廖慧敏,譚滿春
暨南大學數(shù)學系,廣州 510632
不確定線性系統(tǒng)新的穩(wěn)定性準則
廖慧敏,譚滿春
暨南大學數(shù)學系,廣州 510632
時滯現(xiàn)象經(jīng)常存在于網(wǎng)絡控制系統(tǒng)、自動化系統(tǒng)、通信系統(tǒng)、運輸系統(tǒng)等許多動態(tài)系統(tǒng)中。由于時滯會導致系統(tǒng)的不穩(wěn)定性和性能變差,因此時滯的穩(wěn)定性得到了廣泛的關注[1-25]。
為得到時滯系統(tǒng)的穩(wěn)定性準則,許多學者提出了不同的方法[1-12]。文獻[1-2]通過引入自由權矩陣來處理Lyapunov函數(shù)導數(shù)中的相關項,優(yōu)勢在于不必對交叉項進行處理,但引入過多的變量會增加計算的復雜度。文獻[3-4]采用Jensen積分不等式對交叉項進行放大處理。文獻[5-6]構造含有三重積分項的新型Lyapunov函數(shù),并結合積分不等式法或自由權矩陣方法。文獻[7-8]利用時滯中點法,用時滯區(qū)間的中點(h1+h2)/2把時滯區(qū)間分割成相等的兩個區(qū)間,再充分利用積分不等式等方法。
基于上述研究成果,本文不同于文獻[7-8],不再把時滯分割成相等的兩區(qū)間,而用分割點h=λh1+(1-λ)h2將時滯區(qū)間分割成任意兩段。通過構造新的Lyapunov函數(shù),并結合積分不等式,得到了新的穩(wěn)定性準則。本方法引入了狀態(tài)向量x(t-h),含有更多的時滯區(qū)間信息。通過數(shù)值實例說明本文方法的有效性和較小的保守性。
本文符號說明:I表示單位矩陣,Rn表示n維歐式空間,Rn×m表示n×m矩陣,T表示矩陣轉置,*表示矩陣相應的對稱部分,對任意矩陣A,B,A>B表示矩陣A-B是正定矩陣。
考慮如下不確定系統(tǒng):
本文定理證明將用到如下引理:
備注1系統(tǒng)最大允許時滯上界的大小與λ的精度有關。假設λ的精度為0.01,由于0<λ<1,那么λ的值是0.01,0.02,…,0.99。把每個λ的值作為已知數(shù),由上述定理,利用MATLAB的LMI工具箱,可以求得相應的最大允許時滯上界,取這些最大允許時滯上界的最大值做為系統(tǒng)的最大允許時滯上界。為求得更大的系統(tǒng)最大允許時滯上界,可以提高λ的精度,但這樣會增加計算的復雜度,需要更多的計算時間。
例1考慮具有如下系數(shù)矩陣的不確定線性系統(tǒng):
當假設λ的精度為0.1。當h1=0時,對不同的時滯變化率d,系統(tǒng)式(1)最大允許時滯上界h2值見表1。當d=0.1時,文獻[15]的最大允許時滯上界為1.107 5,而由定理1,令λ=0.5,計算得到最大允許時滯上界為1.178 2。由表1知,與文獻[14-15]相比,本文方法具有較小保守性。
表1 h?1=0時,對不同d的最大允許時滯上界
例2考慮具有如下系數(shù)矩陣的不確定線性系統(tǒng):
假設λ的精度為0.01。當d=0.5,h1=0時,由定理1,系統(tǒng)式(1)在λ=0.55時取得系統(tǒng)的最大允許時滯上界h2=2.194 0。當d=0.5,h1=1時,系統(tǒng)式(1)在λ=0.31時取得系統(tǒng)的最大允許時滯上界h2=2.279 2,見表2。當d=0.2,h1=0時,系統(tǒng)在λ=0.48時取得最大允許時滯上界為3.293 6,見表3。由表2,3可知,在h1較小的情況下,與文獻[7-8]相比,本文方法具有較小保守性。
表2 d=0.5時,對不同h1的最大允許時滯上界
表3 d=0.2,h1=0時,最大允許時滯上界
本文研究了帶有區(qū)間時滯的不確定線性系統(tǒng)的穩(wěn)定性問題。利用時滯分割法,通過構造適當Lyapunov函數(shù),并結合積分不等式,得到了不確定線性系統(tǒng)新穩(wěn)定性的準則。數(shù)值實例表明,新的穩(wěn)定性準則具有更小的保守性。
[1]Qiu Fang,Cui Baotong,Ji Yan.Further results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations[J].Nonlinear Analysis:Real World Applications,2010,11(2):895-906.
[2]Liang Yuanxin.Robust stability for uncertain neutral systems with time-varying and distributed delays[C]//Seventh International Conference on Computational Intelligence and Security,2011:321-324.
[3]Sarabi F E,Momeni H R.Less conservative delay-dependent robust stability criteria for linear time-delay systems[C]// International Conference on Electronics Computer Telecommunications and Information Technology,2010:738-741.
[4]Ramakrishnan K,Ray G.Robust stability criteria for uncertain linear systems with interval time-varying delay[J].J Control Theory Appl,2011,9(4):559-566.
[5]Sun Jian,Chen Jie,Liu G P.Delay-range-dependent and rate-range-dependent stability criteria for linear systems with time-varying delays[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,Shanghai,China,2009:251-256.
[6]Sun J,Liu G P,Chen J,et al.Improved stability criteria for linear systems with time-varying delay[J].IET Control Theory Appl,2010,4(4):683-689.
[7]Peng C,Tian Y C.Improved delay-dependent robust stability criteria for uncertain systems with interval timevarying delay[J].IET Control Theory Appl,2008,2(9):752-761.
[8]Zhao Xia,Song Jin,Tian Engang,et al.Delay-dependent stability analysis for linear system with time-varying delay:a PAM method[C]//Chinese Control and Decision Conference,2009:1422-1426.
[9]Zhang Ao,Xu Zhaodi,Liu Dong.New stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations[C]//27th Chinese Control and Decision Conference,2011:2995-2999.
[10]Tan Manchun.Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays[J]. Neural Processing Letters,2010,31(2):147-157.
[11]Tan Manchun.Exponential convergence behavior of fuzzy cellular neural network with distributed delay and timevarying coefficients[J].International Journal of Bifurcation and Chaos,2009,19(7):2455-2462.
[12]Tan M C,Su Z Y.Exponential stability analysis of neural networks with variable delays[J].International Journal of Bifurcation and Chaos,2010,20(5):1541-1549.
[13]Guo Liangdong,Gu Hong,Jun Xing,et al.Asymptotic and exponential stability of uncertain system with interval delay[J].Applied Mathematics and Computation,2012,218(19):9997-10006.
[14]Peng C,Tian Y C.Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. JournalofComputationalandAppliedMathematics,2008,214(2):480-494.
[15]Wang Cheng,Shen Yi.Improved delay-dependent robust stability criteria for uncertain time delay systems[J]. Applied Mathematics and Computation,2011,218(6):2880-2888.
[16]He Y,Wang Q,Lin C G,et al.Delay-range-dependent stability for systems with time-varying delay[J].Automatica,2007,43(2):371-376.
[17]Shao Hanyong.New delay-dependent stability criteria for systems with interval delay[J].Automatica,2009,45(3):744-749.
[18]Kwon O M,Park M J,Park J H,et al.New delay-partitioning approaches to stability criteria for uncertain neutral systems with time-varying delays[J].Journal of the Franklin Institute,2012,349(9):2799-2823.
[19]Qiu Fang,Cui Baotong,Ji Yan.A delay-dividing approach to stability of neutral systems with mixed delays and nonlinear perturbations[J].Applied Mathematical Modelling,2010,34(11):3701-3707.
[20]Liu Pinlin.A delay decomposition approach to robust stability analysis of uncertain systems with time-varying delay[J].ISA Transactions,2012,51(6):694-701.
[21]Chen Huabin.New delay-dependent stability criteria for uncertain stochastic neural networks with discrete interval and distributed delays[J].Neurocomputing,2013,101(4):1-9.
[22]Ramakrishnan K,Ray G.Robust stability criteria for a class of uncertain discrete-time systems with time-varying delay[J].Applied Mathematical Modelling,2013,37(3):1468-1479.
[23]Chen Huabin,Zhang Yong,Zhao Yang.Stability analysis for uncertain neutral systems with distributed delays[J]. Applied Mathematical and Computation,2012,218(23):11351-11361.
[24]Xia Nan,Jia Yingmin.Delay distribution dependent stability criteria for interval time-varying delay systems[J]. Journal of the Franklin Institute,2012,349(10):3142-3158.
[25]Zheng Min,F(xiàn)ei Minrui,Li Yang.Improved stability criteria for uncertain delayed neural networks[J].Neurocomputing,2012,98(3):34-39.
LIAO Huimin,TAN Manchun
Department of Mathematics,Jinan University,Guangzhou 510632,China
The stability problem for uncertain linear systems with interval time-varying delay is studied.Based on the delaydividing approach,the delay interval is partitioned into two subintervals.By constructing an appropriate Lyapunov function and using integral inequalities,some delay-dependent stability criteria are obtained.Numerical examples are given to illustrate the effectiveness of the results.
uncertain linear systems;Lyapunov function;delay-dependent;stability
研究了帶有區(qū)間時滯的不確定系統(tǒng)的穩(wěn)定性問題。通過采用時滯分割法,把時滯區(qū)間分割成任意兩小段,并構造恰當?shù)腖yapunov函數(shù),利用積分不等式,得到了新的時滯相關的穩(wěn)定性準則。通過數(shù)值例子驗證了結果的有效性。
不確定線性系統(tǒng);Lyapunov函數(shù);時滯依賴;穩(wěn)定性
A
TP13;O213.2
10.3778/j.issn.1002-8331.1212-0016
LIAO Huimin,TAN Manchun.New stability criteria for uncertain linear systems.Computer Engineering and Applications,2014,50(22):256-259.
廣東省自然科學基金(No.S201201001036);廣東省科學計劃項目(No.2009B011400046)。
廖慧敏(1987—),男,碩士研究生,主要研究方向:系統(tǒng)優(yōu)化與控制;譚滿春(1968—),男,教授,碩士生導師,主要研究方向:系統(tǒng)優(yōu)化與控制。E-mail:tanmc@jnu.edu.cn
2012-12-03
2013-02-18
1002-8331(2014)22-0256-04
CNKI網(wǎng)絡優(yōu)先出版:2013-03-13,http://www.cnki.net/kcms/detail/11.2127.TP.20130313.0950.011.html