国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

縫洞型碳酸鹽巖凝析氣藏注水開發(fā)物理模擬研究

2014-07-19 11:49:09松,郭
石油實驗地質(zhì) 2014年5期
關(guān)鍵詞:凝析氣縫洞凝析油

彭 松,郭 平

(“油氣藏地質(zhì)及開發(fā)工程”國家重點實驗室,西南石油大學(xué),成都 610500)

縫洞型碳酸鹽巖凝析氣藏注水開發(fā)物理模擬研究

彭 松,郭 平

(“油氣藏地質(zhì)及開發(fā)工程”國家重點實驗室,西南石油大學(xué),成都 610500)

與一般砂巖凝析氣藏不同,縫洞型碳酸鹽巖凝析氣藏發(fā)育有大小不同、形狀各異的裂縫和孔洞,使其具有非均質(zhì)性強,流體流動規(guī)律復(fù)雜等特征。如何提高該類氣藏的采收率是值得研究的問題。技術(shù)成熟的注水技術(shù)具有開發(fā)成本低、水氣流度比好、水驅(qū)波及效率高等優(yōu)點。以塔中86井為例,采用露頭碳酸鹽巖經(jīng)過人工技術(shù)制成全直徑縫洞型巖心,在原始地層條件下(140.6 ℃,58 MPa)完成注水開發(fā)物理模擬實驗。結(jié)果表明,采用注水保壓方式開發(fā)高含凝析油的縫洞型碳酸鹽巖凝析氣藏效果較好;凝析油的采收率受縫洞連通方式、縫洞充填與否、壓力保持水平等因素的影響。

縫洞型碳酸鹽巖;凝析氣藏;高含凝析油;注水;高溫高壓;全直徑巖心;物理模擬

縫洞型碳酸鹽巖凝析氣藏是經(jīng)多期構(gòu)造運動與古巖溶共同作用形成的一種特殊類型的氣藏,其儲集空間以縫洞和裂縫—孔洞為主,具有構(gòu)造復(fù)雜、儲層非均質(zhì)性強、雙孔隙網(wǎng)絡(luò)及滲流規(guī)律復(fù)雜等特征,是當(dāng)前最復(fù)雜特殊的氣藏之一。如何提高縫洞型碳酸鹽巖凝析氣藏(尤其高含凝析油時)的采收率是一個值得研究的問題。注水作為一項成熟的技術(shù),具有開發(fā)成本低、水氣流度比好、水驅(qū)波及效率高等優(yōu)點,國內(nèi)外諸多學(xué)者針對注水開發(fā)砂巖凝析氣藏[1-9]及縫洞型碳酸鹽巖油藏[10-25]做過一系列研究,但未涉及到高含凝析油的縫洞型碳酸鹽巖凝析氣藏。故本文以塔中86井(凝析油含量533 g/m3,地層溫度140.6 ℃,地層壓力58 MPa,露點壓力55.4 MPa,最大反凝析液量壓力31 MPa)為例設(shè)計并完成了縫洞型碳酸鹽巖凝析氣藏注水開發(fā)物理模擬實驗。本次研究填補了這方面的空白,取得的研究成果對于縫洞型碳酸鹽巖凝析氣藏的高效開發(fā)具有一定的指導(dǎo)意義。

圖1 全直徑巖心實驗流程

1 實驗條件

1.1 實驗裝置

本次實驗在高溫高壓全直徑巖心驅(qū)替裝置上完成,實驗流程如圖1所示。

1.2 巖心制備

由于縫洞型儲層的重點研究對象是縫和洞,對基質(zhì)要求較低,且實際取得的全直徑巖心通常不具有縫洞代表性,達不到實驗要求,故采用野外取來的碳酸鹽巖露頭按文獻[26]中的方法制作縫洞型巖心。首先選擇一塊邊長30 cm左右的方塊碳酸鹽巖巖心,進行人造自然單縫,使縫面大致平行于方塊的任意一條棱且貫穿整塊巖心;然后用直徑為4 in的鉆頭鉆取全直徑巖心,長度10~25 cm,保持縫盡量位于全直徑巖心中央;最后根據(jù)實際情況對全直徑巖心內(nèi)部進行造洞。本次實驗研究制作的巖心如圖2所示。

圖2 制成的縫洞型全直徑巖心照片長度:11.117 cm;直徑:9.965 cm;孔隙度:16.83%;滲透率:48.26×10-3 μm2

1.3 流體制備

參照行業(yè)標(biāo)準(zhǔn)SY/T5543—2002,按凝析油含量533 g/m3、地層溫度140.6 ℃、露點壓力55.4 MPa,采用現(xiàn)場取得的塔中86井的油樣及氣樣配制凝析氣。地層水根據(jù)現(xiàn)場分析資料在室內(nèi)自行配制,總礦化度為137 900 mg/L,水型為CaCl2型。

2 實驗內(nèi)容

基于未填砂及填砂(模擬孔洞被外來固相介質(zhì)充填)的人造縫洞巖心設(shè)計了如下9組實驗:

(1)衰竭實驗4組(未填砂及填砂時水平衰竭、垂直衰竭各1組):衰竭到10 MPa(廢棄地層壓力);

(2)水平水驅(qū)實驗3組(保持露點壓力注水,未填砂和填砂各1組;保持最大反凝析液量壓力注水,巖心未填砂1組):巖心水平夾持,壓力衰竭到露點壓力(最大反凝析液量壓力)時開始注水,水突破后不出油結(jié)束注水,最后衰竭到10 MPa;

(3)垂直水驅(qū)實驗2組(未填砂和填砂各1組):巖心垂直夾持,上部采氣,壓力衰竭到最大反凝析液量壓力時開始從下部注水,水突破后不出油結(jié)束注水,最后衰竭到10 MPa。

3 實驗結(jié)果及分析

圖3及表1中的數(shù)據(jù)顯示:(1)注水開發(fā)時的凝析油最終采出程度遠高于衰竭開發(fā)時。因為衰竭開發(fā)過程中,大量析出的凝析油滯留于孔洞底部無法采出,致使凝析油采出程度低;(2)注水開發(fā)時,絕大部分凝析油是在注水突破前采出的;(3)雖然注水開發(fā)時的凝析油采出程度整體較高,但是不同實驗條件下的凝析油最終采出程度有著較大差別。下面就注水開發(fā)縫洞型碳酸鹽巖凝析氣藏時影響凝析油采收率的因素做分析。

圖3 凝析油采出程度與地層壓力的關(guān)系曲線

實驗填砂與否巖心夾持方式凝析油采出程度/%注水前衰竭注水保壓衰竭至10MPa水平衰竭垂直衰竭保持露點壓力(55.4MPa)注水保持最大反凝析液量壓力(31MPa)注水未填砂水平15.95填砂水平16.44未填砂垂直14.64填砂垂直15.55未填砂水平1.6672.679.95填砂水平1.555.2761.39未填砂水平11.0955.3357.45未填砂垂直10.8363.0563.05填砂垂直10.9950.0452.99

3.1 注水越早凝析油采收率越高

表1中數(shù)據(jù)顯示,未填砂巖心水平夾持時,保持55.4 MPa(露點壓力)注水時的凝析油采出程度比保持31 MPa(最大反凝析液量壓力)注水時高17.27%。從圖4中可看出,保持露點壓力注水過程中,無凝析油析出,注入多少水就驅(qū)替出多少體積的凝析氣,生產(chǎn)氣油比維持在原始氣油比水平,凝析油采出程度與累積注水量間呈現(xiàn)較好的線性關(guān)系。而保持最大反凝析液量壓力注水之前,反凝析出的油量達到最大值并滯留于孔洞的底部,氣相中的凝析油含量減少,當(dāng)液面抬升至水平縫面之前凝析油產(chǎn)量低,采出程度低;累積注水0.4 HCPV后,析出的凝析油被抬升至水平縫面后沿裂縫通道采出,產(chǎn)油量迅速升高,當(dāng)注水突破后油氣產(chǎn)量急劇下降直至不出油,較為復(fù)雜的油氣水三相滲流使得其凝析油采收率相對較低。上述分析表明,越早注水,地層壓力保持水平越高,凝析出的油量越少,凝析氣中的凝析油含量就越高,最終采出程度也越高。

3.2 縫洞垂直連通時凝析油采收率相對較高

圖5表明,保持最大反凝析液量壓力注水時,巖心垂直夾持(縫洞垂直連通)時的凝析油采出程度高于水平夾持(縫洞水平連通)時,這是由于縫洞水平連通時,裂縫平面將洞分割成上(0.4 HCPV)、下(0.6 HCPV)兩部分,當(dāng)注入水的液面升至裂縫平面后會突破(累積注水0.7 HCPV),注入水只占據(jù)了縫面下部的孔洞空間,而縫面上部的洞中仍聚集有凝析氣,即俗稱的“閣樓氣”;當(dāng)縫洞垂直連通時,受重力分異作用影響,注入水在洞底部聚積,隨著注水量增加,油相逐漸往洞頂移動,氣相也不斷被驅(qū)出,最終注入水占據(jù)了0.9 HCPV的縫洞空間,故其凝析油采出程度相對較高。上述分析表明,縫洞連通方式會對注水效果產(chǎn)生一定的影響,縫洞垂直連通時,注水突破前累積注入水量較高,水驅(qū)波及體積大,凝析油采出程度相對較高。

圖4 不同壓力下的氣油比及產(chǎn)量對比巖心未填砂

圖5 不同縫洞連通方式注水實驗氣油比及產(chǎn)量對比

圖6 填砂與未填砂巖心注水實驗對比曲線

3.3 縫洞充填后凝析油采收率有所降低

從圖6中可清晰看出,縫洞巖心填砂后各注水階段的產(chǎn)油量均低于未填砂時,其凝析油采出程度也相應(yīng)較低。分析認為縫洞巖心填砂后,非連續(xù)的洞變成了連續(xù)多孔介質(zhì),氣、水的流體性質(zhì)差異使得注入水容易在連續(xù)多孔介質(zhì)中滲流,并將部分凝析氣封存在孔隙中;其次,巖心填砂后表面積增大,從而增加了多相滲流阻力,所以相同注水條件下,填砂巖心的凝析油采出程度不及未填砂巖心。

4 結(jié)論

(1)與衰竭開發(fā)相比,注水開發(fā)縫洞型碳酸鹽巖凝析氣藏時的凝析油采出程度高、開發(fā)效果較好。

(2)縫洞垂直連通時,水驅(qū)波及體積大,凝析油采出程度相對較高。

(3)地層壓力越高時注水,凝析油采收率越高。

(4)孔洞被充填時,凝析油采收率有所降低。

[1] Matthews J D,Hawes R I,Hawkyard I R.Feasibility studies of waterflooding gas-condensate reservoirs[J].Journal of Petroleum Technology,1988,40(8):1049-1056.

[2] Henderson G D,Danesh A,Peden J M.An experimental investigation of waterflooding of gas condensate reservoirs and their subsequent blow down[J].Journal of Petroleum Science and Engineering,1992,8(1):43-58.

[3] Fishlock T P,Probert C J.Waterflooding of gas-condensate reservoirs[J].SPE Reservoir Engineering,1996,11(4):245-251.

[4] El-Banbi A H,Aly A M,Lee W J,et al.Investigation of waterflooding and gas cycling for developing a gas-condensate reservoir[R].SPE 59772,2000.

[5] 程遠忠,劉立平,李國江,等.板橋廢棄凝析氣藏注水提高采收率研究[J].天然氣地球科學(xué),2003,14(4):298-301.

Cheng Yuanzhong,Liu Liping,Li Guojiang,et al.The research of banqiao abandoned condensated oil and gas field by water injection[J].Natural Gas Geoscience,2003,14(4):298-301.

[6] 郭平,李海平,程遠忠,等.廢棄凝析氣藏注污水提高采收率室內(nèi)實驗及現(xiàn)場應(yīng)用[J].天然氣工業(yè),2003,23(5):76-79.

Guo Ping,Li Haiping,Cheng Yuanzhong,et al.In-house experiment and field application for abandoned condensate gas reservoirs to improve recovery ratio by injecting waste water[J].Natural Gas Industry,2003,23(5):76-79.

[7] 汪周華,郭平,孫良田,等.廢棄凝析氣藏注水開發(fā)可行性研究[J].西安石油大學(xué)學(xué)報:自然科學(xué)版,2006,21(1):29-31.

Wang Zhouhua,Guo Ping,Sun Liangtian,et al.Research of the feasibility of exploiting abandoned condensate gas reservoir by water injection[J].Journal of Xi′an Shiyou University:Natural Science Edition,2006,21(1):29-31.

[8] 吳克柳,李相方,許寒冰,等.考慮反凝析的凝析氣藏水侵量計算新方法[J].特種油氣藏,2013,20(5):86-88.

Wu Keliu,Li Xiangfang,Xu Hanbin,et al.Consider reverse condensate of condensate gas reservoir water influx calculation methods[J].Special Oil & Gas Reservoirs,2012,20(5):86-88.

[9] 周宗明,張賢松,李保振,等.實驗設(shè)計法在凝析氣藏后期注水開發(fā)方案設(shè)計中的應(yīng)用[J].天然氣工業(yè),2010,30(8):29-33.

Zhou Zongming,Zhang Xiansong,Li Baozhen,et al.An efficient experimental design of water flooding in gas condensate reservoirs[J].Natural Gas Industry,2010,30(8):29-33.

[10] Li Z Y,Pan L,Cao F.Waterflooding development of fracture-cave carbonate reservoir[J].Petroleum Science and Technology,2013,31(10):1027-1039.

[11] 康志宏.縫洞型碳酸鹽巖油藏水驅(qū)油機理模擬試驗研究[J].中國西部油氣地質(zhì),2006,2(1):87-90.

Kang Zhihong.Principium experiment of oil seepage driven by water in fracture and vug reservoir of carbonate rocks[J].West China Petroleum Geosciences,2006,2(1):87-90.

[12] 李巍,侯吉瑞,丁觀世,等.碳酸鹽巖縫洞型油藏剩余油類型及影響因素[J].斷塊油氣田,2013,20(4):458-461.

Li Wei,Hou Jirui,Ding Guanshi,et al.Remaining oil types and influence factors for fractured-vuggy carbonate reservoir[J].Fault-Block Oil & Gas Field,2013,20(4):458-461.

[13] 王禹川,王怒濤,唐剛,等.哈拉哈塘地區(qū)縫洞型碳酸鹽巖油藏單井生產(chǎn)特征[J].特種油氣藏,2012,19(2):87-89.

Wang Yuchuan,Wang Nutao,Tang Gang,et al.Research on single well production performance for fractured-vuggy carbonate reservoirs[J].Special Oil & Gas Reservoirs,2012,19(3):87-89.

[14] 李俊,彭彩珍,王雷,等.縫洞型碳酸鹽巖油藏水驅(qū)油機理模擬實驗研究[J].天然氣勘探與開發(fā),2008,31(4):41-44,84.

Li Jun,Peng Caizhen,Wang Lei,et al.Simulation experiment of water-displacing-oil mechanism in fractured-cavity carbonate oil reservoirs[J].Natural Gas Exploration & Development,2008,31(4):41-44,84.

[15] 榮元帥,黃詠梅,劉學(xué)利,等.塔河油田縫洞型油藏單井注水替油技術(shù)研究[J].石油鉆探技術(shù),2008,36(4):57-60.

Rong Yuanshuai,Huang Yongmei,Liu Xueli,et al.Single well water injection production in Tahe fracture-vuggy reservoir[J].Petroleum Drilling Techniques,2008,36(4):57-60.

[16] 張潔,孫金聲,張紹云,等.裂縫性碳酸鹽巖油藏流體流動新模型[J].斷塊油氣田,2013,20(5):623-626.

Zhang Jie,Sun Jinsheng,Zhang Shaoyun,et al.A new model of fluid flow in fractured carbonate reservoir[J]. Fault-Block Oil & Gas Field,2013,20(5):623-626.

[17] 程倩,李江龍,劉中春,等.縫洞型油藏分類開發(fā)[J].特種油氣藏,2012,19(5):93-96.

Cheng Qian,Li Jianglong,Liu Zhongchun,et al.Separate Deve-lopment of Fracture and Karst Cave Reservoirs[J].Special Oil & Gas Reservoirs,2012,19(5):93-96.

[18] 鄭小敏,孫雷,侯亞平,等.縫洞型碳酸鹽巖油藏水驅(qū)油物理模型對比實驗研究[J].重慶科技學(xué)院學(xué)報:自然科學(xué)版,2009,11(5):20-22,82.

Zheng Xiaomin,Sun Lei,Hou Yaping,et al.Contrast research on water/oil displacing physical models of fracture-vuggy carbonate reservoir[J].Journal of Chongqing University of Science and Technology:Natural Science Edition,2009,11(5):20-22,82.

[19] 李江龍,陳志海,高樹生.縫洞型碳酸鹽巖油藏水驅(qū)油微觀實驗?zāi)M研究:以塔河油田為例[J].石油實驗地質(zhì),2009,31(6):637-642.

Li Jianglong,Chen Zhihai,Gao Shusheng.Microcosmic experiment modeling on water-driven-oil mechanism in fractured-vuggy re-servoirs[J].Petroleum Geology & Experiment,2009,31(6):637-642.

[20] 鄭小敏,孫雷,王雷,等.縫洞型碳酸鹽巖油藏水驅(qū)油機理物理模擬研究[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2010,32(2):89-92.

Zheng Xiaomin,Sun Lei,Wang Lei,et al.Physical simulation of water displacing oil mechanism for vuggy fractured carbonate rock reservoir[J].Journal of Southwest Petroleum University:Science& Technology Edition,2010,32(2):89-92.

[21] 李鹴,李允.縫洞型碳酸鹽巖孤立溶洞注水替油實驗研究[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2010,32(1):117-120.

Li Shuang,Li Yun.An experimental research on water injection to replace the oil in isolated caves in fracture-cavity carbonate rock oilfield[J].Journal of Southwest Petroleum University:Science & Technology Edition,2010,32(1):117-120.

[22] 李隆新,吳鋒,張烈輝,等.縫洞型底水油藏開發(fā)動態(tài)數(shù)值模擬方法研究[J].特種油氣藏,2013,20(3):104-107. Li Longxin,Wu Feng,Zhang Liehui,et al.Numerical simulation research on development performance of fractured-vuggy reservoirs with bottom water[J].Special Oil & Gas Reservoirs,2012,20(3):104-107.

[23] 陳瑩瑩,孫雷,田同輝,等.裂縫性碳酸鹽巖油藏可視化模型水驅(qū)油實驗[J].斷塊油氣田,2012,19(1):92-94.

Chen Yingying,Sun Lei,Tian Tonghui,et al.Experiment on water-oil displacing for visible model of fractured carbonate reservoir[J].Fault-Block Oil and Gas Field,2012,19(1):92-94.

[24] 馬旭杰,劉培亮,何長江.塔河油田縫洞型油藏注水開發(fā)模式[J].新疆石油地質(zhì),2011,32(1):63-65.

Ma Xujie,Liu Peiliang,He Changjiang.Waterflooding pattern for fractured-vuggy reservoir in Tahe Oilfield,Tarim Basin[J].Xinjiang Petroleum Geology,2011,32(1):63-65.

[25] 彭彩珍,孟立新,郭平,等.三維物理模型驅(qū)油實驗?zāi)M裝置研制與應(yīng)用[J].石油實驗地質(zhì),2013,35(5):570-573.

Peng Caizhen,Meng Lixin,Guo Ping,et al.Development and application of modeling device for oil/water displacement by 3d physical model[J].Petroleum Geology & Experiment,2013,35(5):570-573.

[26] 西南石油大學(xué).縫洞型碳酸鹽凝析氣藏注水替氣實驗測試方法:中國,CN102518414A[P].2012-06-27.

Southwest Petroleum University.An experimental test method on displacing gas by water injection for fractured-cavity carbonate gas-condensate reservoirs:China,CN102518414A[P].2012-06-27.

(編輯 黃 娟)

Physical simulation of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection

Peng Song, Guo Ping

(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China)

Due to the development of fissures and cavities with different sizes and shapes, fractured-vuggy carbonate gas condensate reservoirs are distinct from the general sand gas condensate reservoirs, hence are characterized by strong heterogeneity and complicated flow regularity. To these reservoirs, it is a question of concern that which developing strategy is benefit to maximize the recoveries of oil and gas. As a mature technology, water injection possesses advantages such as lower cost, better gas-water mobility ratio, and higher sweep efficiency. Taking well TZ86 as a target, we accomplished a physical simulation research under initial reservoir conditions (140.6 ℃,58 MPa) by using an artificial fractured-vuggy full-diameter core which was made from an outcrop of carbonate rock. The experimental results show that the effectiveness of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection is significant. The factors such as the connectivity pattern between fissure and cavern, the pressure maintenance level of water injection, and cavern whether or not filling have effects on the recovery of condensate oil.

fractured-vuggy carbonate rock; gas condensate reservoir; high content of condensate oil; water injection; high temperature and high pressure; full-diameter core; physical simulation

1001-6112(2014)05-0645-05

10.11781/sysydz201405645

2013-05-07;

2014-07-20。

彭松(1986—),男,博士生,從事油氣藏工程研究。E-mail: winter_melon@126.com。

郭平(1965—),男,教授,從事油氣藏工程、油氣相態(tài)、氣田開發(fā)研究。E-mail: guopingswpi@vip.sina.com。

高校博士點基金“高溫高壓多組分凝析氣非平衡相態(tài)理論模型研究”(20115121110002)資助。

TE372

A

猜你喜歡
凝析氣縫洞凝析油
碳酸鹽巖縫洞儲集體分尺度量化表征
氣田采出水中凝析油回收節(jié)能降耗對策及效果評價
渤海灣盆地渤中凹陷探明全球最大的變質(zhì)巖凝析氣田
某油田凝析油回收系統(tǒng)優(yōu)化改進與效果分析
天津科技(2020年6期)2020-06-29 16:14:40
中國石化勝利油田海上油田首次開采出透明凝析油
哈拉哈塘奧陶系縫洞型成巖圈閉及其成因
凝析油處理系統(tǒng)能量利用方案優(yōu)化研究
縫洞型介質(zhì)結(jié)構(gòu)對非混相氣驅(qū)油采收率的影響
產(chǎn)水凝析氣井積液診斷研究
盆5低壓凝析氣藏復(fù)產(chǎn)技術(shù)難點及對策
页游| 平陆县| 工布江达县| 桓台县| 彭阳县| 和政县| 巩留县| 根河市| 正阳县| 樟树市| 杂多县| 全南县| 九龙县| 元朗区| 富蕴县| 儋州市| 出国| 安吉县| 奉新县| 抚顺县| 多伦县| 罗平县| 电白县| 古田县| 江门市| 缙云县| 荃湾区| 兴国县| 乐昌市| 类乌齐县| 凤凰县| 东光县| 吉木乃县| 新化县| 延川县| 富裕县| 吉水县| 闵行区| 新巴尔虎左旗| 城市| 罗平县|