阮詩倫 孫本強(qiáng) 劉嬋
摘要:為研究在應(yīng)力場和溫度場作用下碳納米管/不定型聚乙烯復(fù)合材料界面基體分子取向的變化歷程,建立對應(yīng)的復(fù)合材料分子模型.利用經(jīng)典分子動力學(xué)的模擬方法,在對不同溫度場碳納米管表面高分子徑向分布函數(shù)(Radial Distribution Function, RDF)分析的基礎(chǔ)上,重點(diǎn)分析溫度和拉伸應(yīng)力對界面處基體分子取向參數(shù)的影響規(guī)律.結(jié)果表明:當(dāng)溫度從600 K降低到50 K時,界面基體分子的徑向分布函數(shù)值和取向參數(shù)值分別提高140%和119%;當(dāng)溫度為50 K時,對復(fù)合材料施加0.01 ps-1的應(yīng)變速率,當(dāng)應(yīng)變從0增加到0.24時,高分子鏈整體取向參數(shù)值提高19%.
關(guān)鍵詞:碳納米管; 聚乙烯; 分子動力學(xué)模擬; 取向參數(shù); 徑向分布函數(shù)
中圖分類號: TB383
文獻(xiàn)標(biāo)志碼:B
0 引 言
自1991年問世以來,碳納米管[1]因其卓越的力學(xué)性能和獨(dú)特的結(jié)構(gòu)被作為理想的填充材料廣泛應(yīng)用于高分子復(fù)合材料.大量研究表明將碳納米管加入高分子基體材料中可有效增強(qiáng)高分子復(fù)合材料的機(jī)械性能[2-4],但是碳納米管/高分子復(fù)合材料的增強(qiáng)機(jī)理仍存在諸多疑問,吸引大量科技工作者在該領(lǐng)域開展科學(xué)研究.眾所周知,碳納米管與高分子基體材料之間的界面性質(zhì)對整個體系的機(jī)械性質(zhì)有決定性的影響,因此,對該類材料界面性狀的研究成為解開其增強(qiáng)機(jī)理的關(guān)鍵所在.近幾年的研究表明,碳納米管的加入對周邊高分子的構(gòu)象、結(jié)晶行為及取向參數(shù)等有明顯影響[5-7]:當(dāng)碳納米管周圍聚合物呈現(xiàn)螺旋形貌時非常有利于復(fù)合材料界面強(qiáng)度的提高[3];當(dāng)周邊高分子呈現(xiàn)有序晶態(tài)時復(fù)合材料的彈性模量顯著提高,反之則界面強(qiáng)度非常差[4].
目前,關(guān)于高分子復(fù)合材料的界面形貌對本身機(jī)械性能和物理性能的影響有相關(guān)報道,但界面形貌的形成因素還有待于深入研究.本文主要利用經(jīng)典分子動力學(xué)軟件LAMMPS[8],采用并行運(yùn)算方法,重點(diǎn)分析在不同溫度和應(yīng)力作用下碳納米管表面不定型聚乙烯分子的徑向分布函數(shù)(Radial Distribution Function, RDF)和取向分布函數(shù)的變化規(guī)律,同時利用計算機(jī)軟件VMD觀察界面形貌[9],更深入地了解碳納米管/不定型聚乙烯復(fù)合材料界面的形成機(jī)理,找出對體系結(jié)構(gòu)和性質(zhì)影響的關(guān)鍵因素并預(yù)測復(fù)合材料的機(jī)械性質(zhì),為新材料的設(shè)計和制造提供理論指導(dǎo).
4 結(jié) 論
利用分子動力學(xué)數(shù)值仿真方法研究溫度及拉伸應(yīng)力對碳納米管/不定型聚乙烯界面構(gòu)型的影響,主要結(jié)論如下:
(1)在不同溫度時,不定型聚乙烯在碳納米管表面均形成兩個吸附層,溫度從600 K降低到50 K時,第一層吸附層逐步向碳納米管靠近,距離由10.216 變?yōu)?.216 .
(2)第一吸附層的RDF值和局部取向參數(shù)都隨著溫度的降低而升高,在溫度從600 K降低到50 K時,界面基體分子的RDF值和取向參數(shù)分別提高140%和119%.
(3)在低溫時,整體取向參數(shù)隨應(yīng)變的增加而增加,應(yīng)變?yōu)?~0.24時,高分子鏈整體取向參數(shù)提高19%.整體取向參數(shù)的變化與應(yīng)力遞增的趨勢保持一致.
參考文獻(xiàn):
[1]
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991(354): 56-58.
[2] CADEK M,COLEMAN J N, RYAN K P, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area[J]. Nano Lett, 2004, 4(2): 353-356.
[3] LORDI V, YAO N. Molecular mechanics of binding in carbon nanotube-polymer composites[J]. J Mat Res, 2000, 15(12): 2270-2779.
[4] CADEK M, COLEMAN J, BARRON V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites[J]. Appl Phys Lett, 2002, 81(27): 5123-5125.
[5] YANG Hua, LIU Yu, ZHANG Hui, et al. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation[J]. Polymer, 2006, 47(21): 7607-7610.
[6] 王禹, 章林溪. 外力誘導(dǎo)吸附高分子單鏈的拉伸分子動力學(xué)研究[J]. 物理學(xué)報, 2008, 57(5): 3281-3286.
WANG Yu, ZHANG Linxi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains[J]. Acta Physica Sinica, 2008, 57(5): 3281-3286.
[7] 劉佳, 趙莉, 呂中元. 聚乙烯鏈在碳納米管側(cè)壁吸附的動力學(xué)模擬研究[J]. 高等學(xué)?;瘜W(xué)學(xué)報, 2008, 29(12): 2389-2392.
LIU Jia, ZHAO Li, LYU Zhongyuan. Molecular dynamics simulation of adsorption of a polyethylene chain on carbon nanotube[J]. Chem J Chin Universities, 2008, 29(12): 2389-2392.
[8] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19.
[9] HUMPHREY W, DALKE A, SCHULTEN K. VMD-visual molecular dynamics[J]. J Molec Graphics, 1996, 14(1): 33-38.
[10] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation Reactive Empirical Bond Order(REBO) potential energy expression for hydrocarbons[J]. J Phys: Condensed Mat, 2002, 14(4): 783-802.endprint
摘要:為研究在應(yīng)力場和溫度場作用下碳納米管/不定型聚乙烯復(fù)合材料界面基體分子取向的變化歷程,建立對應(yīng)的復(fù)合材料分子模型.利用經(jīng)典分子動力學(xué)的模擬方法,在對不同溫度場碳納米管表面高分子徑向分布函數(shù)(Radial Distribution Function, RDF)分析的基礎(chǔ)上,重點(diǎn)分析溫度和拉伸應(yīng)力對界面處基體分子取向參數(shù)的影響規(guī)律.結(jié)果表明:當(dāng)溫度從600 K降低到50 K時,界面基體分子的徑向分布函數(shù)值和取向參數(shù)值分別提高140%和119%;當(dāng)溫度為50 K時,對復(fù)合材料施加0.01 ps-1的應(yīng)變速率,當(dāng)應(yīng)變從0增加到0.24時,高分子鏈整體取向參數(shù)值提高19%.
關(guān)鍵詞:碳納米管; 聚乙烯; 分子動力學(xué)模擬; 取向參數(shù); 徑向分布函數(shù)
中圖分類號: TB383
文獻(xiàn)標(biāo)志碼:B
0 引 言
自1991年問世以來,碳納米管[1]因其卓越的力學(xué)性能和獨(dú)特的結(jié)構(gòu)被作為理想的填充材料廣泛應(yīng)用于高分子復(fù)合材料.大量研究表明將碳納米管加入高分子基體材料中可有效增強(qiáng)高分子復(fù)合材料的機(jī)械性能[2-4],但是碳納米管/高分子復(fù)合材料的增強(qiáng)機(jī)理仍存在諸多疑問,吸引大量科技工作者在該領(lǐng)域開展科學(xué)研究.眾所周知,碳納米管與高分子基體材料之間的界面性質(zhì)對整個體系的機(jī)械性質(zhì)有決定性的影響,因此,對該類材料界面性狀的研究成為解開其增強(qiáng)機(jī)理的關(guān)鍵所在.近幾年的研究表明,碳納米管的加入對周邊高分子的構(gòu)象、結(jié)晶行為及取向參數(shù)等有明顯影響[5-7]:當(dāng)碳納米管周圍聚合物呈現(xiàn)螺旋形貌時非常有利于復(fù)合材料界面強(qiáng)度的提高[3];當(dāng)周邊高分子呈現(xiàn)有序晶態(tài)時復(fù)合材料的彈性模量顯著提高,反之則界面強(qiáng)度非常差[4].
目前,關(guān)于高分子復(fù)合材料的界面形貌對本身機(jī)械性能和物理性能的影響有相關(guān)報道,但界面形貌的形成因素還有待于深入研究.本文主要利用經(jīng)典分子動力學(xué)軟件LAMMPS[8],采用并行運(yùn)算方法,重點(diǎn)分析在不同溫度和應(yīng)力作用下碳納米管表面不定型聚乙烯分子的徑向分布函數(shù)(Radial Distribution Function, RDF)和取向分布函數(shù)的變化規(guī)律,同時利用計算機(jī)軟件VMD觀察界面形貌[9],更深入地了解碳納米管/不定型聚乙烯復(fù)合材料界面的形成機(jī)理,找出對體系結(jié)構(gòu)和性質(zhì)影響的關(guān)鍵因素并預(yù)測復(fù)合材料的機(jī)械性質(zhì),為新材料的設(shè)計和制造提供理論指導(dǎo).
4 結(jié) 論
利用分子動力學(xué)數(shù)值仿真方法研究溫度及拉伸應(yīng)力對碳納米管/不定型聚乙烯界面構(gòu)型的影響,主要結(jié)論如下:
(1)在不同溫度時,不定型聚乙烯在碳納米管表面均形成兩個吸附層,溫度從600 K降低到50 K時,第一層吸附層逐步向碳納米管靠近,距離由10.216 變?yōu)?.216 .
(2)第一吸附層的RDF值和局部取向參數(shù)都隨著溫度的降低而升高,在溫度從600 K降低到50 K時,界面基體分子的RDF值和取向參數(shù)分別提高140%和119%.
(3)在低溫時,整體取向參數(shù)隨應(yīng)變的增加而增加,應(yīng)變?yōu)?~0.24時,高分子鏈整體取向參數(shù)提高19%.整體取向參數(shù)的變化與應(yīng)力遞增的趨勢保持一致.
參考文獻(xiàn):
[1]
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991(354): 56-58.
[2] CADEK M,COLEMAN J N, RYAN K P, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area[J]. Nano Lett, 2004, 4(2): 353-356.
[3] LORDI V, YAO N. Molecular mechanics of binding in carbon nanotube-polymer composites[J]. J Mat Res, 2000, 15(12): 2270-2779.
[4] CADEK M, COLEMAN J, BARRON V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites[J]. Appl Phys Lett, 2002, 81(27): 5123-5125.
[5] YANG Hua, LIU Yu, ZHANG Hui, et al. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation[J]. Polymer, 2006, 47(21): 7607-7610.
[6] 王禹, 章林溪. 外力誘導(dǎo)吸附高分子單鏈的拉伸分子動力學(xué)研究[J]. 物理學(xué)報, 2008, 57(5): 3281-3286.
WANG Yu, ZHANG Linxi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains[J]. Acta Physica Sinica, 2008, 57(5): 3281-3286.
[7] 劉佳, 趙莉, 呂中元. 聚乙烯鏈在碳納米管側(cè)壁吸附的動力學(xué)模擬研究[J]. 高等學(xué)?;瘜W(xué)學(xué)報, 2008, 29(12): 2389-2392.
LIU Jia, ZHAO Li, LYU Zhongyuan. Molecular dynamics simulation of adsorption of a polyethylene chain on carbon nanotube[J]. Chem J Chin Universities, 2008, 29(12): 2389-2392.
[8] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19.
[9] HUMPHREY W, DALKE A, SCHULTEN K. VMD-visual molecular dynamics[J]. J Molec Graphics, 1996, 14(1): 33-38.
[10] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation Reactive Empirical Bond Order(REBO) potential energy expression for hydrocarbons[J]. J Phys: Condensed Mat, 2002, 14(4): 783-802.endprint
摘要:為研究在應(yīng)力場和溫度場作用下碳納米管/不定型聚乙烯復(fù)合材料界面基體分子取向的變化歷程,建立對應(yīng)的復(fù)合材料分子模型.利用經(jīng)典分子動力學(xué)的模擬方法,在對不同溫度場碳納米管表面高分子徑向分布函數(shù)(Radial Distribution Function, RDF)分析的基礎(chǔ)上,重點(diǎn)分析溫度和拉伸應(yīng)力對界面處基體分子取向參數(shù)的影響規(guī)律.結(jié)果表明:當(dāng)溫度從600 K降低到50 K時,界面基體分子的徑向分布函數(shù)值和取向參數(shù)值分別提高140%和119%;當(dāng)溫度為50 K時,對復(fù)合材料施加0.01 ps-1的應(yīng)變速率,當(dāng)應(yīng)變從0增加到0.24時,高分子鏈整體取向參數(shù)值提高19%.
關(guān)鍵詞:碳納米管; 聚乙烯; 分子動力學(xué)模擬; 取向參數(shù); 徑向分布函數(shù)
中圖分類號: TB383
文獻(xiàn)標(biāo)志碼:B
0 引 言
自1991年問世以來,碳納米管[1]因其卓越的力學(xué)性能和獨(dú)特的結(jié)構(gòu)被作為理想的填充材料廣泛應(yīng)用于高分子復(fù)合材料.大量研究表明將碳納米管加入高分子基體材料中可有效增強(qiáng)高分子復(fù)合材料的機(jī)械性能[2-4],但是碳納米管/高分子復(fù)合材料的增強(qiáng)機(jī)理仍存在諸多疑問,吸引大量科技工作者在該領(lǐng)域開展科學(xué)研究.眾所周知,碳納米管與高分子基體材料之間的界面性質(zhì)對整個體系的機(jī)械性質(zhì)有決定性的影響,因此,對該類材料界面性狀的研究成為解開其增強(qiáng)機(jī)理的關(guān)鍵所在.近幾年的研究表明,碳納米管的加入對周邊高分子的構(gòu)象、結(jié)晶行為及取向參數(shù)等有明顯影響[5-7]:當(dāng)碳納米管周圍聚合物呈現(xiàn)螺旋形貌時非常有利于復(fù)合材料界面強(qiáng)度的提高[3];當(dāng)周邊高分子呈現(xiàn)有序晶態(tài)時復(fù)合材料的彈性模量顯著提高,反之則界面強(qiáng)度非常差[4].
目前,關(guān)于高分子復(fù)合材料的界面形貌對本身機(jī)械性能和物理性能的影響有相關(guān)報道,但界面形貌的形成因素還有待于深入研究.本文主要利用經(jīng)典分子動力學(xué)軟件LAMMPS[8],采用并行運(yùn)算方法,重點(diǎn)分析在不同溫度和應(yīng)力作用下碳納米管表面不定型聚乙烯分子的徑向分布函數(shù)(Radial Distribution Function, RDF)和取向分布函數(shù)的變化規(guī)律,同時利用計算機(jī)軟件VMD觀察界面形貌[9],更深入地了解碳納米管/不定型聚乙烯復(fù)合材料界面的形成機(jī)理,找出對體系結(jié)構(gòu)和性質(zhì)影響的關(guān)鍵因素并預(yù)測復(fù)合材料的機(jī)械性質(zhì),為新材料的設(shè)計和制造提供理論指導(dǎo).
4 結(jié) 論
利用分子動力學(xué)數(shù)值仿真方法研究溫度及拉伸應(yīng)力對碳納米管/不定型聚乙烯界面構(gòu)型的影響,主要結(jié)論如下:
(1)在不同溫度時,不定型聚乙烯在碳納米管表面均形成兩個吸附層,溫度從600 K降低到50 K時,第一層吸附層逐步向碳納米管靠近,距離由10.216 變?yōu)?.216 .
(2)第一吸附層的RDF值和局部取向參數(shù)都隨著溫度的降低而升高,在溫度從600 K降低到50 K時,界面基體分子的RDF值和取向參數(shù)分別提高140%和119%.
(3)在低溫時,整體取向參數(shù)隨應(yīng)變的增加而增加,應(yīng)變?yōu)?~0.24時,高分子鏈整體取向參數(shù)提高19%.整體取向參數(shù)的變化與應(yīng)力遞增的趨勢保持一致.
參考文獻(xiàn):
[1]
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991(354): 56-58.
[2] CADEK M,COLEMAN J N, RYAN K P, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area[J]. Nano Lett, 2004, 4(2): 353-356.
[3] LORDI V, YAO N. Molecular mechanics of binding in carbon nanotube-polymer composites[J]. J Mat Res, 2000, 15(12): 2270-2779.
[4] CADEK M, COLEMAN J, BARRON V, et al. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites[J]. Appl Phys Lett, 2002, 81(27): 5123-5125.
[5] YANG Hua, LIU Yu, ZHANG Hui, et al. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation[J]. Polymer, 2006, 47(21): 7607-7610.
[6] 王禹, 章林溪. 外力誘導(dǎo)吸附高分子單鏈的拉伸分子動力學(xué)研究[J]. 物理學(xué)報, 2008, 57(5): 3281-3286.
WANG Yu, ZHANG Linxi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains[J]. Acta Physica Sinica, 2008, 57(5): 3281-3286.
[7] 劉佳, 趙莉, 呂中元. 聚乙烯鏈在碳納米管側(cè)壁吸附的動力學(xué)模擬研究[J]. 高等學(xué)?;瘜W(xué)學(xué)報, 2008, 29(12): 2389-2392.
LIU Jia, ZHAO Li, LYU Zhongyuan. Molecular dynamics simulation of adsorption of a polyethylene chain on carbon nanotube[J]. Chem J Chin Universities, 2008, 29(12): 2389-2392.
[8] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1-19.
[9] HUMPHREY W, DALKE A, SCHULTEN K. VMD-visual molecular dynamics[J]. J Molec Graphics, 1996, 14(1): 33-38.
[10] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation Reactive Empirical Bond Order(REBO) potential energy expression for hydrocarbons[J]. J Phys: Condensed Mat, 2002, 14(4): 783-802.endprint