張士剛
摘要:TCP蛋白家族是一類植物特有的轉(zhuǎn)錄因子家族,參與多種生理生化過程,具有重要的調(diào)控作用。本文利用生物信息學(xué)方法對(duì)蘋果TCP轉(zhuǎn)錄因子家族成員、基因分類、基因結(jié)構(gòu)、染色體定位、系統(tǒng)進(jìn)化關(guān)系和結(jié)構(gòu)域序列保守性進(jìn)行了預(yù)測(cè)和分析。結(jié)果表明,蘋果TCP基因家族包含52個(gè)成員,分為3類:Class Ⅰ、ClassⅡ和ClassⅢ;MdTCP蛋白含有115~612個(gè)氨基酸,等電點(diǎn)為5.41~10.65;除3號(hào)染色體外,其余16條染色體均有MdTCP基因分布,其中5號(hào)染色體最多,有7個(gè)。
關(guān)鍵詞:蘋果;TCP;轉(zhuǎn)錄因子;全基因組分析
中圖分類號(hào):Q754文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2014)05-0012-06
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1(簡(jiǎn)稱TCP)家族是一類植物特有的轉(zhuǎn)錄因子家族。最早發(fā)現(xiàn)的家族成員是玉米TB1(teosinte branched 1)基因,金魚草CYC(cycloidea)基因和水稻PCF1、PCF2基因,這4個(gè)基因編碼的蛋白都包含一段由約60個(gè)氨基酸組成的保守序列,該保守序列能形成一種非典型的螺旋-環(huán)-螺旋結(jié)構(gòu)(non-canonical basic-Helix-Loop-Helix structure)[1,2,3]。根據(jù)其代表成員TB1、CYC和PCFs的首字母縮寫,把能夠編碼這段保守氨基酸序列的基因命名為TCP基因,把這段保守的氨基酸序列命名為TCP結(jié)構(gòu)域[2]。TCP結(jié)構(gòu)域中的螺旋-環(huán)-螺旋區(qū)域(bHLH)含有兩個(gè)由保守的親水氨基酸構(gòu)成的中性螺旋結(jié)構(gòu)和一個(gè)負(fù)責(zé)連接兩個(gè)螺旋區(qū)域的環(huán)結(jié)構(gòu)。在第二個(gè)螺旋區(qū)域有一個(gè)特異的“LXXLL”基序,動(dòng)物bHLH蛋白的研究結(jié)果表明這段基序可以通過調(diào)控轉(zhuǎn)錄的共激活單元結(jié)合到核定位蛋白上[4]。TCP家族成員除了含有TCP結(jié)構(gòu)域外,還存在一個(gè)保守的R結(jié)構(gòu)域[5],R結(jié)構(gòu)域并不是所有的TCP轉(zhuǎn)錄因子共有的,它富含精氨酸、賴氨酸和谷氨酸等極性氨基酸,可以形成一個(gè) 親水性的α螺旋[3]。
前人對(duì)CYC、TB1、PCFs和其他9條預(yù)測(cè)的擬南芥和玉米TCP基因進(jìn)行了進(jìn)化分析,結(jié)果表明,這12個(gè)基因可以被分為兩個(gè)亞家族,一個(gè)包含有CYC和TB1,命名為CYC/TB1亞家族;另一個(gè)包括PCFs,命名為PCF亞家族。其中TCP結(jié)構(gòu)域普遍存在于所有的TCP家族成員中,而R結(jié)構(gòu)域則特異存在于CYC/TB1亞家族的一些基因中[3]。對(duì)多種菊亞綱植物的TCP基因家族成員之間的進(jìn)化關(guān)系進(jìn)行聚類分析,表明TCP基因家族在各物種間的多樣化對(duì)其形態(tài)學(xué)上的進(jìn)化具有重要作用[6]。Yao等通過對(duì)擬南芥23個(gè)TCP基因及水稻22個(gè)TCP基因的進(jìn)化分析,將TCP家族分為三個(gè)亞家族:Class Ⅰ、Class Ⅱ和Class Ⅲ,同時(shí)對(duì)其結(jié)構(gòu)域進(jìn)行了序列比對(duì),并分析了不同基因在不同組織中的表達(dá)模式[7]。
TCP家族轉(zhuǎn)錄因子主要在快速生長(zhǎng)的組織或器官中表達(dá),與植物細(xì)胞的分化和發(fā)育有密切關(guān)系。玉米TB1基因影響側(cè)生分生組織的生長(zhǎng)和發(fā)育[1,8,9];水稻TB1基因被認(rèn)為是水稻側(cè)枝發(fā)育的負(fù)調(diào)控元件[10];擬南芥TCP16基因?qū)υ缙诨ǚ鄣陌l(fā)育有重要作用[11]。擬南芥TCP20基因能夠結(jié)合CYCB1的GCCCR元件,具有調(diào)控細(xì)胞分裂和生長(zhǎng)的作用[12],可與AtTCP9基因?qū)剐缘卣{(diào)控?cái)M南芥葉片發(fā)育和茉莉酸代謝過程[13]。研究表明,擬南芥中的5個(gè)TCP基因:TCP2、TCP3、TCP4、TCP10和TCP24是microRNA 319a的靶基因,參與調(diào)控葉片的形態(tài)發(fā)生[14]。豆科模式植物百脈根中的LjCYC1和LjCYC3參與調(diào)控花分生組織的生長(zhǎng)發(fā)育過程,另一類豆科植物豌豆中的CYC類TCP基因也參與控制背腹軸向不同類型花瓣的發(fā)育[15,16,17]。
2010年8月,Velasco等在Nature Genetics上發(fā)表了關(guān)于‘金冠蘋果基因組測(cè)序工作的文章,標(biāo)志著蘋果全基因組序列的測(cè)定已經(jīng)完成[18],這一成果將蘋果生物學(xué)研究帶入了嶄新的系統(tǒng)生物學(xué)時(shí)代,為研究者從全基因組水平對(duì)蘋果進(jìn)行研究奠定了基礎(chǔ)。蘋果RING finger、MAPK和MAPKK、MdWRKY轉(zhuǎn)錄因子及DREB轉(zhuǎn)錄因子家族基因已通過生物信息學(xué)的方法鑒定出來(lái),并進(jìn)行了全基因組分析和基因功能預(yù)測(cè)[19~22]。目前TCP轉(zhuǎn)錄因子家族的研究主要集中在模式植物擬南芥、水稻和玉米中,蔬菜和果樹尤其是蘋果中的報(bào)道還非常少。本文從蘋果全基因組出發(fā),利用生物信息學(xué)的方法,鑒定出蘋果全部的TCP轉(zhuǎn)錄因子,對(duì)其家族進(jìn)化關(guān)系及結(jié)構(gòu)域序列保守性進(jìn)行了系統(tǒng)預(yù)測(cè)和分析,以期為進(jìn)一步研究MdTCP基因的作用奠定一定的理論基礎(chǔ)。
1材料與方法
從蘋果功能基因組數(shù)據(jù)庫(kù)(http://www.appplegene.org/)下載TCP轉(zhuǎn)錄因子家族序列;從GDR數(shù)據(jù)庫(kù)下載‘金冠蘋果全基因組序列,構(gòu)建本地Blast數(shù)據(jù)庫(kù),以擬南芥TCP轉(zhuǎn)錄因子家族基因序列執(zhí)行本地Blast(1e-003)搜索[23];合并兩部分結(jié)果,利用Perl程序篩選,去掉重復(fù)序列,所得結(jié)果再利用PFAM及NCBI-CDD工具進(jìn)行蛋白結(jié)構(gòu)預(yù)測(cè),刪除不含TCP結(jié)構(gòu)域的基因。利用ExPASy Proteomics Server(http://expasy.org/),對(duì)所有TCP基因編碼蛋白進(jìn)行分子量、等電點(diǎn)預(yù)測(cè)。
從GDR數(shù)據(jù)庫(kù)下載‘金冠蘋果基因組信息文件(assembly gff3 file),利用Perl程序選取TCP基因的染色體位置信息,并利用MapDraw工具進(jìn)行染色體定位作圖。
用MUSCLE進(jìn)行序列比對(duì),選取TCP結(jié)構(gòu)域序列,再利用 MEGA5構(gòu)建進(jìn)化樹。進(jìn)化樹生成算法采用鄰接法(Neighbor-Joining,NJ),校驗(yàn)參數(shù)Bootstrap 重復(fù)1 000次[24];基因結(jié)構(gòu)利用生物學(xué)軟件Gene Structure Display Server(GSDS,http://gsds.cbi.pku.edu.cn/)分析獲得;保守性分析則采用DNAMAN生物學(xué)軟件進(jìn)行保守序列比對(duì)。
2結(jié)果與分析
2.1蘋果TCP轉(zhuǎn)錄因子家族成員的鑒定
利用生物信息學(xué)方法,從蘋果全基因組鑒定得到52個(gè)TCP轉(zhuǎn)錄因子家族成員,根據(jù)其系統(tǒng)進(jìn)化樹分析結(jié)果,對(duì)其進(jìn)行了系統(tǒng)編號(hào)。MdTCP對(duì)應(yīng)的基因編號(hào)、基因組登錄號(hào)、編碼序列長(zhǎng)度、外顯子數(shù)量、蛋白長(zhǎng)度、分子量、等電點(diǎn)、所在染色體位置和擬南芥同源基因等特征見表1。由表1可知,MdTCP蛋白長(zhǎng)度在115 aa(MdTCP50)~612 aa(MdTCP27)范圍內(nèi),等電點(diǎn)在5.41(MdTCP32)~10.65之間(MdTCP3)。如圖1所示,有49個(gè)MdTCP基因存在于不同染色體上,其中5號(hào)染色體最多,有7個(gè);3號(hào)染色體上沒有分布;其余染色體上各有1~5個(gè)MdTCP基因分布。另外有3個(gè)MdTCP基因MdTCP50、MdTCP51和MdTCP52未發(fā)現(xiàn)相應(yīng)的染色體定位信息。
2.2蘋果TCP轉(zhuǎn)錄因子家族系統(tǒng)進(jìn)化及基因結(jié)構(gòu)分析
如圖2所示,MdTCP基因的內(nèi)含子和外顯子數(shù)量表現(xiàn)出了較高的保守性,其中沒有內(nèi)含子的MdTCP基因有32個(gè),占總數(shù)的61.5%;有1個(gè)內(nèi)含子的有9個(gè),占17.3%;有2個(gè)內(nèi)含子的有7個(gè),占13.5%;有3個(gè)和5個(gè)內(nèi)含子的MdTCP基因分別有2個(gè),各占3.8%。
圖2蘋果TCP轉(zhuǎn)錄因子家族系統(tǒng)進(jìn)化樹和基因結(jié)構(gòu)分析
2.3蘋果與擬南芥TCP轉(zhuǎn)錄因子家族系統(tǒng)進(jìn)化及保守結(jié)構(gòu)域分析
進(jìn)化樹分析(圖3)表明,52個(gè)MdTCP轉(zhuǎn)錄因子可分為ClassⅠ、ClassⅡ和Class Ⅲ三類,分別包括22、4和26個(gè),其中第二類數(shù)量較少,這與擬南芥和水稻中的規(guī)律是一致的[7]。前人研究表明,擬南芥中有24個(gè)TCP家族成員[7,25],由圖3可知,不同的AtTCP轉(zhuǎn)錄因子與52個(gè)MdTCP轉(zhuǎn)錄因子有著不同的同源性,例如,AtTCP20與MdTCP22、MdTCP35、MdTCP47同源性較高,AtTCP9與MdTCP18同源性較高。對(duì)預(yù)測(cè)的52個(gè)蘋果TCP轉(zhuǎn)錄因子蛋白序列進(jìn)行保守結(jié)構(gòu)域序列比對(duì),結(jié)果發(fā)現(xiàn),三類蘋果TCP蛋白中均包含有TCP結(jié)構(gòu)域,即TCP轉(zhuǎn)錄因子的特征序列——bHLH結(jié)構(gòu)域(圖4)。
3討論與結(jié)論
隨著越來(lái)越多物種全基因組測(cè)序工作的完成,海量的基因組數(shù)據(jù)、信息擺在我們面前,如何從這些數(shù)據(jù)中找到我們所需要的部分成為亟待解決的難題。利用生物信息學(xué)方法對(duì)基因組數(shù)據(jù)進(jìn)行分析,研究各個(gè)物種間的進(jìn)化關(guān)系和相互間的親緣關(guān)系,以及物種內(nèi)各基因家族成員的進(jìn)化關(guān)系,能夠?yàn)楹罄m(xù)基因功能的研究提供一定的借鑒。本文利用生物信息學(xué)方法,對(duì)蘋果基因組中的TCP轉(zhuǎn)錄因子進(jìn)行了鑒定與分析。以期為今后研究蘋果TCP轉(zhuǎn)錄因子的具體生理作用奠定一定的理論基礎(chǔ)。
TCP轉(zhuǎn)錄因子在植物中分布較廣,各物種間的分布數(shù)量存在一定差異。擬南芥TCP轉(zhuǎn)錄因子家族有24個(gè)成員,水稻有22個(gè)成員[7,25],本研究鑒定了52個(gè)蘋果TCP家族成員。通過系統(tǒng)進(jìn)化分析發(fā)現(xiàn),MdTCP22、MdTCP35、MdTCP47與AtTCP20的同源性較高,MdTCP18與AtTCP9的同源性較高,結(jié)合擬南芥研究結(jié)果,這些基因可能在蘋果生長(zhǎng)發(fā)育及代謝過程中起作用;而MdTCP8、MdTCP9、MdTCP10、MdTCP11、MdTCP25和MdTCP49與AtTCP2、AtTCP3、AtTCP4和AtTCP10的同源性較高,說明它們有可能作為microRNA的靶基因參與蘋果葉片的發(fā)育。借鑒擬南芥、水稻及其它物種中TCP轉(zhuǎn)錄因子在植物生長(zhǎng)發(fā)育和相關(guān)代謝過程中的功能研究,探索MdTCP轉(zhuǎn)錄因子在蘋果生長(zhǎng)發(fā)育尤其是葉片和側(cè)枝、某些激素代謝過程中的功能及其相互作用機(jī)制是今后蘋果相關(guān)研究的重點(diǎn)。
參考文獻(xiàn):
[1]Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance[J]. Genetics, 1995, 141(1):333-346.
[2]Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996,383:794-799.
[3]Cubas P, Lauter N, Doebley J, et al. The TCP domain: A motif found in proteins regulating plant growth and development[J]. Plant Journal, 1999, 18(2):215-222.
[4]Heery D M, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors[J]. Nature, 1997,387:733-736.
[5]Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell, 1997,9(9):1607-1619.
[6]Reeves P A, Olmstead R G. Evolution of the TCP gene family in Asteridae:cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution[J]. Molecular Biology and Evolution, 2003, 20(12):1997-2009.
[7]Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J].Journal of Integrative Plant Biology,2007, 49(6): 885-897.
[8]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997,386:485-488.
[9]Wang R L, Stec A, Hey J, et al. The limits of selection during maize domestication[J]. Nature, 1999,398:236-239.
[10]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal, 2003, 33(3):513-520.
[11]Takeda T, Amano K, Ohto M A, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1/2):165-177.
[12]Li C, Potuschak T, Colon-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978-12983.
[13]Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plantphysiology,2012,159(4):1511-1523.
[14]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425:257-263.
[15]李超. 農(nóng)桿菌介導(dǎo)的豌豆花瓣瞬間表達(dá)系統(tǒng)的建立及利用該系統(tǒng)對(duì)百脈根TCP基因亞細(xì)胞定位的研究[D]. 上海:上海交通大學(xué), 2009.
[16] Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (13):4970-44975.
[17] Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (30):10414-410419.
[18] Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.) [J]. Nature Genetics, 2010, 42(10):833-839.
[19] Li Y Z, Wu B J, Yu Y L, et al. Genome-wide analysis of the RING finger gene family in apple[J]. Molecular Genetics and Genomics, 2011, 286(1):81-94.
[20]許瑞瑞, 張世忠, 曹慧, 等. 蘋果WRKY轉(zhuǎn)錄因子家族基因生物信息學(xué)分析[J].園藝學(xué)報(bào), 2012, 39(10):2249-2260.
[21]Zhao T, Liang D, Wang P, et al. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress[J]. Molecular Genetics Genomics, 2012, 287(5):423-436.
[22]Zhang S, Xu R, Luo X, et al. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica[J].Gene, 2013, 531(2):377-387.
[23]Mount D W. Using the basic local alignment search tool (BLAST) [J]. Cold Spring Harbor Protocols, 2007, doi: 10.1101/pdb.top17.
[24]Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011,28:2731-2739.
[25]Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Cronk Q C B, Bateman R M, Hawkins J A, eds. Developmental Genetics and Plant Evolution. London:CRC Press, 2002:247-266.山 東 農(nóng) 業(yè) 科 學(xué)2014,46(5):18~20,25Shandong Agricultural Sciences山 東 農(nóng) 業(yè) 科 學(xué)第46卷第5期王風(fēng)云,等:電子村務(wù)系統(tǒng)的設(shè)計(jì)與開發(fā)
[7]Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J].Journal of Integrative Plant Biology,2007, 49(6): 885-897.
[8]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997,386:485-488.
[9]Wang R L, Stec A, Hey J, et al. The limits of selection during maize domestication[J]. Nature, 1999,398:236-239.
[10]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal, 2003, 33(3):513-520.
[11]Takeda T, Amano K, Ohto M A, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1/2):165-177.
[12]Li C, Potuschak T, Colon-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978-12983.
[13]Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plantphysiology,2012,159(4):1511-1523.
[14]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425:257-263.
[15]李超. 農(nóng)桿菌介導(dǎo)的豌豆花瓣瞬間表達(dá)系統(tǒng)的建立及利用該系統(tǒng)對(duì)百脈根TCP基因亞細(xì)胞定位的研究[D]. 上海:上海交通大學(xué), 2009.
[16] Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (13):4970-44975.
[17] Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (30):10414-410419.
[18] Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.) [J]. Nature Genetics, 2010, 42(10):833-839.
[19] Li Y Z, Wu B J, Yu Y L, et al. Genome-wide analysis of the RING finger gene family in apple[J]. Molecular Genetics and Genomics, 2011, 286(1):81-94.
[20]許瑞瑞, 張世忠, 曹慧, 等. 蘋果WRKY轉(zhuǎn)錄因子家族基因生物信息學(xué)分析[J].園藝學(xué)報(bào), 2012, 39(10):2249-2260.
[21]Zhao T, Liang D, Wang P, et al. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress[J]. Molecular Genetics Genomics, 2012, 287(5):423-436.
[22]Zhang S, Xu R, Luo X, et al. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica[J].Gene, 2013, 531(2):377-387.
[23]Mount D W. Using the basic local alignment search tool (BLAST) [J]. Cold Spring Harbor Protocols, 2007, doi: 10.1101/pdb.top17.
[24]Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011,28:2731-2739.
[25]Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Cronk Q C B, Bateman R M, Hawkins J A, eds. Developmental Genetics and Plant Evolution. London:CRC Press, 2002:247-266.山 東 農(nóng) 業(yè) 科 學(xué)2014,46(5):18~20,25Shandong Agricultural Sciences山 東 農(nóng) 業(yè) 科 學(xué)第46卷第5期王風(fēng)云,等:電子村務(wù)系統(tǒng)的設(shè)計(jì)與開發(fā)
[7]Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J].Journal of Integrative Plant Biology,2007, 49(6): 885-897.
[8]Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997,386:485-488.
[9]Wang R L, Stec A, Hey J, et al. The limits of selection during maize domestication[J]. Nature, 1999,398:236-239.
[10]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant Journal, 2003, 33(3):513-520.
[11]Takeda T, Amano K, Ohto M A, et al. RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1/2):165-177.
[12]Li C, Potuschak T, Colon-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978-12983.
[13]Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plantphysiology,2012,159(4):1511-1523.
[14]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425:257-263.
[15]李超. 農(nóng)桿菌介導(dǎo)的豌豆花瓣瞬間表達(dá)系統(tǒng)的建立及利用該系統(tǒng)對(duì)百脈根TCP基因亞細(xì)胞定位的研究[D]. 上海:上海交通大學(xué), 2009.
[16] Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (13):4970-44975.
[17] Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea (Pisum sativum L.) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (30):10414-410419.
[18] Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.) [J]. Nature Genetics, 2010, 42(10):833-839.
[19] Li Y Z, Wu B J, Yu Y L, et al. Genome-wide analysis of the RING finger gene family in apple[J]. Molecular Genetics and Genomics, 2011, 286(1):81-94.
[20]許瑞瑞, 張世忠, 曹慧, 等. 蘋果WRKY轉(zhuǎn)錄因子家族基因生物信息學(xué)分析[J].園藝學(xué)報(bào), 2012, 39(10):2249-2260.
[21]Zhao T, Liang D, Wang P, et al. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress[J]. Molecular Genetics Genomics, 2012, 287(5):423-436.
[22]Zhang S, Xu R, Luo X, et al. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica[J].Gene, 2013, 531(2):377-387.
[23]Mount D W. Using the basic local alignment search tool (BLAST) [J]. Cold Spring Harbor Protocols, 2007, doi: 10.1101/pdb.top17.
[24]Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011,28:2731-2739.
[25]Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Cronk Q C B, Bateman R M, Hawkins J A, eds. Developmental Genetics and Plant Evolution. London:CRC Press, 2002:247-266.山 東 農(nóng) 業(yè) 科 學(xué)2014,46(5):18~20,25Shandong Agricultural Sciences山 東 農(nóng) 業(yè) 科 學(xué)第46卷第5期王風(fēng)云,等:電子村務(wù)系統(tǒng)的設(shè)計(jì)與開發(fā)