哈爾濱醫(yī)科大學(xué)附屬第三醫(yī)院乳腺外科,黑龍江 哈爾濱 150086
2q35 rs13387042和8q24 rs13281615單核苷酸多態(tài)性與中國東北漢族絕經(jīng)前婦女乳腺癌風(fēng)險關(guān)系
白夏楠 姜永冬 劉通 吳昊 張金鋒 龐達(dá)
哈爾濱醫(yī)科大學(xué)附屬第三醫(yī)院乳腺外科,黑龍江 哈爾濱 150086
背景與目的:乳腺癌作為中國女性最常見的惡性腫瘤,每年的新發(fā)數(shù)量和死亡數(shù)量分別占全世界的12.2%和9.6%,但與中國乳腺癌患者明顯相關(guān)的基因多態(tài)位點至今尚不清楚。本研究旨在探討2q35 rs13387042和8q24 rs13281615單核苷酸多態(tài)性與中國北方漢族絕經(jīng)前婦女乳腺癌風(fēng)險關(guān)系,為預(yù)防和治療乳腺癌提供循證依據(jù)。方法:采用多重單堿基延伸單核苷酸多態(tài)性分型技術(shù)(SNaPshot)分析方法,檢測了280例絕經(jīng)前乳腺癌患者和287例絕經(jīng)前正常對照者2q35 rs13387042和8q24 rs13281615多態(tài)性位點基因型,并比較不同基因型和等位基因與乳腺癌風(fēng)險的關(guān)系。結(jié)果:2q35 rs13387042多態(tài)性位點基因型頻率在乳腺癌和對照樣本之間差異有統(tǒng)計學(xué)意義(P=0.017);8q24 rs13281615多態(tài)性位點基因型頻率在乳腺癌和對照樣本之間差異無統(tǒng)計學(xué)意義(P=0.967)。Logistic回歸分析結(jié)果顯示,對于2q35 rs13387042位點,與GG相比,GA和GA+AA基因型攜帶者顯著增加乳腺癌的患病風(fēng)險(OR=1.793,95%CI:1.177~2.733,P=0.007;OR=1.691,95%CI:1.122~2.550,P=0.012),而AA攜帶者與乳腺癌的患病風(fēng)險無關(guān)(OR=0.572,95%CI:0.104~3.153,P=0.521);與G等位基因相比,A等位基因顯著增加乳腺癌的患病風(fēng)險(OR=1.505,95%CI:1.033~2.193,P=0.033)。對于8q24 rs13281615位點,與AA相比,AG、GG和AG+GG基因型攜帶者與乳腺癌的患病風(fēng)險無關(guān)(OR=0.992,95%CI:0.660~1.490,P=0.968;OR=1.047,95%CI:0.642~1.708,P=0.853;OR=1.007,95%CI:0.682~1.487,P=0.971);與A等位基因相比,G等位基因不增加乳腺癌患病風(fēng)險(OR=1.021,95%CI:0.809~1.288,P=0.863)。結(jié)論:本實驗證實2q35 rs13387042多態(tài)性位點能夠增加中國北方漢族絕經(jīng)前婦女乳腺癌易感風(fēng)險,而8q24 rs13281615多態(tài)性位點與中國北方漢族絕經(jīng)前婦女乳腺癌易感性無明顯相關(guān)性。
乳腺腫瘤;單核苷酸多態(tài);遺傳易感性;2q35 rs13387042;8q24 rs13281615
乳腺癌是女性最常見的惡性腫瘤之一,在發(fā)展中國家和發(fā)達(dá)國家中都是女性死亡的首要原因[1]。乳腺癌發(fā)病率在世界范圍內(nèi)明顯上升,并且發(fā)病年齡有年輕化趨勢[2]。中國乳腺癌發(fā)病率增長速度是全球的兩倍多[3],2010年中國女性乳腺癌新發(fā)病例約21萬,居所有惡性腫瘤發(fā)病率的首位[4]。據(jù)估計,每年超過100萬的婦女被診斷為乳腺癌,超過41萬死于乳腺癌[5]。乳腺癌的病因十分復(fù)雜,具體機制尚未闡明,普遍認(rèn)為是遺傳、內(nèi)分泌和外部環(huán)境多因素相互作用的結(jié)果[6]。BRCA1、BRCA2等高外顯率基因被認(rèn)為與家族性乳腺癌相關(guān)[7],但大多數(shù)乳腺癌的發(fā)生很可能與更多的低外顯率基因多態(tài)性有關(guān)[8]。近年來通過全基因組關(guān)聯(lián)研究(genome-wide association studies,GWAS)發(fā)現(xiàn)了許多乳腺癌易感基因位點[9-12],其中2q35 rs13387042和8q24 rs13281615就是通過此技術(shù)篩選出來的基因變異位點[9,13]。由于人種和地域的差異,各研究中心對于這2個位點是否與乳腺癌風(fēng)險相關(guān)的結(jié)論不完全一致[9,13-18]。本研究旨在探討2q35 rs13387042和8q24 rs13281615位點遺傳多態(tài)性與我國北方漢族絕經(jīng)前婦女乳腺癌的風(fēng)險關(guān)系。
1.1 研究對象
選擇2008年11月—2009年5月,在哈爾濱醫(yī)科大學(xué)附屬第三醫(yī)院乳腺外科經(jīng)組織病理學(xué)確診的漢族絕經(jīng)前女性原發(fā)性乳腺癌患者,除乳腺癌外無其他腫瘤患病史,無腫瘤家族史,術(shù)前未行放、化療,共280例(病例組),平均年齡(42.8±5.8)歲。健康對照者為2009年3—8月在哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院體檢中心健康普查體檢合格的漢族絕經(jīng)前婦女,無惡性腫瘤和乳腺疾病患病史,無腫瘤家族史,共287例(對照組),平均年齡(42.4±5.8)歲。研究對象需簽署知情同意書,并完成流行病學(xué)調(diào)查和提供血液標(biāo)本。
1.2 方法
1.2.1 基因組DNA提取
抽取乳腺癌患者及健康對照者的外周血2 mL,以EDTA抗凝,采用愛思進公司DNA提取試劑盒提取基因組DNA,-80 ℃保存。
1.2.2 PCR及測序鑒定基因型
采用多重單堿基延伸單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)分型技術(shù)(SNaPshot)對2個SNP位點進行分型。設(shè)計2對PCR引物用于擴增,包含2個SNP位點的片段,同時設(shè)計了2條緊鄰SNP位點的延伸引物(表1)用于SNaPshot多重單堿基延伸。PCR反應(yīng):PCR反應(yīng)體系(共20 μL)包含1×HotStarTaq buffer,3.0 mmol/L Mg2+,0.3 mmol/L dNTP,每對引物0.1 μmol/L,1 U HotStarTaq polymerase (購自美國Qiagen公司)和1 μL樣本DNA。PCR循環(huán)程序采用touch-down PCR反應(yīng)程序:95 ℃預(yù)變性15 min后,94 ℃變性20 s,65 ℃退火40 s (每個循環(huán)退火溫度降低0.5 ℃),72 ℃延伸1.5 min,共11個循環(huán)。然后94 ℃變性20 s,59 ℃退火30 s,72 ℃延伸1.5 min,共24個循環(huán);72 ℃終延伸2 min,最后4 ℃保存產(chǎn)物。PCR產(chǎn)物純化按操作說明步驟采用SAP/ExoⅠ(購自美國ABI公司)酶法:在10 μL PCR產(chǎn)物中加入1 U SAP酶和1 U Exonuclease Ⅰ酶,37 ℃溫浴1 h后,75 ℃滅活15 min。SNaPshot多重單堿基延伸反應(yīng):PCR產(chǎn)物經(jīng)純化后用SNaPshot Multiplex試劑盒(購自美國ABI公司)進行延伸反應(yīng)鑒定基因型。延伸反應(yīng)體系(10 μL)包括5 μL SNaPshot Multiplex Kit(購自美國ABI公司),2 μL純化后多重PCR產(chǎn)物,1 μL延伸引物混合物(每個延伸引物0.8 mmol/L),2 μL超純水。PCR循環(huán)程序:96 ℃預(yù)變性1 min;96 ℃變性10 s,50 ℃退火5 s,60 ℃延伸30 s,共進行28個循環(huán),最后保存在4 ℃。延伸產(chǎn)物純化:在10 μL延伸產(chǎn)物中加入1 U SAP酶37 ℃溫浴1 h,然后75 ℃滅活15 min。取0.5 μL純化后的延伸產(chǎn)物,與0.5 μL內(nèi)標(biāo)Liz120 (購自美國ABI公司),9 μL甲酰胺混勻,95 ℃變性5 min后上ABI 3130XL測序儀進行毛細(xì)管電泳;運行GeneMapper 4.0軟件(購自美國ABI公司)分析實驗結(jié)果。
1.3 統(tǒng)計學(xué)處理
采用SPSS 13.0統(tǒng)計軟件對數(shù)據(jù)進行統(tǒng)計分析,以χ2檢驗比較各基因型在病例組與對照組之間分布的差異。采用Logistic回歸分析計算比數(shù)比(OR)及其95%置信區(qū)間(CI)來評估各基因型和乳腺癌風(fēng)險之間的相關(guān)性。全部的顯著性檢驗均為雙側(cè)概率檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 2q35 rs13387042基因型頻率和等位基因頻率分布及與乳腺癌易感性的關(guān)系
在對照組中,2q35 rs13387042位點的GG、 GA和AA基因型頻率分別為83.3%、15.3%和1.4%,在病例組中分別為74.6%、24.6%和0.71%。2q35 rs13387042基因型在對照組和病例組的分布均符合Hardy-Weinberg平衡定律(P=0.239)。病例組和對照組3種基因型頻率分布差異有統(tǒng)計學(xué)意義(P=0.017)。
L o g i s t i c回歸分析結(jié)果顯示,2 q 3 5 rs13387042位點在共顯性模型下,與野生純合型GG攜帶者相比,GA雜合型攜帶者與乳腺癌患病風(fēng)險顯著相關(guān)(OR=1.793,95%CI:1.177~2.733,P=0.007),而突變純合型AA攜帶者與乳腺癌的患病風(fēng)險無關(guān)(OR=0.572,95%CI:0.104~3.153,P=0.521);在顯性模型下,Logistic回歸分析結(jié)果顯示,與GG基因型攜帶者相比,GA+AA基因型攜帶者與乳腺癌的患病風(fēng)險顯著相關(guān)(OR=1.691,95%CI:1.122~2.550,P=0.012)。同時,與G等位基因相比,A等位基因顯著增加乳腺癌患病風(fēng)險(OR=1.505,95%CI:1.033~2.193,P=0.033,表2,、3)。
2.2 8q24 rs13281615基因型頻率和等位基因頻率分布及與乳腺癌易感性的關(guān)系
在對照組中,8q24 rs13281615位點的AA、AG和GG基因型頻率分別為23.3%、55.1%和21.6%,在病例組中分別為23.2%、54.3%和22.5%。8q24 rs13281615基因型在對照組和病例組的分布均符合Hardy-Weinberg平衡定律(P=0.086)。病例組和對照組3種基因型頻率分布差異無統(tǒng)計學(xué)意義(P=0.967)。
L o g i s t i c回歸分析結(jié)果顯示,8 q 2 4 rs13281615位點在共顯性模型下,與野生純合型AA攜帶者相比,AG雜合型攜帶者和突變純合型GG攜帶者與乳腺癌的患病風(fēng)險無關(guān)(OR=0.992,95%CI:0.660~1.490,P=0.968;OR=1.047,95%CI:0.642~1.708,P=0.853);在顯性模型下,Logistic回歸分析結(jié)果顯示,與AA基因型攜帶者相比,AG+GG基因型攜帶者與乳腺癌的患病風(fēng)險無關(guān)(OR=1.007,95%CI:0.682~1.487,P=0.971)。同時,與A等位基因相比,G等位基因與乳腺癌患病風(fēng)險無顯著相關(guān)性(OR=1.021,95%CI:0.809~1.288,P=0.863,表2、3)。
表1 相關(guān)SNP位點PCR引物及延伸引物序列信息Tab. 1 PCR primers and extension primers sequence information of relevant SNP loci
表2 2q35 rs13387042、8q24 rs13281615位點基因型頻率在病例組和對照組的分布Tab. 2 The distribution of 2q35 rs13387042, 8q24 rs13281615 genotype frequency in cases and controls
表3 2q35 rs13387042、8q24 rs13281615位點等位基因頻率在病例組和對照組的分布Tab. 3 The distribution of 2q35 rs13387042, 8q24 rs13281615 allele frequency in cases and controls
乳腺癌是世界范圍內(nèi)女性最常見的惡性腫瘤之一,是一種遺傳因素發(fā)揮重要作用的復(fù)雜多基因疾病[19-20]。其中,15%~25%家族性乳腺癌的患病風(fēng)險被認(rèn)為與乳腺癌易感基因BRCA1和BRCA2相關(guān)[19,21];然而,大部分乳腺癌患病風(fēng)險的遺傳成分仍然未知,低外顯率變異體聯(lián)合作用在這方面起到關(guān)鍵作用[22-23]。目前,已經(jīng)報告的與乳腺癌患病風(fēng)險相關(guān)的常見低外顯率遺傳變異體有40多種[24]。2q35 rs13387042和8q24 rs13281615多態(tài)性位點就是其中研究較多的乳腺癌易感位點,其與乳腺癌的關(guān)系近年來得到廣泛關(guān)注。
SNP 2q35 rs13387042(A>G)位于高連鎖不平衡的90 kb區(qū),該區(qū)域包含了未知基因以及非編碼 RNAs[25]。2007年,Stacey等[13]首先通過對1 600例冰島婦女進行GWAS篩查首先發(fā)現(xiàn)了2q35 rs13387042多態(tài)位點,進一步病例對照研究發(fā)現(xiàn)2q35 rs13387042 A等位基因增加歐洲人中ER(+)乳腺癌患病風(fēng)險(P=4.3×10-9)。隨后,Milne等[26]綜合分析了31 510例浸潤性乳腺癌、1 101例導(dǎo)管原位癌和35 969例正常女性的25項研究數(shù)據(jù),證實了rs13387042與歐洲裔白人婦女乳腺癌發(fā)生顯著相關(guān),并且這種關(guān)聯(lián)在ER(+)(OR=1.14,95%CI:1.10~1.17,P=1×10-15)和ER(-)(OR=1.10,95%CI:1.04~1.15,P=0.000 3)以及PR(+)(OR=1.15,95%CI:1.11~1.19,P=5×10-14)和PR(-)(OR=1.10,95%CI:1.06~1.15,P=0.000 02)乳腺癌中都存在,但在ER(+)和PR(+)乳腺癌中略強。2q35 rs13387042多態(tài)性也被證實與中國、美國和中國臺灣等地區(qū)婦女的乳腺癌患病率相關(guān)[17,27-29]。然而,Kim等[30]和Sueta等[31]分別對漢城和日本婦女進行病例對照研究,并未發(fā)現(xiàn)2q35 rs13387042多態(tài)性位點與乳腺癌患病風(fēng)險相關(guān)。由于月經(jīng)狀態(tài)影響腫瘤的激素水平,Sueta等[31]發(fā)現(xiàn)乳腺癌患病風(fēng)險的遺傳風(fēng)險評分及這種風(fēng)險對絕經(jīng)前患者起的作用比絕經(jīng)后患者明顯。在他們的研究中,ER+/PR+腫瘤在絕經(jīng)前乳腺癌患者中所占比例比絕經(jīng)后高(71.0% vs 48.7%)。結(jié)果不一致可能與研究者沒有依據(jù)月經(jīng)狀態(tài)對研究對象進行分類有關(guān)。因此,我們對中國北方絕經(jīng)前女性進行病例對照研究,結(jié)果顯示2q35 rs13387042 SNP基因型頻率和等位基因頻率在病例組和對照組中分布存在顯著差異,A等位基因顯著增加乳腺癌患病風(fēng)險。此外,不同種族中2q35 rs13387042多態(tài)位點等位基因的分布不同也會導(dǎo)致結(jié)果出現(xiàn)差異。例如,我們前期研究結(jié)果顯示A風(fēng)險等位基因在中國北方婦女中分布頻率約為11%[32],與本次實驗結(jié)果相符;而其在白人[13-14,33]和非洲后裔[16,27,34]中的頻率分別為51%和72%。并且,在不同種族人群中,2q35 rs13387042多態(tài)位點可與附近因果變異體形成緊密連鎖。其他如實驗設(shè)計,樣本量較小和一些環(huán)境因素也會影響實驗結(jié)果。
8q24 rs13281615位點位于染色體8q24的非基因區(qū)域,其功能尚不十分清楚。8q24.12~24.13位置上有髓細(xì)胞增生原癌基因(myelocytomatosis oncogene,MYC),此基因在正常細(xì)胞中不表達(dá),在一部分癌細(xì)胞中表達(dá),可促進細(xì)胞增殖、永生化、去分化和轉(zhuǎn)化等,MYC表達(dá)失調(diào)并與染色體8q24易感位點相互作用是促進包括乳腺癌在內(nèi)多種腫瘤發(fā)生的重要因素[35]。2007年,Easton等[9]通過3個階段的GWAS篩選首先發(fā)現(xiàn)8q24 rs13281615顯著增加乳腺癌患病風(fēng)險(P<1×10-7),并且與家族性乳腺癌相關(guān)(OR=1.06,95 %CI:1.00~1.12,P=0.05)。Fletcher等[14]對1 499例乳腺癌患者和1 390例健康對照者進行病例對照研究,進一步證實8q24 rs13281615 AG基因型(OR=1.30,95%CI:1.09~1.54)和GG基因型(OR=1.52,95%CI:1.22~1.89)顯著增加英格蘭和蘇格蘭人罹患乳腺癌的風(fēng)險(P=0.000 03)。Tamimi等[36]發(fā)現(xiàn)8q24 rs13281615同樣增加瑞典人的乳腺癌患病風(fēng)險,并且出生體質(zhì)量越高這種作用越明顯,他們認(rèn)為這可能與出生體質(zhì)量高的婦女?dāng)y帶更大的乳腺干細(xì)胞庫有關(guān)。然而,本次病例對照研究結(jié)果顯示,對于8q24 rs13281615位點,與AA攜帶者相比,AG攜帶者、GG攜帶者和AG+GG基因型攜帶者與乳腺癌的患病風(fēng)險無關(guān)。與此結(jié)論相一致,8q24 rs13281615多態(tài)性也被證實與智利、突尼斯、俄羅斯和非裔美洲等地區(qū)婦女的乳腺癌患病風(fēng)險無顯著關(guān)聯(lián)[27,37-40]。對中國其他地區(qū)女性的研究也未發(fā)現(xiàn)此位點增加乳腺癌患病風(fēng)險[28,32,41]。然而,李莉華等[42]對中國婦女進行分層研究發(fā)現(xiàn),G等位基因或AG和GG基因型增加中國漢族女性50歲以前患乳腺癌的風(fēng)險,但與50歲以后女性乳腺癌風(fēng)險無顯著關(guān)聯(lián)。Garcia-Closas等[43]和Zhang等[44]對歐洲和亞洲人進行病例對照研究發(fā)現(xiàn),8q24 rs13281615顯著增加ER(+)/PR(+)乳腺癌患病風(fēng)險。由此推斷,對8q24 rs13281615多態(tài)性是否與乳腺癌發(fā)病風(fēng)險有關(guān)的研究結(jié)果不同,可能與研究者未按月經(jīng)狀態(tài)對研究對象進行分層研究有關(guān)。此外,8q24 rs13281615多態(tài)性位點等位基因分布頻率在各種族間存在顯著差異也可以解釋研究結(jié)論的不同。例如,在歐洲群體中,8q24 rs13281615 A為優(yōu)勢等位基因(54%)[14];然而,在智利群體中,8q24 rs13281615 G為優(yōu)勢等位基因(56%)[37]。本次對中國北方漢族絕經(jīng)前女性的研究分析發(fā)現(xiàn)8q24 rs13281615 A為優(yōu)勢等位基因,其在病例組和對照組中的頻率分別為50.4%和50.9%。
綜上所述,考慮到月經(jīng)狀態(tài)對乳腺癌患病風(fēng)險的影響,我們選擇絕經(jīng)前婦女作為研究對象。結(jié)果顯示2q35 rs13387042位點與中國北方漢族絕經(jīng)前婦女乳腺癌發(fā)病風(fēng)險顯著相關(guān);8q24 rs13281615位點與中國北方漢族絕經(jīng)前婦女乳腺癌發(fā)病風(fēng)險不相關(guān)。不同國家人群由于遺傳因素及生活方式不同,其研究結(jié)果可能不同;單獨2個易感位點對最終致癌效果的影響有限,尚需要聯(lián)合其他易感位點進行多中心多種族的大樣本分層研究。2q35 rs13387042和8q24 rs13281615多態(tài)性與乳腺癌風(fēng)險的深入研究可為乳腺癌病因提供新的線索,為乳腺癌的分子診斷提供新的標(biāo)志物,以此為治療靶點開發(fā)新藥物將會使部分乳腺癌患者受益。
[1] SHULMAN L N, WILLETT W, SIEVERS A, et al. Breast cancer in developing countries: opportunities for improved survival[J]. J oncol, 2010, 2010: 595167.
[2] ENSERINK M. A push to fight cancer in the developing world[J]. Science, 2011, 331(6024): 1548-1550.
[3] FAN L, ZHENG Y, YU K D, et al. Breast cancer in a transitional society over 18 years: trends and present status in Shanghai, China[J]. Breast Cancer Res Treat, 2009, 117(2): 409-416.
[4] 陳萬青, 張思維, 曾紅梅, 等. 中國2010年惡性腫瘤發(fā)病與死亡[J]. 中國腫瘤, 2014, 23(1): 1-10.
[5] COUGHLIN S S, EKEUEME D U. Breast cancer as a global health concern[J]. Cancer Epidemiol, 2009, 33(5): 315-318.
[6] LICHTENSTEIN P, HOLM N V, VERKASALO P K, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland[J]. N Engl J Med, 2000, 343(2): 78-85.
[7] WALSH T, CASADEI S, COATS K H, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer[J]. JAMA, 2006, 295(12): 1379-1388.
[8] ANTONIOU A C, EASTON D F. Models of genetic susceptibility to breast cancer[J]. Oncogene, 2006, 25(43): 5898-5905.
[9] EASTON D F, POOLEY K A, DUNNING A M, et al. Genome-wide association study identifies novel breast cancer susceptibility loci[J]. Nature, 2007, 447(7148): 1087-1093.
[10] HUNTER D J, KRAFT P, JACOBS K B, et al. A genomewide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer[J]. Nat Genet, 2007, 39(7): 870-874.
[11] ZHENG W, LONG J, GAO Y T, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25. 1[J]. Nat Genet, 2009, 41(3): 324-328.
[12] THOMAS G, JACOBS K B, KRAFT P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11. 2 and 14q24. 1 (RAD51L1)[J]. Nat Genet, 2009, 41(5): 579-584.
[13] STACEY S N, MANOLESCU A, SULEM P, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer[J]. Nat Genet, 2007, 39(7): 865-869.
[14] FLETCHER O, JOHNSON N, ORR N, et al. Novel breast cancer susceptibility locus at 9q31. 2: results of a genomewide association study[J]. J Natl Cancer Inst, 2011, 103(5): 425-435.
[15] ZHENG W, WEN W, GAO Y T, et al. Genetic and clinical predictors for breast cancer risk assessment and stratification among Chinese women[J]. J Natl Cancer Inst, 2010, 102(13): 972-981.
[16] HUTTER C M, YOUNG A M, OCHS-BALCOM HM, et al. Replication of breast cancer GWAS susceptibility loci in the Women’s Health Initiative African American SHARe Study[J]. Cancer Epidemiol Biomarkers Prev, 2011, 20(9): 1950-1959.
[17] SLATTERY M L, BAUMGARTNER K B, GIULIANO A R, et al. Replication of five GWAS-identified loci and breast cancer risk among Hispanic and non-Hispanic white women living in the Southwestern United States[J]. Breast Cancer Res Treat, 2011, 129(2): 531-539.
[18] CAMPA D, KAAKS R, LE Marchand L, et al. Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium[J]. J Natl Cancer Inst, 2011, 103(16): 1252-1263.
[19] BALMAIN A, GRAY J, PONDER B. The genetics and genomics of cancer[J]. Nat Genet, 2003, 33(Suppl): 238-244.
[20] NATHANSON K L, WOOSTER R, WEBER B L. Breast cancer genetics: what we know and what we need[J]. Nat Med, 2001, 7(5): 552-556.
[21] EASTON D F. How many more breast cancer predisposition genes are there?[J]. Breast Cancer Res, 1999, 1(1): 14-17.
[22] PHAROAH P D, ANTONIOU A, BOBROW M, et al. Polygenic susceptibility to breast cancer and implications for prevention[J]. Nat Genet, 2002, 31(1): 33-36.
[23] PHAROAH P D, ANTONIOU A C, EASTON D F, et al. Polygenes, risk prediction, and targeted prevention of breast cancer[J]. N Engl J Med, 2008, 358(26): 2796-2803.
[24] HINDORFF L A, SETHUPATHY P, JUNKINS H A, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits[J]. Proc Natl Acad Sci U S A, 2009, 106(23): 9362-9367.
[25] OHMIYA N, TAGUCHI A, MABUCHI N, et al. MDM2 promoter polymorphism is associated with both an increased susceptibility to gastric carcinoma and poor prognosis[J]. J Clin Oncol, 2006, 24(27): 4434-4440.
[26] MILNE R L, BENITEZ J, NEVANLINNA H et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042[J]. J Natl Cancer Inst, 2009, 101(14): 1012-1018.
[27] ZHENG W, CAI Q, SIGNORELLO L B, et al. Evaluation of 11 breast cancer susceptibility loci in African-American women[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(10): 2761-2764.
[28] DAI J, HU Z, JIANG Y, et al. Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women[J]. Breast Cancer Res, 2012, 14(1): R17.
[29] LIN C Y, HO C M, BAU D T, et al. Evaluation of breast cancer susceptibility loci on 2q35, 3p24, 17q23 and FGFR2 genes in Taiwanese women with breast cancer[J]. Anticancer Res, 2012, 32(2): 475-482.
[30] KIM H C, LEE J Y, SUNG H, et al. A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul Breast Cancer Study[J]. Breast Cancer Res, 2012, 14(2): R56.
[31] SUETA A, ITO H, KAWASE T, et al. A genetic risk predictor for breast cancer using a combination of low-penetrance polymorphisms in a Japanese population[J]. Breast Cancer Res Treat, 2012, 132(2): 711-721.
[32] JIANG Y, HAN J, LIU J, et al. Risk of genome-wide association study newly identified genetic variants for breast cancer in Chinese women of Heilongjiang Province[J]. Breast Cancer Res Treat, 2011, 128(1): 251-257.
[33] REEVES G K, TRAVIS R C, GREEN J, et al. Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci[J]. JAMA, 2010, 304(4): 426-434.
[34] CHEN F, CHEN G K, MILLIKAN R C, et al. Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans[J]. Hum Mol Genet, 2011, 20(22): 4491-4503.
[35] AHMADIYEH N, POMERANTZ M M, GRISANZIO C, et al. 8q24 prostate, breast, and colon cancer risk loci show tissuespecific long-range interaction with MYC[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9742-9746.
[36] TAMIMI R M, LAGIOU P, CZENE K, et al. Birth weight, breast cancer susceptibility loci, and breast cancer risk[J]. Cancer Causes Control, 2010, 21(5): 689-696.
[37] ELEMATORE I, GONZALEZ-HORMAZABAL P, REYES J M, et al. Association of genetic variants at TOX3, 2q35 and 8q24 with the risk of familial and early-onset breast cancer in a South-American population[J]. Mol Biol Rep, 2014, 41(6): 3715-3722.
[38] GORODNOVA T V, KULIGINA E, YANUS G A, et al. Distribution of FGFR2, TNRC9, MAP3K1, LSP1, and 8q24 alleles in genetically enriched breast cancer patients versus elderly tumor-free women[J]. Cancer Genet Cytogenet, 2010, 199(1): 69-72.
[39] HUO D, ZHENG Y, OGUNDIRAN T O, et al. Evaluation of 19 susceptibility loci of breast cancer in women of African ancestry[J]. Carcinogenesis, 2012, 33(4): 835-840.
[40] SHAN J, MAHFOUDH W, DSOUZA S P, et al. Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians[J]. Breast Cancer Res Treat, 2012, 135(3): 715-724.
[41] LONG J, SHU X O, CAI Q, et al. Evaluation of breast cancer susceptibility loci in Chinese women[J]. Cancer Epidemiol Biomarkers Prev, 2010, 19(9): 2357-2365.
[42] 李莉華, 郭子健, 華東, 等. 8q24 rs13281615基因多態(tài)性與中國漢族女性乳腺癌患病風(fēng)險及臨床病理特征的關(guān)系[J]. 中華檢驗醫(yī)學(xué)雜志 2011, 34(1): 73-76.
[43] GARCIA-CLOSAS M, HALL P, Nevanlinna H et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics[J]. PLoS Genet, 2008, 4(4): e1000054.
[44] ZHANG Y, YI P, CHEN W et al. Association between polymorphisms within the susceptibility region 8q24 and breast cancer in a Chinese population[J]. Tumour Biol, 2014, 35(3): 2649-2654.
Relationship between single nucleotide polymorphisms in 2q35 rs13387042 and 8q24 rs13281615 and breast cancer risk of Han premenopausal women in Northern China
BAI Xia-nan, JIANG Yong-dong,
LIU Tong, WU Hao, ZHANG Jin-feng, PANG Da
(Department of Breast Surgery of the Third Af fi liated Hospital, Harbin Medical University, Harbin Heilongjiang 150086, China)
PANG Da E-mail: pangdasir@163.com
Background and purpose: Breast cancer as one of the most common malignant tumor among women in China, it accounts for 12.2% of all newly diagnosed breast cancers and 9.6% of all deaths from breast cancer worldwide. The aim of this study was to investigate the relationship between single nucleotide polymorphisms(SNPs) in 2q35 rs13387042 and 8q24 rs13281615 and the risk of breast cancer in Han premenopausal women of Northern China. Methods: 280 patients with breast cancer and 287 healthy controls in premenopausal state were genotyped for SNP 2q35 rs13387042 and 8q24 rs13281615 by the SNaPshot method, and compared the different genotypes and alleles with relation to breast cancer risk. Results: Differences of 2q35 rs13387042 genotype frequencies between breast cancer and control were signi fi cantly different (P=0.017). No statistically signi fi cant difference of 8q24 rs13281615 genotype frequencies between breast cancers and controls was found (P=0.967). The results of logistic regression showed thatthe carriers of GA genotype and GA+ AA genotype increased risk for breast cancer compared to the carriers with 2q35 rs13387042 GG genotype(OR=1.793, 95%CI: 1.177-2.733, P=0.007;OR=1.691, 95%CI: 1.122-2.550, P=0.012), but not the carriers of AA genotype; Compared with G allele, A allele signi fi cantly increased the risk of breast cancer(OR= 1.505, 95%CI: 1.033-2.193, P=0.033). The carriers of AG genotype or GG genotype or AG+GG genotype did not confer risk for breast cancer compared to the carriers with 8q24 rs13281615 AA genotype(OR=0.992, 95%CI: 0.660-1.490, P=0.968; OR=1.047, 95%CI: 0.642-1.708, P=0.853; OR=1.007, 95%CI: 0.682-1.487, P=0.971); Compared with A allele, G allele did not increase the risk of breast cancer(OR=1.021, 95%CI: 0.809-1.288, P=0.863). Conclusion: This experiment veri fi ed that 2q35 rs13387042 polymorphism site increased risk of breast cancer susceptibility among Han premenopausal women of Northern China. There was not any signi fi cant association between 8q24 rs13281615 polymorphism site and breast cancer susceptibility among Han premenopausal women of Northern China under the current sampling scale.
Breast neoplasms; Single nucleotide polymorphism; Genetic susceptibility; 2q35 rs13387042; 8q24 rs13281615
10.3969/j.issn.1007-3969.2014.09.005
R737.9
A
1007-3639(2014)09-0669-07
2014-06-02
2014-08-21)
龐達(dá) E-mail:pangdasir@163.com