陳晶晶,林云霞,沈玉婷,巨戰(zhàn)奇,陳 豪,唐 瑩,龐 濤
(湖州師范學院理學院,浙江湖州 313000)
Yb3+/Er3+(Ho3+)摻雜Na YF4與Y OS熒光粉的制備與上轉換發(fā)光*
22
陳晶晶,林云霞,沈玉婷,巨戰(zhàn)奇,陳 豪,唐 瑩,龐 濤
(湖州師范學院理學院,浙江湖州 313000)
比較研究了Yb/Er(Ho)共摻六方相NaYF4和Y2O2S在980 nm LD泵浦下的上轉換發(fā)光.研究結果表明,NaYF4:20%Yb,1%Er的發(fā)光明顯強于NaYF4:20%Yb,1%Ho,而Y2O2S:6%Yb,0.25%Ho與Y2O2S:6% Yb,0.5%Er卻呈現(xiàn)相近的總發(fā)射強度.分析認為,Yb/Er和Yb/Ho之間的不同能量傳遞機制是導致上述現(xiàn)象的主要因素.
稀土;基質;上轉換發(fā)光;能量傳遞
近年來,上轉換材料因在生物標記、紅外計數(shù)器等方面的巨大應用潛力吸引了人們的高度關注[1~5].鑒于不同基質的上轉換效率最大相差8個量級[6],基質選取對于高效上轉換輸出的獲取至關重要.眾所周知,稀土摻雜Na YF4和Y2O2S均是優(yōu)秀的上轉換材料.但Page等人[7]報導,NaYF4:Yb,Er的效率比Y2O2S:Yb,Er高30%,而Luo等人[8]研究發(fā)現(xiàn),Y2O2S:Yb,Ho的發(fā)光強度是Y2O2S:Yb,Er的2.2倍.這似乎意味Y2O2S:Yb,Ho的上轉換效率優(yōu)于Na YF4:Yb,Er.此外,既然Y2O2S:Yb,Ho強于Y2O2S: Yb,Er,那么NaYF4:Yb,Er與NaYF4:Yb,Ho的關系如何?如果NaYF4:Yb,Er優(yōu)于NaYF4:Yb,Ho,又怎樣理解Y2O2S:Yb,Ho優(yōu)于Y2O2S:Yb,Er?
考慮到Na YF4和Y2O2S的制備方法不同,簡單比較Y2O2S:Yb,Ho和Na YF4:Yb,Er的優(yōu)劣并不合適.本文主要通過實驗驗證后面兩個問題,并給出相關物理機制.
1.1 材料
稀土氧化物的純度為4 N,實驗用水為蒸餾水,其它原料為分析純.
1.2 Y2O2S:Yb,Er(Ho)的合成
按化學計量比制成0.1 M稀土硝酸鹽溶液.機械攪拌下,將150 ml的Na2CO3(0.1 M)水溶液迅速注入其中.30 min后,水洗、醇洗各三次獲得白色沉淀,并于40℃干燥12 h.最后,在含硫氣氛下于800℃焙燒1 h獲得Y2O2S:Yb,Er(Ho)白色粉末.
1.3 NaYF4:Yb,Er(Ho)的合成
按化學計量比配制稀土20 ml硝酸鹽儲備溶液,并加入一定量的C6H8O7·H2O作為螯合劑(檸檬酸與Ln3+摩爾比為1/3).機械攪拌下,將20 ml的NaF水溶液迅速注入到上述溶液.30 min后,將產物移入50 ml高壓釜,于200℃保溫3 h.自然冷卻至室溫后,水洗、醇洗各三次,并于40℃干燥12 h得到Na YF4:Yb,Er(Ho)白色粉末.
1.4 材料表征
島津shimadzu-6000型X射線衍射儀(XRD)用于物相與晶相分析,550 Magna-IR傅立葉紅外光譜儀用于測量紅外光譜(FTIR),Tecnai G220型透射電子顯微鏡(TEM)用于觀察顆粒尺寸與形貌,而配套980 nm激光器的日立F-4500分光光度計用來測量上轉換光譜(UCS).所有測試均在室溫下進行.
為了確定樣品的物相和晶相,我們測量了Na YF4:20%Yb,1%Er和Y2O2S:6%Yb,0.25%Ho的XRD譜,如圖1所示.與JCPDS#281192和#241424標準數(shù)據(jù)匹配良好,表明六方相Na YF4和Y2O2S已經(jīng)獲得.
圖1 NaYF4:20%Yb,1%Er(a)和Y2O2S:6%Yb,0.25%Ho(b)的XRD譜Fig. 1 XRD pattern of NaYF4:20%Yb,1%Er(a) and Y2O2S: 6%Yb,0.25%Ho(b)
圖2 NaYF4:20%Yb,1%Er(虛線)和 NaYF4:20%Yb,1%Ho(實線)的 UCSFig. 2 UCS of NaYF4:20%Yb,1%Er( dashed line) and NaYF4:20%Yb,1%Ho(solid line)
同上,為了比較Y2O2S:6%Yb,0.5%Er和Y2O2S:6%Yb,0.5%Ho的上轉換發(fā)光特性,我們測量了兩個樣品在相同測試條件下的上轉換光譜,如圖3所示.與文獻報導相似[8],Yb3+、Er3+和Ho3+的最佳濃度分別是6%、0.5%和0.25%.事實上,很多氧化物和含氧酸鹽的摻雜濃度都不像Na YF4那么高[5,8~10].由圖3的TEM和FTIR表明,顆粒呈納米結構且表面吸附OH-和CO32-.這些高能振動基團增加了多聲子弛豫幾率,因此與體材料相比,納米晶具有較差的綠光色純度[8],特別是Yb/Er的紅光強于綠光,并呈現(xiàn)與Yb/Ho幾乎相同的總發(fā)射強度.
圖3 Y O S: 6%Yb,0.5%Er(虛線)和Y O S:6%Yb,0.25%Ho(實線)的UCS,插圖Y O S:6%Yb,0.5%Er的 TEM和 FTIR譜Fig. 3 UCS of Y O S:6%Yb,0.5%Er(dashed line) and Y O S: 6%Yb,0.25%Ho(solid line), inset:TEM and FTIR of Y O S:6%Yb,0.5%Er
為了理解圖2和圖3中出現(xiàn)的不同現(xiàn)象,圖4給出了摻雜離子的能級結構及相關的能級布居過程.如圖4所示,Yb3+、Er3+是共振能量傳遞,而Yb3+、Ho3+之間是聲子輔助能量傳遞過程.前者的上轉換效率主要取決于輻射躍遷與非輻射躍遷的競爭,基質聲子能越低上轉換效率越高.但對于后者,上轉換效率除了與上述因素有關外,還依賴于Yb3+、Ho3+之間的能量傳遞效率.顯然,在不顯著增加非輻射躍遷的前提下,較高的聲子能可減少彌補Yb3+與Ho3+能量失配的聲子數(shù),從而增強上轉換效率.相比于NaYF4, Y2O2S具有略高的聲子能,因此與Na YF4:20%Yb,1%Er強于Na YF4:20%Yb,1%Ho不同,Y2O2S:6% Yb,0.25%Ho和Y2O2S:6%Yb,0.5%Er呈現(xiàn)了相近的總發(fā)射強度.
圖4,,與的能級結構及可能的布居過程Fig. 4 The energy level diagram of Ho3+,Yb3+and Er3+, and possible upconversion em ission and excitation mechanism
分別采用水熱法和固氣硫化法合成了NaYF4:Yb/Er(Ho)和Y2O2S:Yb/Er(Ho)上轉換熒光粉.Yb/Er、Yb/Ho共摻的不同能量傳遞機制及Na YF4和Y2O2S的不同晶格振動能使Na YF4:20%Yb,1% Er的發(fā)光明顯強于NaYF4:20%Yb,1%Ho,而Y2O2S:6%Yb,0.5%Ho與Y2O2S:6%Yb,0.5%Er具有相近的總發(fā)射強度.
[1]Song Z,Anissim Y G,Zhao J B,et al.Backgroud free imaging of upconversion nanoparticle distribution in human skin [J].J Biomed Opt,2013,18(6):12-15.
[2]Yuan P Y,Lee Y H,Gnanasammandhan M K,et al.Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@ SiO2@Ag core-shell nanocomposites for cell imaging[J].Nanoscale,2012(4):5-132-5-137.
[3]Jiang T,Liu Y,Liu SS,et al.Upconversion emission enhancement of Gd3+ions induced by surface Plasmon field in Au @NaYF4nanostructures codoped with Gd3+Yb3+Tm3+ions[J].J Colloid Interf Sci,2012,377(1):81-87.
[4]Wang L L,Qin W P,Liu Z Y,et al.Improved 800 nm emission of Tm3+sensitized by Yb3+and Ho3+inβNaYF4nanocrystals under 980 nm excitation[J].Opt Express,2012,20(7):7-6027-607.
[5]Yang J,Zhang C M,Peng C,et al.Controllable red,green,blue(RGB)and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+nanocrystals through single laser excitation at 980 nm[J].Chem Eur J,2009,15(18):4-649-4-655.
[6]Heer S,K?mpe K,Güdel H U,et al.Highly efficient multicolour upconversion emission in transparent colloids of lanthanide doped NaYF4nanocrystals[J].Adv Mater,2004,16(23):2-1022-105.
[7]Page R H,Schaffers K I,Waide P A,et al.Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium[J].J Opt Soc Am B,1998,15(3):996-1008.
[8]Luo X X,Cao W H.Upconversion luminescence of holmiu and ytterbium co-doped yttrium oxysulfide phosphor[J]. Mater Lett,2007,61(17):3-6963-700.
[9]Li Y H,Zhang Y M,Hong G Y,et al.Upconversion luminescence of Y2O3:Er3+,Yb3+nanoparticles prepared by a homogeneous precipitation method[J].J Rare Earth,2008,26(3):450-453.
[10]Lu W C,Ma X H,Zhou H,et al.White upconversion luminescence in rare-earth-ion-doped YAl O3nanocrystals[J]. J Phys Chem C,2008,112(38):15-071-15-074.
Preparation and Upconversion Iuminescence of NaYF4and Y2O2S co-doped with Yb3+/Er3+(Ho3+)Phosphor
CHEN Jingjing,LIN Yunxia,SHEN Yuting,JU Zhanqi,CHEN Hao,TANG Ying,PANG Tao
(School of Science,Huzhou University,Huzhou 313000,China)
Having studied the upconversion luminescence properties of Yb/Er(Ho)co-doped NaYF4and Y2O2S phosphors,we find the results indicate that the emissive intensity of Na YF4:20%Yb,1%Er is stronger than that of Na YF4:20%Yb,1%Ho,while the Y2O2S:6%Yb,0.5%Ho and Y2O2S:6%Yb, 0.5%Er present the similar total emissive intensity.This can be explained by the different energy transfer mechanism between Yb/Er and Yb/Ho pairs.
rare earth;matrix;upconversion luminescence;energy transfer
O482.31
A
1009-1734(2014)02-0027-04
2014-01-20
浙江省教育廳科研基金(201121038);國家級大_學生創(chuàng)新訓練項目(201210347008)
龐濤,講師,研究方向:發(fā)光材料與納米材料.E-mail:tpang@126.com