戴 琛
(蘇州高等幼兒師范學(xué)校,江蘇蘇州 215008)
奇異雙調(diào)和方程無(wú)窮多解的存在性
戴 琛
(蘇州高等幼兒師范學(xué)校,江蘇蘇州 215008)
本文利用集中緊性原理和變分方程對(duì)奇異雙調(diào)和方程進(jìn)行研究,通過(guò)截?cái)嗉夹g(shù)和分析技巧得到了該問(wèn)題無(wú)窮多個(gè)解的存在性。
雙調(diào)和方程;集中緊性原理;變分方法
本文研究如下的奇異雙調(diào)和方程:
(1)
自從Briezis和Nirenberg所做的經(jīng)典工作以后[1],帶有臨界的橢圓方程被眾多學(xué)者所研究[2-4].當(dāng)s=0時(shí),文獻(xiàn)[2]研究了帶有臨界指數(shù)的橢圓方程非平凡解的存在性和多解性,但沒(méi)有給出解的性質(zhì);文獻(xiàn)[3]利用變分方法研究一類(lèi)帶有奇異的臨界橢圓問(wèn)題的無(wú)窮多解的存在性;文獻(xiàn)[4]研究帶有p-Laplacian算子方程多解的存在性.隨著對(duì)臨界問(wèn)題研究的不斷深入,文獻(xiàn)[5]利用一種新的對(duì)稱(chēng)山路引理獲得了無(wú)窮多解的存在性,并給出了這些解的性質(zhì).但是對(duì)于問(wèn)題(1)的研究還沒(méi)有此類(lèi)結(jié)果,為此本文將利用文獻(xiàn)[5]所建立的對(duì)稱(chēng)山路引理獲得問(wèn)題(1)無(wú)窮多個(gè)解的存在性,并給出解的性質(zhì).
問(wèn)題(1)對(duì)應(yīng)的變分泛函為
(2)
定理1 假設(shè)f(x,u)滿(mǎn)足下列條件:
(H1)f(x,u)∈C(Ω×R,R),f(x,-u)=-f(x,u),對(duì)任意的u∈R;
則問(wèn)題(1)有一列非平凡解{un}且un→0,n→∞.
注2 如果在定理1中沒(méi)有對(duì)稱(chēng)性條件,可利用本文中的方法得到至少一個(gè)非平凡解的存在性.本文的主要難點(diǎn)在于兩個(gè)方面:第一個(gè)是嵌入失去緊性條件所帶來(lái)的困難,我們將利用集中緊性原理[7]來(lái)克服這個(gè)困難;第二,本文中的非線(xiàn)性項(xiàng)是強(qiáng)不定的,致使對(duì)稱(chēng)的山路引理不能直接應(yīng)用上去,為此我們將利用截?cái)嗟姆椒▉?lái)克服這個(gè)困難.
注3 由條件(H1)和(H2)可知
(3)
(4)
為了證明定理,首先給出如下的緊性定理,該定理的證明可以利用集中緊性原理[7]證明.
設(shè)X是一個(gè)Banach空間,記∑={A?X{0}:A是閉的并且關(guān)于原點(diǎn)戲稱(chēng)}.若A∈∑,定義虧格γ(A)為γ(A)=inf{m∈N,?φ∈C(A,Rm{0}),-φ(x)=φ(-x)}.如果對(duì)任意的m∈N不存在如上定義的φ,那么約定γ(A)=+∞.令∑k為X中所有的閉對(duì)稱(chēng)子集A的全體,使得0?A并且∑k≥0.
下面對(duì)稱(chēng)的山路引理來(lái)自于Kajikiya[5].
引理5 設(shè)E是一個(gè)無(wú)限維空間,I∈C1(E,R).如果下面的條件成立:
則有下面的(R1)或(R2)成立:
(R1)存在序列{uk},使得I′(uk)=0,I(uk)<0,并且{uk}趨近于零.
為了得到無(wú)窮多個(gè)解的存在性,需要下面的一些引理.在定理1的假設(shè)下,利用Sobolev不等式可得I(u)≥A‖u‖2-B‖u‖2**(s)-λC,其中A,B,C是某些正的常數(shù).
則令φ(u)=χ(‖u‖),并考慮泛函I(u)的擾動(dòng)為
(5)
引理6 設(shè)G(u)由式(5)所給.則
定理1的證明:
[1]H.Brezis,L.Nirenberg.Positive solutions of nonlinear elliptic equations involving critical exponents[J]. Commun.Pure Appl.Math.,1983(34):437-477.
[2]J.G.Azorero,I.P.Alonso.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].Trans.Am.Math.Soc.,1991(323):877-895.
[3]X.M.He,W.M.Zou.Infinitely many arbitrarily small solutions for sigular elliptic problems with critical Sobolev-Hardy exponents[J].Proc.Edinburgh Math.Society,2009(52):97-108.
[4]N.Ghoussoub,C.Yuan.Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents[J].Trans.Am.Math.Soc.,2000(352):5703-5743.
[5]R.Kajikiya.A critical-point theorem related to the symmetric mountain-pass lemma and its applications to elliptic equations[J].J.Funct.Analysis,2005(225):352-370.
[6]P.H.Rabinowitz.Minimax methods in critical-point theory with applications to differential equations,CBME Regional Conference Series in Mathematics[M].American Mathematical Society, Providence,RI,1986.
[7]P.L.Lions.The concentration-compactness principle in the caculus of variation:the limit case[J].I,Rev.Mat. Ibero.,1985(1):45-120.
Existence of Infinitely Many Solutions for Biharmonic Equation with Singular Potential
DAI Chen
(Suzhou Higher Infant Normal School, Suzhou Jiangsu 215008, China)
In this paper, by using variational method and concentration-compactness principle, infinitely many solutions are obtained for a class of biharmonic equation with singular potential.
biharmonic equation; concentration-compactness principle; variational method
2014-08-20
戴 琛(1980- ),女,江蘇蘇州人,蘇州高等幼兒師范學(xué)校講師,從事應(yīng)用數(shù)學(xué)研究。
O175
A
2095-7602(2014)06-0001-03