張振輝, 黎 佼, 熊旭明, 陳偉燕, 劉世明△
(廣州醫(yī)科大學(xué)附屬第二醫(yī)院1重癥醫(yī)學(xué)科,2心血管內(nèi)科,廣州心血管疾病研究所,廣東廣州 510260)
微小RNA-199a-5p調(diào)控大鼠心肌細(xì)胞肥大的研究*
張振輝1, 黎 佼2, 熊旭明1, 陳偉燕1, 劉世明2△
(廣州醫(yī)科大學(xué)附屬第二醫(yī)院1重癥醫(yī)學(xué)科,2心血管內(nèi)科,廣州心血管疾病研究所,廣東廣州 510260)
目的:探討微小RNA-199a-5p(miR-199a-5p)在心肌肥大模型中的表達(dá)及對大鼠心肌細(xì)胞肥大的調(diào)控作用。方法:用腹主動(dòng)脈縮窄術(shù)(TAAC)構(gòu)建心肌肥大大鼠模型,體外培養(yǎng)新生Sprague-Dawley大鼠心肌細(xì)胞,用血管緊張素II(Ang II)誘導(dǎo)心肌細(xì)胞肥大,熒光定量PCR(qRT-PCR)檢測動(dòng)物血漿和心肌細(xì)胞miR-199a-5p含量;合成大鼠miR-199a-5p的擬似物(mimic)和抑制劑(inhibitor),用脂質(zhì)體轉(zhuǎn)染mimic和inhibitor進(jìn)入心肌細(xì)胞,用qRT-PCR檢測肥大基因心房鈉尿因子和β-肌球蛋白重鏈mRNA的表達(dá)變化;用氚標(biāo)亮氨酸摻入量檢測細(xì)胞蛋白合成速率變化;用細(xì)胞熒光染色法檢測細(xì)胞表面積變化。結(jié)果:TAAC術(shù)后28 d,大鼠血漿miR-199a-5p的含量較對照組顯著增加(P<0.05),在Ang II誘導(dǎo)肥大的心肌細(xì)胞中,miR-199a-5p的表達(dá)量也較對照組顯著增加。在心肌細(xì)胞中過表達(dá)miR-199a-5p,能使細(xì)胞肥大基因表達(dá)增加,蛋白合成速率加快,細(xì)胞表面積增大,而使用inhibitor阻遏miR-199a-5p的作用后,能抑制Ang II誘導(dǎo)的肥大基因表達(dá)、細(xì)胞蛋白合成速率和細(xì)胞表面積的變化。結(jié)論:心肌肥大動(dòng)物和細(xì)胞模型中miR-199a-5p的表達(dá)發(fā)生上調(diào)。過表達(dá)miR-199a-5p能促進(jìn)體外培養(yǎng)的心肌細(xì)胞肥大,而阻遏miR-199a-5p的作用能抑制Ang II誘導(dǎo)的心肌細(xì)胞肥大。
微小RNA;心肌肥大;血管緊張素II
微小RNA(microRNA,miRNA)是一類長度約19~25 nt的單鏈非編碼RNA分子。miRNAs通過調(diào)控基因表達(dá)來參與生命過程中的一系列重要進(jìn)程,包括早期發(fā)育,細(xì)胞增殖、凋亡和分化等[1-3]。近年的研究發(fā)現(xiàn),心肌肥大/心力衰竭等多種心臟疾病的發(fā)病受miRNA的調(diào)控[4-6]。本研究組通過腹主動(dòng)脈縮窄術(shù)(transverse abdominal aortic constriction,TAAC)建立壓力過負(fù)荷性心肌肥大模型,發(fā)現(xiàn)心肌肥大大鼠血漿中的microRNA-199a-5p(miR-199a-5p)升高明顯。目前關(guān)于miR-199a-5p對心肌肥大的調(diào)控作用仍缺乏報(bào)道。本研究通過體外培養(yǎng)心肌細(xì)胞,在細(xì)胞內(nèi)過表達(dá)或抑制miR-199a-5p,觀察其對心肌細(xì)胞肥大的影響,現(xiàn)將結(jié)果報(bào)道如下。
1 材料
1.1 試劑和儀器 DMEM細(xì)胞培養(yǎng)基、Opti-MEM細(xì)胞轉(zhuǎn)染培養(yǎng)基、胎牛血清和0.25%胰酶購自Gibco;細(xì)胞轉(zhuǎn)染試劑Lipofectamine RNAiMAX、RNA抽提裂解液Trizol和SYBR Green qPCR熒光定量PCR試劑盒均購自 Invitrogen;5-溴脫氧尿核苷(5-bromodeoxyuridine,BrdU)和血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)購自Sigma。[3H]-亮氨酸、閃爍液和閃爍瓶購自Perkin Elmer。液體閃爍計(jì)數(shù)器(Tri-Carb 2900TR),熒光定量PCR儀(ABI7500),激光掃描共聚焦顯微鏡(Carl Zeiss)。
1.2 實(shí)驗(yàn)分組 將動(dòng)物實(shí)驗(yàn)分為假手術(shù)組(sham組)和手術(shù)組(TAAC組)。將細(xì)胞分為對照(control,Con)組、AngⅡ組、miR-199a-5p擬似物的陰性對照(negative control,NC)組、miR-199a-5p擬似物轉(zhuǎn)染組(miR-199a-5p組)、miR-199a-5p抑制劑陰性對照(inhibitor negative control,INC)組、INC+AngⅡ組(先轉(zhuǎn)染INC,再加AngⅡ作用)和anti-miR-199a-5p +AngⅡ組 (先轉(zhuǎn)染miR-199a-5p的inhibitor,再加AngⅡ作用)。
2 方法
2.1 Wistar大鼠心肌肥大動(dòng)物模型的制備 采用TAAC方法建立壓力過負(fù)荷心肌肥大大鼠模型。SPF級(jí)Wistar大鼠16只(購于廣東省實(shí)驗(yàn)動(dòng)物中心),體重(100±10)g,隨機(jī)分為sham組(n=8)和TAAC組(n=8)。造模前8 h禁食不禁水。3%戊巴比妥鈉(1.5 mL/kg)腹腔注射,麻醉固定后,常規(guī)消毒,腹部正中切口,打開腹腔,逐層分離,于左腎動(dòng)脈上方分離腹主動(dòng)脈,在左腎動(dòng)脈以上0.5 cm處,用4.0絲線繞穿該處腹主動(dòng)脈,將預(yù)先彎曲好的5號(hào)針頭(外徑0.5 mm)置于擬縮窄處的腹主動(dòng)脈旁,絲線將其與腹主動(dòng)脈一起結(jié)扎,之后將針頭抽出,造成腹主動(dòng)脈部分縮窄,假手術(shù)組僅分離出腹主動(dòng)脈而不行縮窄術(shù)。至第28天心臟采血收集動(dòng)物血標(biāo)本,模型制備和驗(yàn)證參考文獻(xiàn)報(bào)道[7]。
2.2 原代心室肌細(xì)胞(cardiomyocytes,CM)的分離、培養(yǎng) 新生1~2 d Sprague-Dawley大鼠(購于廣東省實(shí)驗(yàn)動(dòng)物中心)常規(guī)乙醇消毒,剪開胸腔,超凈工作臺(tái)中無菌條件下取心尖部,將心室組織剪成約1 mm×1 mm×1 mm碎片后用0.25%胰蛋白酶37℃水浴分次消化。采用差速貼壁原理分離CM,調(diào)整細(xì)胞密度為3×108/L,接種于細(xì)胞培養(yǎng)板中培養(yǎng)。前48 h加BrdU 0.1 mmol/L。培養(yǎng)至第4天后去血清培養(yǎng)過夜,第5天的細(xì)胞用于實(shí)驗(yàn)[8]。
2.3 寡核苷酸序列設(shè)計(jì)與合成 大鼠miR-199a-5p的擬似物(mimic)根據(jù)其成熟體序列(miRBase accession No.MIMAT0000872)合成,為雙鏈結(jié)構(gòu);miR-199a-5p的抑制劑(inhibitor)則采用miR-199a-5p成熟體的反向互補(bǔ)序列,并對所有堿基都進(jìn)行2’-甲氧基修飾(由吉瑪公司設(shè)計(jì)),為單鏈結(jié)構(gòu)。雙鏈RNA的陰性對照(NC)和單鏈RNA的陰性對照(INC)為非哺乳動(dòng)物基因組的同源性序列,由吉瑪公司設(shè)計(jì)和合成。PCR引物由上海英駿生物公司合成,見表1。
2.4 AngⅡ誘導(dǎo)乳鼠原代CM肥大 按照方法2.2分離培養(yǎng)CM,加入1 μmol/L AngⅡ培養(yǎng)的CM(等量超純水作為對照),無血清DMEM培養(yǎng)基培養(yǎng)48 h后收集細(xì)胞檢測。
2.5 細(xì)胞轉(zhuǎn)染 miRNA的轉(zhuǎn)染使用轉(zhuǎn)染試劑Lipofectamine RNAiMAX,按說明書操作,miRNA終濃度為100 nmol/L。最后一次轉(zhuǎn)染的48 h或72 h后按實(shí)驗(yàn)需要處理細(xì)胞。
2.6 大鼠血漿樣本和CM總RNA的提取及qRTPCR檢測 動(dòng)物血漿樣本經(jīng)方法2.1步驟分離獲得后,每份取330 μL,加入670 μL Trizol試劑,用氯仿、異丙醇、75%乙醇分離、沉淀、清洗RNA,質(zhì)檢、定量。按Trizol試劑盒說明書的操作步驟提取培養(yǎng)的貼壁CM的總RNA;按逆轉(zhuǎn)錄反應(yīng)試劑盒說明書進(jìn)行逆轉(zhuǎn)錄反應(yīng)(16℃ 30 min,42℃ 40 min,85℃ 5 min),反應(yīng)產(chǎn)物進(jìn)行PCR擴(kuò)增;PCR過程按qPCR試劑盒說明書在ABI 7500熒光定量PCR儀上進(jìn)行。PCR反應(yīng)條件:95℃ 3 min;45個(gè)PCR循環(huán)(95℃15 s,60℃20 s,72℃20 s,78℃20 s)。miRNA使用U6作為內(nèi)參照,mRNA使用18S作為內(nèi)參照同時(shí)進(jìn)行PCR,獲得Ct值后,應(yīng)用比較Ct法進(jìn)行相對定量,目標(biāo)基因的相對定量按2-ΔΔCt計(jì)算。
2.7 氚標(biāo)亮氨酸摻入法([3H]-Leu incorporation)檢測CM蛋白合成速率 CM培養(yǎng)于24孔板中,培養(yǎng)和轉(zhuǎn)染條件同上,收集前12 h每孔加入氚標(biāo)亮氨酸3.7×104Bq,收集細(xì)胞時(shí)先去掉培養(yǎng)液,PBS漂洗后加入30%過氧化氫和高氯酸(2∶1配制混合液),80℃孵育1 h裂解細(xì)胞,收集裂解液轉(zhuǎn)移至含閃爍液的 閃爍瓶中,液閃儀檢測氚的放射性計(jì)數(shù)。
表1DNA和RNA寡核苷酸序列Table 1.The sequence of the oligonucleotides
2.8 心肌細(xì)胞表面積大小的檢測(熒光染料染色法) 采用攜帶熒光基團(tuán)的染料鬼筆環(huán)肽(fluorescent phallotoxins),按說明書操作,染心肌細(xì)胞骨架蛋白F-actinin,DAPI染核,激光共聚焦顯微鏡拍攝心肌細(xì)胞輪廓,進(jìn)而計(jì)算細(xì)胞的表面積大小,結(jié)果用IPP 6.0軟件分析。
3 統(tǒng)計(jì)學(xué)處理
采用SPSS 15.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)表示,組間差異只有兩組時(shí)用t檢驗(yàn),有多組時(shí)用單因素方差分析(One-way ANOVA)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 心肌肥大模型中miR-199a-5p表達(dá)上調(diào)
采用TAAC方法制備大鼠心肌細(xì)胞肥大動(dòng)物模型成功后,取動(dòng)物血漿用qRT-PCR方法檢測miR-199a-5p的表達(dá)變化,結(jié)果顯示,TAAC組大鼠血漿miR-199a-5p的表達(dá)水平較sham組明顯升高(P<0.05)。AngⅡ刺激CM 48 h,結(jié)果顯示,AngⅡ組CM miR-199a-5p的表達(dá)水平也較Con組明顯升高(P<0.05),提示miR-199a-5p在心肌細(xì)胞肥大動(dòng)物模型和細(xì)胞模型中均表達(dá)上調(diào)。
Figure 1.Up-regulation of mature miR-199a-5p expression in cardiac hypertrophy models.miRNA expression levels were measured using qRT-PCR.Mature miR-199a-5p was up-regulated in the plasma(A)of TAAC group (n=8)and Ang II-induced cardiomyocytes(B,n= 3).Mean±SEM.*P<0.05 vs sham group;#P<0.05 vs Con group.圖1 心肌肥大模型中miR-199a-5p的表達(dá)上調(diào)
2 過表達(dá)miR-199a-5p促進(jìn)CM肥大
轉(zhuǎn)染 miR-199a-5p的 mimic,在 CM內(nèi)過表達(dá)miR-199a-5p后,qRT-PCR方法檢測肥大基因心房鈉尿因子(atrial natriuretic factor,ANF)和β-肌球蛋白重鏈(β-myosin heavy chain,β-MHC)mRMA的表達(dá)量;氚標(biāo)亮氨酸摻入量檢測細(xì)胞蛋白合成速率的變化;熒光染料染色法檢測心肌細(xì)胞表面積大小變化。結(jié)果如圖2顯示,與NC組比較,過表達(dá)miR-199a-5p后能使肥大基因ANF和β-MHC的表達(dá)量增加,CM合成速率加快,CM表面積增大(均P<0.05)。
Figure 2.Over-expression of miR-199a-5p promoted cardiomyocyte hypertrophy.The mRNA expression levels of ANF and β-MHC were measured by qRT-PCR(A).The protein synthesis rate were measured by leucine incorporation assay(B).Cardiomyocytes were stained with Alexa Fluor 546 phalloidin and 4',6'-diamidino-2-phenylindole.A blind observation was examined more than 200 cells from randomly acquired images.The relative cell area images were analyzed using Image-Pro Plus 6.0 software(C).Scale bar=50 μm.Mean±SEM.n=3.#P<0.05 vs NC group.圖2 過表達(dá)miR-199a-5p對CM肥大的作用
3 阻遏miR-199a-5p能抑制AngⅡ誘導(dǎo)的心肌細(xì)胞肥大
轉(zhuǎn)染miR-199a-5p的inhibitor或INC,再用AngⅡ刺激心肌細(xì)胞,qRT-PCR方法檢測ANF和β-MHC mRMA的表達(dá)量;氚標(biāo)亮氨酸摻入量檢測細(xì)胞蛋白合成速率的變化;熒光染料染色法檢測心肌細(xì)胞表面積大小變化。結(jié)果如圖3顯示,在轉(zhuǎn)染miR-199a-5p INC后,AngⅡ同樣能刺激心肌細(xì)胞肥大(使ANF和β-MHC mRMA的表達(dá)量增加,CM合成速率加快,CM表面積加大);但先轉(zhuǎn)染miR-199a-5p的 inhibitor,使細(xì)胞內(nèi)miR-199a-5p作用受阻后,再用AngⅡ刺激CM,則CM不再出現(xiàn)肥大(均P<0.05),提示阻遏miR-199a-5p的作用,能抑制AngⅡ誘導(dǎo)心肌細(xì)胞肥大。
近年來的文獻(xiàn)報(bào)道顯示,在心肌肥大動(dòng)物模型中,miRNAs的表達(dá)譜發(fā)生明顯改變,在心肌肥大的調(diào)控中起重要作用,并指出miRNAs可能會(huì)成為逆轉(zhuǎn)心肌肥大甚至治療心衰的新靶標(biāo)。其中van Rooij等[6]報(bào)道,用主動(dòng)脈縮窄術(shù)或過表達(dá)鈣調(diào)神經(jīng)磷酸酶誘導(dǎo)小鼠發(fā)生心臟肥大后,心肌組織中至少有12個(gè)miRNAs表達(dá)上調(diào)或下調(diào),并發(fā)現(xiàn)其中多個(gè)miRNAs的變化與心衰患者心臟組織中的變化相一致。在體外培養(yǎng)的心肌細(xì)胞中誘導(dǎo)miRNAs過表達(dá)可直接導(dǎo)致細(xì)胞肥大,另外,過表達(dá)miR-195的轉(zhuǎn)基因小鼠最終發(fā)生心衰。van Rooij等[9]的研究結(jié)果認(rèn)為miR-208是心臟肥大、纖維化所必需的,miR-208缺失的小鼠,應(yīng)激誘導(dǎo)時(shí)不產(chǎn)生心臟重構(gòu)和β-MHC的表達(dá)上調(diào),而miR-208超表達(dá)的轉(zhuǎn)基因小鼠則出現(xiàn)明顯的β-MHC的表達(dá)上調(diào)。Sayed等[10]的小鼠TAAC模型中,術(shù)后第14天,心臟組織miR-26a和miR-26b出現(xiàn)表達(dá)下調(diào)。以上研究報(bào)道證實(shí)miRNAs在心肌肥大病理過程中發(fā)揮重要作用。
Figure 3.The effects of repressing miR-199a-5p on Ang II-induced cardiomyocyte hypertrophy.The mRNA expression levels of ANF and β-MHC were measured by qRT-PCR(A).The protein synthesis rate were measured by leucine incorporation assay (B).Cardiomyocytes were stained with Alexa Fluor 546 phalloidin and 4',6'-diamidino-2-phenylindole.A blind observation was examined more than 200 cells from randomly acquired images.The relative cell area images were analyzed by using Image-Pro Plus 6.0 software(C).The cardiomyocytes were transfected with INC or miR-199a-5p inhibitor,and 24 h later,AngⅡwas added and co-incubated for 48 h.Mean±SEM.n=3.△P<0.05 vs INC group;#P<0.05 vs INC+AngⅡgroup.Scale bar=50 μm.圖3 抑制miR-199a-5p對AngⅡ誘導(dǎo)CM細(xì)胞肥大的影響
Chen等[11]的研究結(jié)果顯示,組織器官表達(dá)的miRNA,可以釋放至人的血清和血漿中,并可以用qPCR的方法檢測到,同時(shí)發(fā)現(xiàn)血清中的miRNA能夠抵抗RNA酶A的消化,這種現(xiàn)象使得miRNA很有希望成為臨床診斷腫瘤和其它疾病的無創(chuàng)性生物標(biāo)記物被廣泛應(yīng)用。另外,研究還發(fā)現(xiàn),在鐮狀細(xì)胞性貧血、前列腺癌、肺癌和心肌損傷等疾病中,循環(huán)miRNA均發(fā)生明顯的表達(dá)變化[12-14],Tijsen等[15]則發(fā)現(xiàn)miR-423-5p在心衰患者的血液循環(huán)中表達(dá)明顯升高,而且與正常人對照和其它疾病導(dǎo)致的呼吸困難患者對照均有差異,認(rèn)為可以把它當(dāng)作心衰患者的循環(huán)生物標(biāo)記物。本實(shí)驗(yàn)也做了相關(guān)的嘗試,通過qRT-PCR的方法檢測 TAAC大鼠血漿中miR-199a-5p的含量,發(fā)現(xiàn)其較sham組明顯升高。進(jìn)而我們通過Ang II誘導(dǎo)體外培養(yǎng)的乳鼠心肌細(xì)胞建立心肌肥大細(xì)胞模型,檢測細(xì)胞內(nèi)miR-199a-5p的表達(dá)變化,結(jié)果發(fā)現(xiàn)Ang II誘導(dǎo)組miR-199a-5p的表達(dá)也較對照組顯著升高,與心肌肥大動(dòng)物模型血漿中miR-199a-5p的含量變化相一致,證明miR-199a-5p在心肌肥大過程中變化顯著。
化學(xué)合成的miRNA擬似物miRNA mimics(雙鏈寡核苷酸)借助脂質(zhì)體介導(dǎo)進(jìn)入細(xì)胞內(nèi),能夠達(dá)到在細(xì)胞內(nèi)過表達(dá)miRNA,進(jìn)而抑制靶基因的目的;導(dǎo)入miRNA的抑制劑(miRNA的反義寡核苷酸,或者稱為antagomirs)則能抑制 miRNA的作用[16-17]。我們通過轉(zhuǎn)染miR-199a-5p的擬似物(mimic)進(jìn)入乳鼠心肌細(xì)胞以過表達(dá)miR-199a-5p,發(fā)現(xiàn)心肌細(xì)胞的肥大基因表達(dá)上調(diào),細(xì)胞蛋白合成速率加快,特別是細(xì)胞形態(tài)學(xué)的結(jié)果顯示,過表達(dá)組心肌細(xì)胞表面積較對照組明顯增大,證明miR-199a-5p的過表達(dá)能促進(jìn)體外培養(yǎng)的心肌細(xì)胞肥大。接著,我們通過轉(zhuǎn)染miR-199a-5p的抑制劑進(jìn)入 CM,阻遏心肌細(xì)胞內(nèi)源性miR-199a-5p的作用,再用Ang II誘導(dǎo)心肌細(xì)胞肥大,結(jié)果發(fā)現(xiàn),Ang II不能再像對照組一樣誘導(dǎo)心肌細(xì)胞肥大,證明阻遏miR-199a-5p的作用能抑制Ang II誘導(dǎo)的心肌細(xì)胞肥大,也提示Ang II誘導(dǎo)的心肌細(xì)胞肥大可能受miR-199a-5p的調(diào)控。miRNA通常通過與靶基因的結(jié)合,抑制或降解靶基因的mRNA,實(shí)現(xiàn)轉(zhuǎn)錄后水平的負(fù)調(diào)控[18-19]。關(guān)于miR-199a-5p的作用靶點(diǎn),我們通過生物信息學(xué)軟件(Targetscan,PicTar)預(yù)測和查閱文獻(xiàn)報(bào)道[20],發(fā)現(xiàn)miR-199a-5p的靶點(diǎn)可能有缺氧誘導(dǎo)因子1α(hypoxia inducible factor 1α,HIF-1α)和糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK-3β),HIF-1α和GSK-3β均可參與心肌肥大的調(diào)控[20-21],其具體調(diào)控機(jī)制有待進(jìn)一步探討。
綜上所述,心肌肥大動(dòng)物和細(xì)胞模型中 miR-199a-5p的表達(dá)發(fā)生上調(diào),在體外培養(yǎng)的心肌細(xì)胞中過表達(dá)miR-199a-5p能促進(jìn)心肌細(xì)胞肥大,而阻遏miR-199a-5p的作用能抑制Ang II誘導(dǎo)的心肌細(xì)胞肥大。研究結(jié)果為進(jìn)一步完善心肌肥大的調(diào)控機(jī)制和miRNA作為循環(huán)生物標(biāo)記物的臨床應(yīng)用提供了實(shí)驗(yàn)依據(jù)。
[1]Pasquinelli AE.MicroRNAs:deviants no longer[J].Trends Genet,2002,18(4):171-173.
[2]Brennecke J,Hipfner DR,Stark A,et al.Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J].Cell,2003,113(1):25-36.
[3]Chen CZ,Li L,Lodish HF,et al.MicroRNAs modulate hematopoietic lineage differentiation[J].Science,2004,303(5654):83-86.
[4]Zhao Y,Samal E,Srivastava D.Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J].Nature,2005,436(7048):214-220.
[5]Thum T,Galuppo P,Wolf C,et al.MicroRNAs in the human heart:a clue to fetal gene reprogramming in heart failure[J].Circulation,2007,116(3):258-267.
[6]van Rooij E,Sutherland LB,Liu N,et al.A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J].Proc Natl Acad Sci U S A,2006,103(48):18255-18260.
[7]Zhang ZH,Li J,Liu BR,et al.MicroRNA-26 was decreased in rat cardiac hypertrophy model and may be a promising therapeutic target[J].J Cardiovasc Pharmacol,2013,62(3):312-319.
[8]張振輝,尤祥宇,劉少軍,等.MicroRNA-29a對大鼠心肌細(xì)胞 Bcl-2和 Mcl-1表達(dá)的調(diào)控作用及其機(jī)制[J].中國病理生理雜志,2012,28(11):1928-1932.
[9]van Rooij E,Sutherland LB,Qi X,et al.Control of stress-dependent cardiac growth and gene expression by a microRNA[J].Science,2007,316(5824):575-579.
[10]Sayed D,Hong C,Chen IY,et al.MicroRNAs play an essential role in the development of cardiac hypertrophy[J].Circ Res,2007,100(3):416-424.
[11]Chen X,Ba Y,Ma L,et a1.Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J].Cell Res,2008,18(10): 997-1006.
[12]Mitchell PS,Parkin RK,Kroh EM,et al.Circulating microRNAs as stable blood-based markers for cancer detection[J].Proc Natl Acad Sci U S A,2008,105(30): 10513-10518.
[13]Ai J,Zhang R,Li Y,et al.Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction[J].Biochem Biophys Res Commun,2010,391(1):73-77.
[14]Ji X,Takahashi R,Hiura Y,et al.Plasma miR-208 as a biomarker of myocardial injury[J].Clin Chem,2009,55 (11):1944-1949.
[15]Tijsen AJ,Creemers EE,Moerland PD,et al.MiR423-5p as a circulating biomarker for heart failure[J].Circ Res,2010,106(6):1035-1039.
[16]Xiao J,Yang B,Lin H,et al.Novel approaches for genespecific interference via manipulating actions of micro-RNAs:examination on the pacemaker channel genes HCN2 and HCN4[J].J Cell Physiol,2007,212(2): 285-292.
[17]Wang Z,Luo X,Lu Y,et al.miRNAs at the heart of the matter[J].J Mol Med,2008,86(7):771-783.
[18]Eulalio A,Rehwinkel J,Stricker M,et al.Target-specific requirements forenhancersofdecappingin miRNA-mediated gene silencing[J].Genes Dev,2007,21(20): 2558-2570.
[19]Stark A,Brennecke J,Bushati N,et al.Animal micro-RNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution[J].Cell,2005,123 (6):1133-1146.
[20]Rane S,He M,Sayed D,et al.Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[21]Antos CL,McKinsey TA,F(xiàn)rey N,et al.Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo[J].Proc Natl Acad Sci U S A,2002,99(2):907-912.
Regulatory effect of miR-199a-5p on cardiomyocyte hypertrophy in rat
ZHANG Zhen-hui1,LI Jiao2,XIONG Xu-ming1,CHEN Wei-yan1,LIU Shi-ming2
(1Intensive Care Unit,2Department of Cardiovascular Medicine,Guangzhou Institute of Cardiovascular Diseases,The Second Affiliated Hospital of Guangzhou Medical University,Guangzhou 510260,China.E-mail:gzliushiming@126.com)
AIM:To investigate the expression of miR-199a-5p in rat cardiomyocyte hypertrophy models.METHODS:The in vivo cardiomyocyte hypertrophy model was established by transverse abdominal aortic constriction (TAAC)and the in vitro model was induced by angiotensin II.The content of miR-199a-5p was detected by qRT-PCR in the plasma of the TAAC rats and in the cardiomyocytes(CM)of the newborn rats.The CM was isolated and transfected with miR-199a-5p mimic or inhibitor at concentration of 100 nmol/L by Lipofectamine RNAiMAX.The mRNA levels of atrial natriuretic factor(ANF)and β-myosin heavy chain(β-MHC)were detected by qRT-PCR.Tritium-labeled leucine incorporation was employed to determine the protein synthesis rate in the CM.The method of cyto-fluorescent staining was applied to measure the changes of the CM surface area.RESULTS:Compared with control group,the content of miR-199a-5p significantly increased in the TAAC rats and in the CM induced by angiotensin II.In addition,over-expression of miR-199a-5p in the CM up-regulated the mRNA expression of ANF and β-MHC,accelerated the protein synthesis rate and enlarged the CM surface area.In the CM transfected with miR-199a-5p inhibitor following induced by angiotensin II,the hypertrophy effect receded inversely(P<0.05).CONCLUSION:Over-expression of miR-199a-5p may promote cardiomyocyte hypertrophy,and repression of miR-199a-5p may inhibit cardiomyocyte hypertrophy in the CM.
MicroRNAs;Myocardial hypertrophy;Angiotensin II
R541.3
A
10.3969/j.issn.1000-4718.2014.03.005
1000-4718(2014)03-0408-06
2013-11-14
2014-01-22
國家自然科學(xué)基金青年項(xiàng)目(No.81201453);廣東省自然科學(xué)基金資助項(xiàng)目(No.S2013010014887);廣州市屬
高??蒲许?xiàng)目(No.2012C230)
△通訊作者Tel:020-34152381;E-mail:gzliushiming@126.com