謝珂+龔梁+陳建強+鄒堅定+魯杰+熊華+施雪莉
[摘要] 目的 研究姜黃素及其單羰基結構衍生物B06對不同輻射抗拒鼻咽癌細胞株CNE-2與CNE-2R的作用。方法 以MTT法檢測姜黃素和B06對細胞增殖的影響,以流式細胞儀檢測姜黃素和B06對細胞凋亡的影響,以Western-blot檢測姜黃素和B06對ERS通路相關蛋白的影響。 結果 姜黃素對CNE-2和CNE-2R的IC50分別為8.35 μM和6.84 μM,B06對CNE-2和CNE-2R的IC50分別為1.09 μM和0.74 μM。B06能激活CNE-2R細胞ERS通路中關鍵蛋白CHOP、XBP-1、ATF-4的表達,而姜黃素則不能激活其表達。結論 新型單羰基姜黃素衍生物B06能更顯著地抑制輻射抗拒鼻咽癌細胞的增殖,該作用機制很可能是通過ERS通路發(fā)揮,提示B06具有抑制輻射抗拒鼻咽癌細胞的潛在價值。
[關鍵詞] 姜黃素;單羰基衍生物;鼻咽癌;輻射抗拒
[中圖分類號] R285.5 [文獻標識碼] A [文章編號] 1673-9701(2014)17-0021-04
Inhibition effect of curcumin mono-carbonyl derivative B06 on nasop- haryngeal carcinoma cells with different radioresistance
XIE Ke GONG Liang CHEN Jianqiang ZOU Jianding LU Jie XIONG Hua SHI Xueli
Department of Otolaryngology, the Peoples Hospital of Cixi City in Zhejiang Province, the Affiliated Cixi Hospital of Wenzhou Medical University, Cixi 315300, China
[Abstract] Objective To study the effects of B06, a mono-carbonyl derivative of curcumin, on homologous nasopharyngeal carcinoma cell lines CNE-2R and CNE-2 with different radioresistance. Methods The effects of B06 and curcumin on cell proliferation were determined by MTT assay. The cell apoptosis was determined by flow cytometry. The effects of B06 and curcumin on ERS related proteins were determined by western-blot. Results Curcumin inhibited CNE-2 and CNE-2R cells with IC50 of 8.35 μM and 6.84 μM respectively. B06 inhibited CNE-2 and CNE-2R cell lines with IC50 of 1.09 μM and 0.74 μM respectively. B06 could activate the expression of CHOP, XBP-1 and ATF-4, the key proteins of ERS passway, while curcumin could not. Conclusion The new mono-carbonyl curcumin derivative B06 can suppress the proliferation of nasopharyngeal carcinoma cells with radioresistance more significantly. The mechanism of this effect is probably through the ERS pathway, suggesting that B06 has the potential value to inhibit nasopharyngeal carcinoma cells with radioresistance.
[Key words] Curcumin; Mono-carbonyl derivative; Nasopharyngeal carcinoma; Radioresistance
鼻咽癌(nasopharyngeal carcinoma,NPC)是中國常見的惡性腫瘤之一,其首選治療方式為放療,但部分患者易出現(xiàn)放療耐受現(xiàn)象,嚴重影響了患者的生存率。如何對放療耐受的鼻咽癌患者進行治療,是目前臨床的治療難點。近來研究表明,內質網(wǎng)應激(endoplasmic reticulum stress,ERS)信號通路可以誘導細胞凋亡,從而抑制腫瘤細胞生長[1-10]。ERS通路作為一條新的誘導細胞凋亡的靶點,可能可以避免腫瘤細胞對藥物的耐受和對輻射的抗拒,基于這一思路,本文主要研究了抗腫瘤藥物姜黃素的單羰基結構衍生物B06對輻射抗拒的鼻咽癌細胞株的作用,現(xiàn)報道如下。
1 材料與方法
1.1 材料
姜黃素、噻唑藍(MTT)、DMSO購自sigma公司,B06由溫州醫(yī)學院生物與天然藥物研究院梁廣博士贈送; 1640培養(yǎng)基為GIBCOL產品;小牛血清為杭州四季青產品;一抗:CCAAT/增強子結合蛋白同源蛋白(CCAAT/enhancer-binding protein-homologous protein, CHOP)抗體、激活轉錄因子(activating transcription factor 4,ATF-4)抗體、人X盒結合蛋白(X-box binding protein,XBP-1)抗體,二抗:羊抗小鼠 IgG-HRP,羊抗兔IgG-HRP,驢抗羊 IgG-HRP等抗體購自Santa Cruz公司。
1.2 方法
1.2.1 細胞培養(yǎng) CNE-2和CNE-2R(抗輻射)細胞株(由中山大學中山醫(yī)學院病理生理學教研室饋贈)[11]在含有10%小牛血清、100 U/mL青霉素及0.1 mg/mL鏈霉素的1640細胞培養(yǎng)液內,于37℃、5%CO2細胞培養(yǎng)箱內培養(yǎng)。
1.2.2 MTT實驗 取對數(shù)生長期細胞接種至96孔板,100 μL/孔,4×103個細胞/孔,每組設6孔,重復3次,培養(yǎng)24 h根據(jù)實驗分組換新鮮培養(yǎng)液或含不同濃度藥物的培養(yǎng)液100 μL/孔。繼續(xù)培養(yǎng)48 h后,每孔加20 μL的MTT溶液(5 mg/mL),37℃、5%CO2培養(yǎng)箱孵育4 h,酶標儀測定490 nm光吸度值(A490),按公式計算藥物對細胞增殖的抑制率:抑制率=[(A490對照-A490用藥)/A490對照] ×100%。
1.2.3 Western-blot檢測姜黃素及其衍生物對ERS通路相關蛋白的影響 消化收集細胞沉淀,加入RIPA緩沖液裂解細胞,離心取上清。蛋白定量后取50 μg蛋白,10%聚丙烯酞胺凝膠電泳(polyacrylamide gel electrophoresis,PAGE),80 V恒壓20 min,140 V恒壓電泳3 h。電泳完畢后,采用濕轉法,將PAGE膠上的蛋白質至PVDF膜上。5%脫脂奶粉室溫封閉聚偏二氟乙烯膜(polyvinylidene fluoride,PVDF)1 h,封閉液稀釋的一抗(Anti-CHOP、Anti-XBP-1、Anti-ATF-4,1∶500稀釋)4℃;孵育過夜,TBST緩沖液洗膜3次,加入辣根過氧化物酶(horseradish peroxidase,HRP)標記的二抗(1∶1000稀釋)室溫雜交1 h,TBST緩沖液洗膜3次,膜稍干后加入化學發(fā)光液,超高靈敏度化學發(fā)光成像系統(tǒng)(Bio-Rad ChemiDoc XRS + Imaging System)成像。
1.3 統(tǒng)計學處理
采用SPSS 16.0軟件包進行統(tǒng)計學處理。結果以均數(shù)±標準差(x±s)表示,組間比較采用t檢驗或單因素方差分析(One-way ANOVA),P<0.05為差異有統(tǒng)計學意義。
2 結果
2.1 單羰基姜黃素衍生物B06抑制CNE-2R和CNE-2細胞增殖的效應
MTT細胞增殖試驗結果顯示,B06對CNE-2R和CNE-2細胞的抑制作用明顯高于姜黃素組,CNE-2和CNE-2R細胞在高濃度姜黃素(10 μM)中的抑制率分別為63%、89%,而在2 μM 的B06中抑制率可達到79%、95%,提示B06具有較高的抑制鼻咽癌細胞的活性。姜黃素對CNE-2和CNE-2R的IC50分別為8.35 μM和6.84 μM,B06對CNE-2和CNE-2R的IC50分別為1.09 μM和0.74 μM,較姜黃素相比明顯減小,差異有統(tǒng)計學意義(t=23.85、22.42,P<0.01),表明B06較小的劑量下就達到很好的抑制腫瘤活性,見表1。4000個細胞接種于96孔板,用1640培養(yǎng)液培養(yǎng)于37℃、5%CO2細胞培養(yǎng)箱內,24 h后更新培養(yǎng)液并加入不同濃度的化合物,繼續(xù)處理48 h,MTT檢測細胞抑制率。結果顯示當B06處理CNE-2R細胞48 h時,其抑瘤作用較CNE-2細胞明顯增強,表明B06很可能對輻射抗拒細胞株具有更強的抑瘤作用,見圖1。
表1 姜黃素及其衍生物B06對CNE-2、CNE-2R細胞IC50值
圖1 B06和姜黃素抑制CNE-2、CNE-2R細胞
2.2 單羰基姜黃素衍生物B06對CNE-2和CNE-2R細胞內質網(wǎng)應激通路的影響
本文采用Western blot檢測單羰基姜黃素衍生物B06對CNE-2和CNE-2R內質網(wǎng)應激信號通路相關蛋白的作用。結果顯示B06能激活CNE-2R細胞ERS通路中關鍵蛋白CHOP、XBP-1、ATF-4的表達,而姜黃素則不能激活其表達,且B06在10 μM濃度即激活了CHOP、XBP-1和ATF-4,見圖2。
圖2 5、10、20 μM B06和姜黃素處理CNE-2R細胞24 h后對細胞核內CHOP、XBP-1和ATF-4的表達
3 討論
鼻咽癌(nasopharyngeal carcinoma,NPC)是中國常見的惡性腫瘤之一,絕大多數(shù)鼻咽癌病例分布在亞洲東南部,發(fā)病人群主要集中在中國居民和華裔。鼻咽癌的首選治療方式為放療,但部分患者出現(xiàn)放療耐受現(xiàn)象,嚴重影響了患者的生存率。如何尋找新的藥物作用靶點、提高腫瘤患者生存率依然是鼻咽癌治療的關鍵問題。
近來研究發(fā)現(xiàn)過度內質網(wǎng)應激(endoplasmic reticulum stress,ERS)可啟動細胞凋亡,是一條新的細胞凋亡信號傳導通路,這一信號傳導通路包括非折疊蛋白反應和鈣離子起始信號等機制。ERS可特異性激活半胱天冬酶(Caspase)信號通道等下游效應蛋白酶,最終導致細胞死亡。近年來的研究表明內質網(wǎng)應激與腫瘤的發(fā)生、發(fā)展及細胞凋亡都密切相關[1-10],Caspase、CHOP、Bcl-2等酶在ERS介導的腫瘤細胞凋亡中發(fā)揮著重要作用,針對這些酶所設計的抑制劑或激活劑可以促進腫瘤細胞凋亡。新的誘導細胞凋亡的靶點可能避免腫瘤細胞對藥物的耐受和對輻射的抗拒,ERS信號通路作為新的抗腫瘤藥物靶點,對其進行拓展研究具有廣譜抗癌特性的苗頭化合物也許是尋求新藥源的捷徑。
姜黃素(Curcumin)是從姜科植物的根莖中提取的一種天然化合物,也是我國中藥莪術、姜黃中的主要活性成分。近年來姜黃素的抗腫瘤作用已被大量的研究報道所證實[12-17]。但姜黃素結構不穩(wěn)定,體內代謝速度快,大大限制了其臨床運用。為克服姜黃素這一缺點,篩選出更好的抗腫瘤新藥,我們通過用單羰基基團替換姜黃素結構中不穩(wěn)定的β-二酮基團,設計合成了新型單羰基姜黃素結構類似物(代號B06)。
本實驗研究中,我們利用已建立的鼻咽癌輻射耐受對比模型(專利號:200810199185.8),采用MTT法發(fā)現(xiàn)該新型單羰基姜黃素結構類似物B06對抗輻射鼻咽癌細胞株CNE-2R的半數(shù)抑制濃度低于1μM,大大超過其先導物姜黃素。并且進一步采用Western Blot檢測證實了單羰基姜黃素結構類似物B06通過ERS信號通路發(fā)揮誘導凋亡的作用。
綜上所述,通過本實驗研究發(fā)現(xiàn),本課題組合成的新型單羰基姜黃素結構類似物B06與其先導物姜黃素的抗癌機制不同,B06能較特異靶向ERS通路發(fā)揮抗癌作用,對抗輻射鼻咽癌細胞株CNE-2R具有較強的抑制作用,提示單羰基姜黃素結構類似物是可能抑制鼻咽癌放療耐受的新藥源。
[參考文獻]
[1] Qi X,Mochly-Rosen D. The PKC{delta}-Abl complex communicates ER stress to the mitochondria-an essential step in subsequent apoptosis[J]. J Cell Sci,2008,121(Pt 6):804-813.
[2] Ou L,Wu Y,Ip C,et al. Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response[J]. J Lipid Res,2008,49(5):985-994.
[3] Lee SY,Lee MS,Cherla RP,et al. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells[J]. Cell Microbiol,2008,10(3):770-780.
[4] Zhang K,Kaufman RJ. The unfolded protein response:A stress signaling pathway critical for health and disease[J]. Neurology,2006,66(2 Suppl 1):102-109.
[5] Zhang K,Kaufman RJ. Protein folding in the endoplasmic reticulum and the unfolded protein response[J]. Handb Exp Pharmacol,2006,(172):69-91.
[6] Malhotra JD,Kaufman RJ. The endoplasmic reticulum and the unfolded protein response[J]. Semin Cell Dev Biol,2007,18(6):716-731.
[7] Isohashi F,Endo H,Mukai M,et al. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions[J]. Cancer Sci,2008,99(12):2395-2401.
[8] Schonthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer[J]. Biochem Pharmacol,2013,85(5):653-666.
[9] Li Y,Liu H,Huang YY,et al. Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase[J]. Int J Mol Med,2013,31(5):1234-1242.
[10] Lan YC,Chang CL,Sung MT,et al. Zoledronic acid-induced cytotoxicity through endoplasmic beticulum stress triggered REDD1-mTOR pathway in breast cancer cells[J]. Anticancer Res,2013,33(9):3807-3814.
[11] 潘運寶,曲昌菊,楊惠玲,等. 不同輻射抗拒鼻咽癌細胞細胞周期和形態(tài)學差異比較[J]. 中山大學學報(醫(yī)學科學版),2009,30(Z1):38-41.
[12] Scott DW,Loo G. Curcumin-induced GADD153 upregulation:Modulation by glutathione[J]. J Cell Biochem,2007, 101(2):307-320.
[13] Pae HO,Jeong SO,Jeong GS,et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells[J]. Biochem Biophys Res Commun,2007,353(4):1040-1045.
[14] Siddiqui RA,Harvey KA,Walker C,et al. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice[J]. BMC Cancer,2013,13(1):418.
[15] Abouzeid AH,Patel NR,Rachman IM,et al. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin[J]. J Drug Target, 2013,21(10):994-1000.
[16] Hsu CH,Cheng AL. Clinical studies with curcumin[J]. Adv Exp Med Biol,2007,595: 471-480.
[17] Chakraborty S MN,Ghosh U,Bhattacharyya NP,et al. Curcumin-induced apoptosis inhuman leukemia cell HL-60 is associated with inhibition of telomerase activity[J]. Mol Cell Biochem, 2007,297(1-2):31-39.
(收稿日期:2013-11-13)
本實驗研究中,我們利用已建立的鼻咽癌輻射耐受對比模型(專利號:200810199185.8),采用MTT法發(fā)現(xiàn)該新型單羰基姜黃素結構類似物B06對抗輻射鼻咽癌細胞株CNE-2R的半數(shù)抑制濃度低于1μM,大大超過其先導物姜黃素。并且進一步采用Western Blot檢測證實了單羰基姜黃素結構類似物B06通過ERS信號通路發(fā)揮誘導凋亡的作用。
綜上所述,通過本實驗研究發(fā)現(xiàn),本課題組合成的新型單羰基姜黃素結構類似物B06與其先導物姜黃素的抗癌機制不同,B06能較特異靶向ERS通路發(fā)揮抗癌作用,對抗輻射鼻咽癌細胞株CNE-2R具有較強的抑制作用,提示單羰基姜黃素結構類似物是可能抑制鼻咽癌放療耐受的新藥源。
[參考文獻]
[1] Qi X,Mochly-Rosen D. The PKC{delta}-Abl complex communicates ER stress to the mitochondria-an essential step in subsequent apoptosis[J]. J Cell Sci,2008,121(Pt 6):804-813.
[2] Ou L,Wu Y,Ip C,et al. Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response[J]. J Lipid Res,2008,49(5):985-994.
[3] Lee SY,Lee MS,Cherla RP,et al. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells[J]. Cell Microbiol,2008,10(3):770-780.
[4] Zhang K,Kaufman RJ. The unfolded protein response:A stress signaling pathway critical for health and disease[J]. Neurology,2006,66(2 Suppl 1):102-109.
[5] Zhang K,Kaufman RJ. Protein folding in the endoplasmic reticulum and the unfolded protein response[J]. Handb Exp Pharmacol,2006,(172):69-91.
[6] Malhotra JD,Kaufman RJ. The endoplasmic reticulum and the unfolded protein response[J]. Semin Cell Dev Biol,2007,18(6):716-731.
[7] Isohashi F,Endo H,Mukai M,et al. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions[J]. Cancer Sci,2008,99(12):2395-2401.
[8] Schonthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer[J]. Biochem Pharmacol,2013,85(5):653-666.
[9] Li Y,Liu H,Huang YY,et al. Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase[J]. Int J Mol Med,2013,31(5):1234-1242.
[10] Lan YC,Chang CL,Sung MT,et al. Zoledronic acid-induced cytotoxicity through endoplasmic beticulum stress triggered REDD1-mTOR pathway in breast cancer cells[J]. Anticancer Res,2013,33(9):3807-3814.
[11] 潘運寶,曲昌菊,楊惠玲,等. 不同輻射抗拒鼻咽癌細胞細胞周期和形態(tài)學差異比較[J]. 中山大學學報(醫(yī)學科學版),2009,30(Z1):38-41.
[12] Scott DW,Loo G. Curcumin-induced GADD153 upregulation:Modulation by glutathione[J]. J Cell Biochem,2007, 101(2):307-320.
[13] Pae HO,Jeong SO,Jeong GS,et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells[J]. Biochem Biophys Res Commun,2007,353(4):1040-1045.
[14] Siddiqui RA,Harvey KA,Walker C,et al. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice[J]. BMC Cancer,2013,13(1):418.
[15] Abouzeid AH,Patel NR,Rachman IM,et al. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin[J]. J Drug Target, 2013,21(10):994-1000.
[16] Hsu CH,Cheng AL. Clinical studies with curcumin[J]. Adv Exp Med Biol,2007,595: 471-480.
[17] Chakraborty S MN,Ghosh U,Bhattacharyya NP,et al. Curcumin-induced apoptosis inhuman leukemia cell HL-60 is associated with inhibition of telomerase activity[J]. Mol Cell Biochem, 2007,297(1-2):31-39.
(收稿日期:2013-11-13)
本實驗研究中,我們利用已建立的鼻咽癌輻射耐受對比模型(專利號:200810199185.8),采用MTT法發(fā)現(xiàn)該新型單羰基姜黃素結構類似物B06對抗輻射鼻咽癌細胞株CNE-2R的半數(shù)抑制濃度低于1μM,大大超過其先導物姜黃素。并且進一步采用Western Blot檢測證實了單羰基姜黃素結構類似物B06通過ERS信號通路發(fā)揮誘導凋亡的作用。
綜上所述,通過本實驗研究發(fā)現(xiàn),本課題組合成的新型單羰基姜黃素結構類似物B06與其先導物姜黃素的抗癌機制不同,B06能較特異靶向ERS通路發(fā)揮抗癌作用,對抗輻射鼻咽癌細胞株CNE-2R具有較強的抑制作用,提示單羰基姜黃素結構類似物是可能抑制鼻咽癌放療耐受的新藥源。
[參考文獻]
[1] Qi X,Mochly-Rosen D. The PKC{delta}-Abl complex communicates ER stress to the mitochondria-an essential step in subsequent apoptosis[J]. J Cell Sci,2008,121(Pt 6):804-813.
[2] Ou L,Wu Y,Ip C,et al. Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response[J]. J Lipid Res,2008,49(5):985-994.
[3] Lee SY,Lee MS,Cherla RP,et al. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells[J]. Cell Microbiol,2008,10(3):770-780.
[4] Zhang K,Kaufman RJ. The unfolded protein response:A stress signaling pathway critical for health and disease[J]. Neurology,2006,66(2 Suppl 1):102-109.
[5] Zhang K,Kaufman RJ. Protein folding in the endoplasmic reticulum and the unfolded protein response[J]. Handb Exp Pharmacol,2006,(172):69-91.
[6] Malhotra JD,Kaufman RJ. The endoplasmic reticulum and the unfolded protein response[J]. Semin Cell Dev Biol,2007,18(6):716-731.
[7] Isohashi F,Endo H,Mukai M,et al. Insulin-like growth factor stimulation increases radiosensitivity of a pancreatic cancer cell line through endoplasmic reticulum stress under hypoxic conditions[J]. Cancer Sci,2008,99(12):2395-2401.
[8] Schonthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer[J]. Biochem Pharmacol,2013,85(5):653-666.
[9] Li Y,Liu H,Huang YY,et al. Suppression of endoplasmic reticulum stress-induced invasion and migration of breast cancer cells through the downregulation of heparanase[J]. Int J Mol Med,2013,31(5):1234-1242.
[10] Lan YC,Chang CL,Sung MT,et al. Zoledronic acid-induced cytotoxicity through endoplasmic beticulum stress triggered REDD1-mTOR pathway in breast cancer cells[J]. Anticancer Res,2013,33(9):3807-3814.
[11] 潘運寶,曲昌菊,楊惠玲,等. 不同輻射抗拒鼻咽癌細胞細胞周期和形態(tài)學差異比較[J]. 中山大學學報(醫(yī)學科學版),2009,30(Z1):38-41.
[12] Scott DW,Loo G. Curcumin-induced GADD153 upregulation:Modulation by glutathione[J]. J Cell Biochem,2007, 101(2):307-320.
[13] Pae HO,Jeong SO,Jeong GS,et al. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells[J]. Biochem Biophys Res Commun,2007,353(4):1040-1045.
[14] Siddiqui RA,Harvey KA,Walker C,et al. Characterization of synergistic anti-cancer effects of docosahexaenoic acid and curcumin on DMBA-induced mammary tumorigenesis in mice[J]. BMC Cancer,2013,13(1):418.
[15] Abouzeid AH,Patel NR,Rachman IM,et al. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin[J]. J Drug Target, 2013,21(10):994-1000.
[16] Hsu CH,Cheng AL. Clinical studies with curcumin[J]. Adv Exp Med Biol,2007,595: 471-480.
[17] Chakraborty S MN,Ghosh U,Bhattacharyya NP,et al. Curcumin-induced apoptosis inhuman leukemia cell HL-60 is associated with inhibition of telomerase activity[J]. Mol Cell Biochem, 2007,297(1-2):31-39.
(收稿日期:2013-11-13)