻尼系數(shù)的確定,采用實(shí)驗(yàn)系統(tǒng)辨識(shí)的方法[4]求得.一般剛度的量級(jí)可取為105 N/m,阻尼的量級(jí)可取為102 N?s/m.
另外,對(duì)于槍械射擊過程,可以只考慮槍體與人體接觸部位的肌肉,不考慮肌肉對(duì)骨骼的作用力,因此將人體肌肉的驅(qū)動(dòng)力直接簡化為人體關(guān)節(jié)的驅(qū)動(dòng)力,采用逆向動(dòng)力學(xué)方法,依據(jù)人體平衡原理,由槍械質(zhì)量以及人體各部分質(zhì)量和轉(zhuǎn)動(dòng)慣量確定各關(guān)節(jié)上的初始驅(qū)動(dòng)力.以膝關(guān)節(jié)初始扭矩為例,計(jì)算方法為:只釋放膝關(guān)節(jié)的回轉(zhuǎn)副,將膝關(guān)節(jié)以上部分和槍體按正常姿態(tài)處理為剛體,膝關(guān)節(jié)以下部分也處理為剛體,分別得到兩部分的質(zhì)量、質(zhì)心和轉(zhuǎn)動(dòng)慣量;膝關(guān)節(jié)以下部分與地面接觸處理為固定連接,由膝關(guān)節(jié)處的力矩平衡方程計(jì)算得出膝關(guān)節(jié)初始扭矩.
計(jì)算得出各關(guān)節(jié)處的初始扭矩后,釋放所有關(guān)節(jié)自由度,采用Lagrange方程基于Adams軟件建立人槍相互作用模型,見圖1,其中包括13剛體和31自由度.槍械作用力包括膛底作用力、導(dǎo)氣室作用力、自動(dòng)機(jī)后坐到位撞擊力和復(fù)進(jìn)到位撞擊力等4個(gè),依次加載在槍體相應(yīng)位置[3].分別在抵肩、握把和護(hù)木等3處添加肌肉模擬.
(a)結(jié)構(gòu)簡圖(b)計(jì)算模型圖 1人槍模型
Fig.1Humangun model
2射頻對(duì)槍口響應(yīng)的影響
在人體被動(dòng)響應(yīng)的300 ms時(shí)間內(nèi),射頻分別為600,1 000,1 200和1 500 發(fā)/min時(shí),槍口的上下位移情況見圖2,其中600 發(fā)/min為3連發(fā),其他為5連發(fā).在不同射頻下槍口上下最大位移的比較見表1,可知,在不同射擊頻率下槍口跳動(dòng)規(guī)律類似:隨著射彈發(fā)數(shù)增加,槍口位移逐漸增大,是由前一發(fā)對(duì)后一發(fā)影響的累加造成的;第1發(fā)彈發(fā)射時(shí),隨著射頻增加,槍口最大跳動(dòng)反而減小,是由于當(dāng)射頻增加時(shí)一個(gè)循環(huán)周期時(shí)間變短,人體還未做出相應(yīng)反應(yīng);后幾發(fā)彈發(fā)射時(shí),隨著射頻增加跳動(dòng)加大,是由于槍械射頻越快人體在相同時(shí)間內(nèi)所承受的沖擊能量越大,槍口的跳動(dòng)也相應(yīng)增大.圖 2在不同射頻下槍口y向位移曲線
Fig.2Muzzle displacement curves in y direction
under different firingrates
表 1在不同射頻下槍口最大位移值比較
Tab.1Maximum muzzle displacement comparisons
under different firingrates射頻/(發(fā)/min)6001 0001 2001 500第1發(fā)位移/mm8.78.57.86.6第2發(fā)位移/mm15.816.016.716.3第3發(fā)位移/mm22.122.724.224.3第4發(fā)位移/mm28.830.731.2第5發(fā)位移/mm34.236.737.9
在槍口最大位移發(fā)生的時(shí)刻,彈丸仍在槍管中運(yùn)動(dòng),還未到達(dá)槍口,實(shí)際上彈丸出槍口瞬間槍口的跳動(dòng)情況直接影響射擊精度.彈丸出槍口瞬間槍口上下位移值比較見表2,可知:第1發(fā)彈出槍口瞬間,槍口位移相同;隨著射頻增大,第2,3和4發(fā)彈的槍口位移逐漸減小,第5發(fā)彈位移反而增大.因此,在3發(fā)點(diǎn)射的情況下射頻增加對(duì)槍口精度有利.
表 2在不同射頻下彈丸出槍口瞬間槍口位移比較
Tab.2Muzzle displacement comparisons at moment of bullet leaving from muzzle under different firingrate射頻/(發(fā)/min)6001 0001 2001 500第1發(fā)位移/mm0.80.80.80.8第2發(fā)位移/mm8.68.68.06.6第3發(fā)位移/mm17.416.116.816.3第4發(fā)位移/mm22.724.224.3第5發(fā)位移/mm28.830.831.2
3槍械緩沖參數(shù)對(duì)槍口跳動(dòng)的影響
射頻提高,槍械后坐力必然增加.通過增加全槍緩沖機(jī)構(gòu),減小后坐力,可進(jìn)一步降低槍口跳動(dòng).分析在同一高射頻下(1 200發(fā)/min)有槍械緩沖裝置(剛度為1.2 N/mm,預(yù)壓力為100 N)和無槍械緩沖裝置時(shí)槍口的跳動(dòng)情況,結(jié)果見圖3,可知,前3發(fā),由于緩沖裝置的作用,后坐力減小,槍口跳動(dòng)減小,而最后兩發(fā)槍口跳動(dòng)反而增加.因此,在高射頻下槍械緩沖裝置緩沖對(duì)3發(fā)點(diǎn)射的槍口跳動(dòng)有利.
圖 3在槍械有無緩沖時(shí)槍口y向位移曲線
Fig.3Muzzle ydisplacement curves when gun is
with or without buffer
造成上述分析最后2發(fā)彈槍口跳動(dòng)增加的原因是:由于槍械緩沖裝置與人體彈性系統(tǒng)為2個(gè)緩沖系統(tǒng),兩者相互作用位移疊加.如何進(jìn)行槍械系統(tǒng)與人體系統(tǒng)的動(dòng)力學(xué)匹配是研究的關(guān)鍵.分析不同槍械緩沖裝置參數(shù)對(duì)槍口跳動(dòng)的影響:在同一高射頻(1 200發(fā)/min)下,不同全槍緩沖簧預(yù)壓力F,剛度k和緩沖行程L對(duì)槍口上下跳動(dòng)的影響.大部分研究[14]采用獨(dú)立分析某一參數(shù)、其他參數(shù)取固定值的方法,忽略參數(shù)之間的相互影響.實(shí)際上F,k和L對(duì)槍口跳動(dòng)的影響并不獨(dú)立,其他參數(shù)的不同取值對(duì)所分析參數(shù)的影響很大.剛度對(duì)槍口上下位移的影響見圖4,可知,在不同的預(yù)壓力下剛度對(duì)槍口上下位移的影響規(guī)律不同.
(a)預(yù)壓力50~250 N(b)預(yù)壓力200~450 N圖 4剛度和預(yù)壓力對(duì)槍口y向位移的影響
Fig.4Effect of stiffness and preload on muzzle ydisplacement
由圖4可知:(1)在剛度值超過2.4 N/mm或預(yù)壓力值超過300 N時(shí),剛度值變化對(duì)槍口跳動(dòng)的影響差別不大;在預(yù)壓力值超過400 N時(shí),預(yù)壓力值變化對(duì)槍口跳動(dòng)的影響差別不大,原因是剛度和預(yù)壓力足夠大后,接近剛性接觸,緩沖作用大大降低;(2)在剛度值和預(yù)壓力都偏小時(shí),跳動(dòng)最大.
在預(yù)壓力較小的情況下,剛度越小槍口跳動(dòng)越小,但剛度越小所需工作行程越大.考慮到槍械的整體結(jié)構(gòu),緩沖裝置工作行程不可能無限制放大.一旦槍械總體結(jié)構(gòu)確定,緩沖裝置最大工作行程是一定的.分析考慮緩沖裝置工作行程的影響情況.圖5(a)和5(b)分別是預(yù)壓力為50和100 N時(shí),在不同緩沖裝置最大工作行程下剛度與槍口上下位移的對(duì)應(yīng)曲線.
(a)預(yù)壓力為50 N
(b)預(yù)壓力為100 N
(c)預(yù)壓力為150 N
圖 5不同預(yù)壓力時(shí)工作行程對(duì)槍口跳動(dòng)位移的影響
Fig.5Effect of working stroke on muzzle jump displacement
under different preloads
由圖5可知:(1)在剛度和預(yù)壓力較小時(shí),緩沖裝置工作行程對(duì)槍口跳動(dòng)影響較大,是因?yàn)閯偠群皖A(yù)壓力較小時(shí),槍械與限位裝置產(chǎn)生碰撞,對(duì)槍口跳動(dòng)產(chǎn)生影響.(2)圖5(a)中在剛度值達(dá)到a1值之前,行程越長槍口跳動(dòng)越小,是因?yàn)閯偠仍叫≡饺菀鬃矒粝尬谎b置,行程越長到達(dá)限位裝置前的速度越低,撞擊力變小,槍口跳動(dòng)也?。划?dāng)剛度超過a2值后,行程越長槍口跳動(dòng)越大,是因?yàn)閯偠茸兇?,到達(dá)限位裝置的時(shí)間長,在整個(gè)前3發(fā)射擊過程中,槍械均處于緩沖的后坐行程,因此位移逐發(fā)累計(jì)造成跳動(dòng)加大.(3)在圖5(b)和5(c)中,剛度值達(dá)到b以后,行程對(duì)槍口跳動(dòng)的影響基本相同,是由于剛度變大,槍械與限位裝置沒有碰撞.
4參數(shù)靈敏度分析和優(yōu)化
基于以上對(duì)F,k和L的影響分析可知,需要進(jìn)一步進(jìn)行設(shè)計(jì)變量的參數(shù)靈敏度分析.進(jìn)行參數(shù)靈敏度分析可避免參數(shù)修改中的盲目性,提高設(shè)計(jì)效率、減少設(shè)計(jì)成本,也是優(yōu)化設(shè)計(jì)的基礎(chǔ).[5]本文所建立的多體動(dòng)力學(xué)模型為非線性模型,設(shè)計(jì)參數(shù)在不同取值范圍時(shí)的敏感性不同.不同F(xiàn),k和L對(duì)槍口上下跳動(dòng)的參數(shù)敏感性分析結(jié)果見圖6~8,可知,總體上參數(shù)敏感性排序?yàn)閗,L和F.
圖 6剛度參數(shù)敏感性分析
Fig.6Sensitivity analysis on stiffness parameter
圖 7預(yù)壓力參數(shù)敏感性分析
Fig.7Sensitivity analysis on preload parameter
采用多島遺傳算法方法對(duì)這3個(gè)參數(shù)進(jìn)行優(yōu)化,得到的最優(yōu)參數(shù)值為k=0.8 N/mm,F(xiàn)=50 N,L=90 mm,槍口上下跳動(dòng)最優(yōu)值為25.05 mm.圖 8緩沖行程參數(shù)敏感性分析
Fig.8Sensitivity analysis on buffer stroke parameter
5結(jié)論
在3發(fā)點(diǎn)射情況下,射頻增加對(duì)槍口跳動(dòng)是有利的;與一般理解不同的是,在人體主動(dòng)態(tài)下槍械緩沖裝置減小后坐力,射手可對(duì)槍械實(shí)施良好地控制,但是在人體被動(dòng)態(tài)下槍械緩沖裝置對(duì)減小槍口跳動(dòng)并不是無條件的有利,只有槍械緩沖裝置與人體彈性系統(tǒng)良好的動(dòng)力學(xué)匹配才能有效減小槍口跳動(dòng).
值得一提的是,本文人槍模型中人體的彈性系統(tǒng)與實(shí)際人體的彈性存在誤差,而且不同人體的彈性參數(shù)是有差別的,由于人體彈性參數(shù)對(duì)分析結(jié)果存在一定影響,這里的結(jié)論只能作為一定限定條件下的定性參考.
參考文獻(xiàn):
[1]張?jiān)? 徐萬和, 吳志林, 等. 高頻點(diǎn)射步槍動(dòng)力學(xué)仿真分析[J]. 彈道學(xué)報(bào), 2009, 21(1): 7174.
ZHANG Yue, XU Wanhe, WU Zhilin, et al. Dynamic simulation analysis for highfrequency burst rifle[J]. J Ballistics, 2009, 21(1): 7174.
[2]包建東, 王昌明, 何云峰. 人槍模型的建立及仿真分析[J]. 兵工學(xué)報(bào), 2009, 30(5): 513517.
BAO Jiandong, WANG Changming, HE Yunfeng. Foundation of mangun model and simulation analysis[J]. Acta Armamentarii, 2009(5): 513517.
[3]王亞平, 徐誠, 郭凱. 人槍系統(tǒng)建模及數(shù)值仿真研究[J]. 兵工學(xué)報(bào), 2002, 23(4): 551554.
WANG Yaping, XU Cheng, GUO Kai. Modeling and digitalsimulation of a humangun system[J]. Acta Armamentarii, 2002, 23(4): 551554.
[4]羅冠. 虛擬人的運(yùn)動(dòng)生成及控制技術(shù)研究[D]. 西安: 西北工業(yè)大學(xué), 2003: 1517.
[5]丁潔玉.基于多體系統(tǒng)的靈敏度分析及動(dòng)態(tài)優(yōu)化設(shè)計(jì)[D].